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Представлены результаты численного моделирования теплообмена между ламинарным осесимметрич-

ным пламенем предварительно перемешанной метановоздушной смеси и плоской холодной преградой для рас-

стояний между срезом горелки и преградой в один, два и три калибра. Вычисления выполнены методом пря-

мого численного моделирования с детальным кинетическим механизмом GRI-MECH 3,0. Для расстояния в три 

калибра показано значительное снижение теплового потока в окрестности лобовой точки вследствие возник-

новения локальной зоны рециркуляции потока между конусом пламени и преградой. Этот эффект объясняет 

наблюдаемое ранее в экспериментах снижение теплообмена. 
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детальный кинетический механизм, laminarSMOKE, OpenFoam, GRI-MECH 3,0. 

В промышленных приложениях горение чаще всего реализуется в камерах сгора-

ния, где наличие стенок приводит к существенным изменениям в структуре пламени 

и кинетике химического реагирования. Отвод тепла холодной поверхностью способству-

ет повышенному образованию загрязняющих веществ. Кроме того, неравномерный теп-

ловой поток от пламени вызывает локальные неоднородности температуры на поверх-

ности стенки, что приводит к появлению областей локального перегрева, термических 

напряжений и повышенному износу материала стенки [1]. Таким образом, детальное 

исследование процессов взаимодействия пламени и стенки, изучение теплообмена и осо-

бенностей химического реагирования в пристенной области представляется важным 

для повышения эффективности и ресурса камер сгорания и снижения уровня выбросов 

загрязняющих веществ в атмосферу. 

За последние десятилетия опубликован ряд работ, посвященных изучению взаимо-

действия пламени и стенки [2]. Основной интерес представляет исследование теплооб-

мена в различных конфигурациях и начальных условиях [3 – 5]. В работе [6] проведено 
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комбинированное экспериментальное и численное исследование теплообмена ламинар-

ного метановоздушного пламени с плоской преградой для разных размеров горелки. 

Экспериментально было показано, что для больших размеров пик теплового потока 

смещен от оси симметрии. На основе численного моделирования сделан вывод, что рас-

положение пика теплового потока связано с пиком профиля осевой скорости. 

Экспериментальное исследование структуры потока конусного пропановоздуш-

ного пламени, направленного перпендикулярно на плоскую охлажденную преграду, 

проведено в работе [7], где методом анемометрии по изображениям частиц было впер-

вые измерено поле скорости. Впервые обнаружено образование рециркуляционной зоны 

в потоке между конусом пламени и поверхностью, что объясняет снижение теплового 

потока на оси симметрии вблизи преграды, наблюдаемое в других экспериментах. 

В работе [8] были зарегистрированы поля температуры для метановоздушного пламени 

в той же конфигурации методом лазерно-индуцированной флюоресценции. Полученные 

данные подтверждают присутствие застойной зоны вблизи лобовой точки, в которой 

имеет место циркуляция охлажденных продуктов сгорания. 

Целью настоящей работы является численное исследование структуры потока 

и теплообмена для ламинарного конусного пламени, направленного перпендикулярно 

на плоскую холодную преграду. Аналогичные конфигурации рассмотрены в работах [5 – 12]. 

Пламя образовано осесимметричным сужающимся соплом с выходным диаметром D = 15 мм, 

из которого поступает метановоздушная смесь (см. [8]). Коэффициент избытка топлива 

φ = 0,92. Число Рейнольдса равно Re = 1000. Преградой является плоская поверхность 

с постоянной температурой Tw = 371 K, расстояние до которой от кромки сопла варьиро-

валось: h/D = 1, 2, 3. Расчетная область представляет собой сектор цилиндра с углом 

раствора 5°. Вычислительная сетка состоит из 210
5
 призматических ячеек со сгущением 

на фронте пламени до 5 мкм. При этом на толщину фронта пламени приходится порядка 

15 узлов сетки.  

Вычисления проводятся на основе открытого вычислительного кода OpenFOAM, 

где для разрешения гидродинамики используется метод конечных объемов в сжимаемой 

постановке. Моделирование реагирующей струи осуществляется путем решения систе-

мы уравнений: неразрывности, баланса импульса, баланса массы отдельных компонен-

тов смеси и баланса энергии. Химическая кинетика определяется с помощью расчетного 

пакета laminarSMOKE [13, 14], позволяющего учитывать детальные механизмы реакций. 

Данные об элементарных реакциях задаются отдельным файлом в формате CHEMKIN 

[15]. Используемый кинетический механизм включает 53 компонента смеси и 324 реак-

ции (GRI-MECH 3.0). Задача решается в осесимметричной нестационарной постановке 

с учетом сил плавучести.  

В ходе численного моделирования получены поля скорости, температуры и массо-

вых долей отдельных компонентов смеси. Сравнение полей температуры с эксперимен-

тальными данными, полученными методом лазерно-индуцированной флюоресценции [8] 

для аналогичных геометрий, представлено на рис. 1 (слева). Расчет хорошо воспроизво-

дит форму пламени, наблюдаемую в эксперименте, однако максимальные значения тем-

пературы пламени в расчете несколько больше, чем в эксперименте. Для определения 

плотности теплового потока в преграду со стороны газа была рассчитана величина 
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 Распределение плотности теплового потока для трех рассмотренных конфи-
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гураций пламени представлено на рис. 2. Видно, что для h = 1D, 2D максимум теплового 

потока вблизи стенки находится на оси симметрии в лобовой точке. Однако для конфи-

гурации h = 3D пик теплового потока смещен, что связано с возникновением зоны ре-

циркуляции между конусом и преградой (см. рис. 1 (справа)). 

Результаты численного моделирования хорошо согласуются с данными работ [7, 8] 

для той же геометрии. Поля температуры имеют схожие распределения с приведенными 

в работе [8]. Векторные поля скорости хорошо согласуются с результатами [7]. Значения 

теплового потока по порядку величины совпадают с данными, полученными в работах 

[5, 6] и др. Кроме того, детальная модель химической кинетики позволяет исследо-

вать распределения концентрации продуктов реакции и промежуточных соединений, 

что является целью дальнейшего исследования. 
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Рис. 1. Сравнение полей температуры, полученных в ходе эксперимента 

и численного моделирования (слева) и векторные поля скорости (справа). 

h = 1D (a), 2D (b), 3D (c); черная линия — изотерма T = 1700 K, белая линия — изотерма T = 2000 K. 
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Таким образом, результаты настоя-

щей работы подтверждают, что органи-

зация струйного горения вблизи охла-

жденной поверхности может приводить 

к возникновению локальной застойной 

зоны между фронтом пламени и преградой, 

что существенно снижает интенсивность и равномерность локального теплообмена. 
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Рис. 2. Радиальное распределение плотности 

теплового потока q 
для различных конфигураций. 

h = D = 15 мм (1), 2D (2), 3D (3). 


