УДК 537.523:533.9

Исследование плазмохимической переработки масла, содержащего полихлорированные бифенилы

Х.С. Пак¹, В.П. Лукашов², С.П. Ващенко², С.В. Морозов³

¹Департамент охраны окружающей среды, университета Дженджу, Корея

²Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, Новосибирск

³Новосибирский институт органической химии им. Н.Н. Ворожцова СО РАН

E-mail: lukashov@itam.nsc.ru

В работе представлены результаты переработки изоляционных масел, содержащих < 2 ppm полихлорированных бифенилов в установке высокотемпературного плазменного плавления зольного остатка, образующегося при сжигании бытовых отходов. Различными методиками выполнен анализ содержания неразложившихся полихлорированных бифенилов, диоксинов и прочих вредных веществ во всех вторичных продуктах переработки (отходящих газах; шлаке; вторичной летучей золе; технической воде, применяемой для грануляции шлака). Выполненный комплекс аналитических исследований показал высокие экологические показатели деструкции полихлорированных бифенилов в установке плазмотермической переработки золы мусоросжигающих заводов.

Ключевые слова: плазмотрон, плазмохимия, полихлорированные бифенилы, зола сжигания отходов, диоксины, экология, хроматомасспектрометрия.

введение

Развитие промышленности сопровождается все возрастающим применением всевозможных химических продуктов. Некоторые из них обладают высокой химической устойчивостью и токсичностью, их трудно разложить после использования, что наносит значительный вред окружающей среде. Поэтому в настоящее время принято решение о запрете на производство и применение целого ряда таких продуктов [1-4]. Образцом такого рода химикатов являются полихлорированные бифенилы (ПХБ), которые изначально использовались в качестве изоляционного масла в трансформаторах. До запрета на их использование, с начала коммерческого выпуска в 1929 году, такого продукта в мире было произведено 1,3 миллиона тонн для самых разных областей применения — трансформаторное, конденсаторное, ароматические масла, пластификаторы, краски, копировальная бумага и т. д. Однако с тех пор, как была доказана исключительная термическая и химическая устойчивость, равно как и токсичность ПХБ, их производство и использование стало запрещено в большинстве стран. Начались исследования ущерба в государственных масштабах, причиняемого окружающей среде ПХБ и их содержащими продуктами, а также разработка способов их переработки.

© Пак Х.С., Лукашов В.П., Ващенко С.П., Морозов С.В., 2009

Для переработки полихлорированного бифенилсодержащего трансформаторного масла в промышленном масштабе реализованы методы высокотемпературного сжигания, а также физико-химические методы. Для получения приемлемой степени переработки ПХБ при высокотемпературном сжигании необходимо проведение процесса при температуре > 1200 °C. Кроме того, возможно образование диоксинов во вторичных продуктах переработки ПХБ, и тогда возникает проблема контроля их содержания в отходящем газе и т. д. Методы химической переработки не требуют высоких температур и уровень вторичного загрязнения (образование диоксинов и т. д.) достаточно низок [7, 8]. Однако степень разложения первичных ПХБ не удовлетворяет сегодняшним требованиям, и по-прежнему остается актуальной эффективная вторичная переработка получаемого в итоге изоляционного масла с низким содержанием ПХБ. Поэтому представляет интерес разработка и исследование новых эффективных и экономически оправданных процессов переработки изоляционного масла с низким содержанием ПХБ (менее 2 ppm).

В настоящей работе изучается способ переработки изоляционных масел, содержащих ПХБ, путем их впрыска в существующие установки высокотемпературного плазменного плавления зольного остатка, образующегося при сжигании бытовых отходов. При этом проводится анализ содержания неразложившихся ПХБ и образовавшихся в процессе переработки диоксинов и прочих вредных веществ во всех вторичных продуктах.

I. ПЛАЗМЕННАЯ СИСТЕМА И МЕТОД ПЕРЕРАБОТКИ

В данных экспериментах для сжигания полихлорированного бифенилсодержащего масла использована плазменная установка, созданная для плавления смеси подовой и летучей золы, образующейся при огневом сжигании бытовых отходов [9]. Эта установка создана в 1999 году, ее производительность по золе составляет до 1200 кг/час, плазмотрон имеет мощность до 1 МВт. Установка расположена в г. Инчхон, Республика Корея, и на ней проводятся тестовые плавки зол от различных мусоросжигательных заводов при различных соотношениях подовой и летучей золы. За время эксплуатации установки на ней было переработано до 100 тонн золы. Блок-схема установки показана на рис. 1. Установка включает

Рис. 1. Схема процесса.

Рис. 2. Плазмотермическая установка.

в себя систему подготовки и транспортировки золы, плазменной плавильной печи, дожигателя отходящих из печи газов и системы очистки и удаления газов, отходящих от дожигателя. Отходящие газы после полного сгорания в системе дожигания поступают в котел-утилизатор, охлаждаются в скруббере, играющем роль закалочного устройства, в рукавный фильтр и выбрасываются в атмосферу. Основная часть установки представлена на фотографии (рис. 2).

Схема подключения плазмотрона к источнику питания и устройство плазмотрона показаны на рис. 3. Вольфрамовый катод защищен азотом, водоохлаждаемые пусковая секция и сопло — медные. При пуске плазмотрон работает в струйном режиме, т. е. дуга горит между катодом и анодом (соплом). После получения расплавов металла и шлака и приобретения расплавами шлака достаточной проводимости сопло отключается и дуга горит на расплав, который является анодом. Такой режим работы плазмотрона определяется как режим работы с выносной дугой и является основным технологическим режимом.

Плазменная печь производительностью 750 кг/ч состоит из гидравлического питателя для подачи золы в печь, устройства для непрерывного слива

шлака в водяной гранулятор и плазмотрона, установленного на крышке печи. Схема устройства и работы плавильной камеры показана на рис. 4. Плазменная плавильная печь соединяется с устройством загрузки золы, плазмотроном, работающим на подовый электрод, системой выгрузки шлака и пр. Что касается футеровки, от которой зависит ресурс плавильной печи, то использовался огнеупорный кирпич MgO- Cr_2O_3 с высокой эрозионной

Рис. 3. Схема плазмотрона и его подключения к источнику питания.

Рис. 4. Схема плавильной камеры.

устойчивостью к шлаку, антикоррозийными и антиабразивными свойствами. В области выгрузки шлака, где эрозия особенно сильна, использовались блоки из Al₂O₃.

При переработке полихлорированных бифенилсодержащих изоляционных масел в печи плазменного плавления, когда масло впрыскивается в область плазменного факела с температурой свыше 5000 °C, а температура расплавленного шлака поддерживается свыше 1400 °C, вероятность простого пиролиза-сжигания высока не только для изоляционного масла, но и для ПХБ [10–12]. Продукты неполного сгорания или недожога должны разлагаться в жидком шлаке при 1400 °C.

Полнота сгорания полихлорированного бифенилсодержащего изоляционного масла зависит от качества его распыления. Проведены исследования влияния давления распыления, расхода жидкости и расхода воздуха, вводимого в форсунку, на дисперсность распыливаемой жидкости. Оптимальное сочетание указанных выше факторов, обеспечивающих полное сгорание частиц масла, приведено в табл. 1.

Все основные технологические параметры (температура, давление, расходы подаваемых компонентов и т. д.) отображались в режиме реального времени на компьютере и могли дистанционно изменяться с его помощью. Температуры в аппаратах работающей установки для нескольких режимов приведены в табл. 2. Данные этой таблицы свидетельствуют также о стабильности поддержания во времени температуры аппаратов установки.

Для поддержания уровня ванны расплавленного шлака туда периодически подавалась зола. Полнота сгорания ПХБ–содержащего изоляционного масла зависит от времени его пребывания в высокотемпературной зоне, чтобы достичь степени разложения 99,999999 %, оно должно быть выше 1,6 с [12]. Расчетное время

Таблица 1

Условия распыления полихлорированного бифенилсодержащего масла

Расход распыляющего воздуха, м ³ /ч (давление 3,5 кг/см ²)				
Расход подаваемого ПХБ-содержащего масла, л/ч (давление 1 кг/см ²)	27			
Угол распыления газожидкостной смеси	30			
Размер частицы ПХБ-содержащего масла, им	30			

Таблица 2

Температура аппаратов плазменной установки

	Режимы с подачей ПХБ-содержащего масла				
Секция, температура °С	1	2	3		
Плавильная камера	1415	1430	1430		
Дожигатель	1167	1250	1250		
Нагреватель отходов	520	500	500		
Закалочное устройство	168	170	170		
Рукавный фильтр	152	149	149		
Газ перед дымососом	112	115	115		

Таблица З

Химический состав подаваемой золы

Компонент	SiO ₂	CaO	Al ₂ O ₃	Общ. Fe	Общ. Na	Общ. К	Общ. С1	Общ. N	P ₂ O ₅	MgO	TiO ₂	H ₂ O	С	Н	s
Состав, масс. %	26,3	22,8	11,1	7,2	4,7	1,45	0,7	4,7	3,5	2,80	1,5	4,7	2,3	0,7	1,6

Таблица 4

Параметр	Значение	Параметр	Значение
Расход ПХБ-содержащего масла	27 л/ч	Время подачи ПХБ–содержащего масла	4 ч
Концентрация ПХБ	11,49 мг/л	Подача золы	40 кг/ч

пребывания в высокотемпературной зоне плазменной печи перерабатываемого масла с ПХБ равнялось 2,4 с.

Полное время подачи масла в плазменную печь составляло 4 часа, для расчета степени разложения полихлорированных бифенилов проводились замеры их массы до подачи и после прекращения подачи. Химический состав золы, подаваемой

Таблица 5

Методы анализа отходящих газов, шлака, летучей золы и технической воды

Определяемые соединения	Состав определяемых соединений	Методы анализа			
Диоксины	17 токсичных ПХДД и 17 ПХДФ*	Хромато-масс-спектроскопия высокого разрешения			
ПХБ	ПХБ, содержащие от 1 до 10 атомов хлора	_·_			
Компланарные ПХБ	12 соединений	_·_			
Полициклические ароматиче- ские углеводороды, ПАУ	16 соединений	Хромато-масс-спектроскопия			
Тяжелые металлы	Кадмий, свинец, мышьяк, ртуть, хром VI	ИСП спектрометрия **			
Соединения, загрязняющие атмосферу	24 соединения	В соответствии с корейскими стандар- тами			
Макрокомпоненты в отходящих газах	$CO, NO_x, SO_x, O_2, CO_2$	Green line-9000			
* — ПХДД — полихлорированные диоксины, ПХДФ — полихлорированные дибензофураны, ** ИСП спектрометрия — атомно-эмиссионная спектрометрия в индуктивно связанной плазме.					

Рис. 5. Изменение концентраций компонентов в монооксид углерода (СО, *1*), окислы азота (NO_x, 2), окислы серы (SO_x, 3), кислород (O₂, 4), углекислый газ (CO₂, 5), отходящего газа в дымовой трубе за время одного рабочего цикла.

в камеру плавления, приведен в табл. 3. Условия эксперимента и методики проводимых анализов приведены в таблицах 4 и 5.

На рис. 5 показаны результаты непрерывных замеров O_2 , CO, NO_x, и SO_x в отходящем газе в плазменной установке без подачи ПХБ. Как видно из рис. 5, концентрация O_2 в дымовой трубе поддерживалась на уровне 11 %, а концентрация CO₂, который, предположительно, находился в условиях полного сгорания, оказалась 5 ~ 6 %. Содержание CO и SO_x оказалось ниже 1 ppm, а содержание NO_x в отходящих газах изменялось с минимального значения 50 ppm до максимального 80 ppm. Эта величина NO_x достигалась подачей в плазменную печь при плавлении золы природного газа в количестве 6–10 нм³/час [7, 8]. В результате в объеме плавильной печи поддерживалась восстановительная среда, в которой происходила эффективная деструкция NO, образующихся в плазмотроне, и в применении специального оборудования для очистки от окислов азота отходящих газов необходимости не было.

При подаче масла с ПХБ существенных отличий в изменении состава отходящего газа не наблюдалось. Такой результат понятен, т. к подача масла повышает восстановительный потенциал газовой атмосферы в плавильной печи. По-видимому, при работе с подачей масла природный газ можно не подавать в плавильную печь. Кривые концентраций, приведенные на рис. 5, свидетельствуют также о стабильности во времени технологического процесса.

II. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

2.1. Анализы на диоксины и ПХБ

Результаты переработки полихлорированных бифенилсодержащих изоляционных масел в плазменной плавильной печи приведены в табл. 6. Пробы в этом эксперименте отбирались из подаваемого полихлорированного бифенилсодержащего изоляционного масла, отходящих газов, шлака, летучей золы, улавливаемой в рукавном фильтре, и технической воды в кристаллизаторе шлака. Методы анализа, количество и состав определяемых соединений указаны в табл. 5. Для подаваемого полихлорированного бифенилсодержащего масла приведена концентрация в нем ПХБ. Для отходящих газов, шлака, летучей золы и технической воды в табл. 6 приведены: сумма концентраций 17 определяемых изомеров диоксинов и фуранов, приведенных к значению диоксинового эквивалента (TEQ-Toxic Equivalency Standard), сумма концентраций 12 соединений компланарных ПХБ, приведенных также к значению диоксинового эквивалента, сумма концентраций всех ПХБ, а также сумма концентраций 16 соединений ПАУ (кроме технической воды). Кроме того, проведено сопоставление режимов с впрыском масла с ПХБ и режимов без впрыска.

Анализ данных, приведенных в табл. 6, однозначно показывает, что продукты переработки в плазмотермической установке не представляют опасности для окружающей среды, поскольку концентрации наиболее токсичных веществ

Таблица б

Результаты переработки полихлорированного бифенилсодержащего маста в плазменной уста
новке

		С подачей І	ТХБ–содержа	Без подачи ПХБ–содержащего масла	
Режимы		1	2	3	4
Масса под	даваемых ПХБ, л/ч	27	27	27	_
Температура	з камере плавления, °С	1,400	1,430	1,430	1,350
Концентрац	ия ПХБ в масле, мг/л	11,49	11,49	11,88	-
	Диоксины, нг-ТЕQ/нм ³	0,03244	0,08653	0,0434	0,04339
Отхоляние газы	Со-ПХБ, нг-ТЕQ/нм ³	0,00293	0,01218	0,011	0,00581
Отходящие газы	Всего ПХБ, нг/нм ³	3,07	28,91	21,46	21,48
	РАН, нг/нм ³	5,2	4,9	3,8	3,81
	Диоксины, нг-ТЕQ/г	0,00234	0,00001	ND	ND
	Со-ПХБ, нг-ТЕQ/г	0,00009	ND	0,00006	0,00003
шлак	Всего ПХБ, нг/г	0,81	0,806	0,72	-
	PAHs, нг/г	0,08	0,029	-	0,027
	Диоксины, нг-ТЕQ/г	3,35247	1,43537	1,7328	0,02743
Π	Со-ПХБ, нг-ТЕQ/г	0,194	0,04652	0,0391	0,00301
Летучая зола	Всего ПХБ, нг/г	21,41	10,87	_	0,92
	РАН, нг/г	4,8	1,5	-	0,5
Техническая вода	Диоксины, нг-ТЕQ/Л	0,04969	0,00126	0,000497	ND
	Со-ПХБ, нг-ТЕQ/Л	0,00661	0,00022	0,000379	0,0001
	Всего ПХБ, нг/Л	0,01481	0,0123	-	0,0066

в выбросах установки ниже применяемых в Корее норм для термических установок. Можно отметить только заметное превышение токсичных веществ в летучей золе, образующейся в режиме с подачей полихлорированного бифенилсодержащего масла, в сравнении с режимом без подачи ПХБ-масла, что вполне вероятно. Заметим, что масса летучей золы по отношению к суммарной массе отходящих газов и шлака не превышала 1 %.

Довольно значительный разброс данных для отдельных измерений суммарных концентраций ПХБ и ПАУ, возможно, связан с колебаниями концентраций органических компонентов подаваемой золы, которые в экспериментах не фиксировались.

Степень разложения ПХБ рассчитывалась по уравнениям (1) и (2) [12]. Расчет основывался на результатах, приведенных в табл. 6, и массах веществ, поданных на обезвреживание, и продуктов переработки. Этот анализ включал в себя уравнения эффективности деструкции и удаления (Destruction & Removal Efficiency, DRE) и эффективности деструкции (Destruction Efficiency, DE) для расчета степени разложения.

В случае с DE полная деструкция вредных соединений (ПХБ) рассчитывалась на основе суммарной массы всех вредных веществ, перешедших в другие соединения, в продуктах переработки, поделенной на массу исходного соединения:

$$DE = \left(1 - \frac{\sum (CiSi)}{CoSo}\right) \times 100. \tag{1}$$

Здесь Со — исходная концентрация, подаваемых ПХБ, So — масса изоляционного масла, Ci — концентрация токсичных диоксинов + Co-ПХБ в шлаке, летучей золе, технической воде и отходящих газах после переработки, Si — масса шлака, летучей золы, технической воды и отходящих газов после переработки.

В случае с DRE эффективность деструкции и удаления рассматривалась как эффективность деструкции и удаления подаваемого ПХБ через отдельные продукты переработки (через отходящие газы, шлак, летучую золу, техническую воду):

$$DRE = \left(1 - \frac{CiFi}{CoFo}\right) \times 100,$$
(2)

где Со — концентрация ПХБ на входе, Fo — количество подаваемого ПХБ-содержащего изоляционного масла, Ci — концентрация токсичных диоксинов + Со-ПХБ в отходящих газах, шлаке, летучей золе, технической воде, Fi — масса отходящих газов шлака, летучей золы, технической воды.

В случае, когда эффективность разложения определялась по стандарту DE, учитывалась абсолютная масса всех токсичных компонентов, полученных на выходе после переработки ПХБ. Видимо, величина DE является наиболее достоверной характеристикой эффективности разложения подаваемых ПХБ в исследуемой установке.

Результаты расчетов степени разложения

Таблица 7

· ·		
Условия расчета	Степень разложения, %	Примечания
Сумма всех концентраций ПХБ	99,98	На основе DE
Сумма всех токсичных соединений	99,9986	На основе DE
Отходящие газы, диоксины + Со-ПХБ	99,999987	Ha ochobe DRE
Шлак, диоксины + Со-ПХБ	99,999975	На основе DRE
Летучая зола, диоксины + Со–ПХБ	99,99868	Ha ochobe DRE
Техническая вода, диоксины + Со-ПХБ	99,99999887	На основе DRE

Величина DRE не столь представительна для оценки эффективности разложения. Однако поскольку в реальных экспериментах непросто рассчитать достаточно точно (или измерить) массу всех продуктов разложения, для оценки эффективности разложения величину DRE используют в большинстве случаев [14], в особенности, привязанную к массе отходящих газов. Рассчитанные значения DE и DRE представлены в табл. 7.

2.2. Анализ веществ, загрязняющих воздух

Во время подачи ПХБ проводился анализ 24 элементов, загрязняющих воздух. Результаты анализа представлены в табл. 8. Можно видеть, что среди исследованных веществ концентрация большинства не достигает экологических норм, установленных для Кореи. Появление аммиака в результатах анализов, видимо, следует считать ошибкой измерений, поскольку ни мочевина, ни жидкий аммиак в данной установке не используется для подавления окислов азота. Тяжелые металлы в отходящих газах, как видно из таблицы, не обнаружены, за исключением As и Zn. Также приведены результаты анализа загрязняющих веществ во время сжигания золы для случая, когда ПХБ не впрыскивались (см. табл. 7).

Таблица 8

Вещества, загрязняющие атмосферу в процессе переработки ПХБ-содержащего изоляционного масла

Измеряемые компоненты	Единица измерений	Экологические нор- мативы для Кореи	С подачей ПХБ- содержащего масла	Без подачи ПХБ-масла
SO _x	ppm	70*	3,9	15,5
NO _x	ppm	150	41,65	4,5
СО	ppm	200	2,43	24,35
Пыль	мг/нм ³	80	0,78	7,521
Задымленность	степень	2	0	1
Аммиак	ppm	100	109,58	ND
Сероуглерод	ppm	30	ND	ND
Хлористый водород	ppm	40	0,12	ND
Синильная кислота	ppm	10	ND	0,064
Сероводород	ppm	2	0,01	ND
Хлор	ppm	10	0,01	ND
Продукты фтора	ppm	2	0,138	ND
Кадмий	мг/нм ³	0,1	ND	ND
Свинец	мг/нм ³	1,6	ND	0,008
Хром	мг/нм ³	0,5	ND	0,007
Медь	мг/нм ³	10	ND	0,002
Никель	мг/нм ³	20	ND	0,021
Бор	мг/нм ³	5	ND	ND
Бензол	ppm	30	ND	ND
Фенол	ppm	10	ND	ND
Формальдегид	ppm	10	ND	ND
Ртуть	мг/нм ³	0,1	ND	ND
Мышьяк	ppm	0,5	0,02	ND
Цинк	ppm	10	0,018	0,089
*				

^{*} Указанные в столбце нормативы привязаны к концентрации кислорода в отходящих газах в 12 %, ND — концентрации компонентов ниже порога определения методики измерений.

2.3. Анализ выщелачивания тяжелых металлов

Химический состав подаваемой в плавильную камеру золы приведен в табл. 3. Кроме указанных в таблице веществ, в золе имеется около 4 % соединений металлов (цинк, кадмий, свинец, хром, никель и др.). В шлаке после плавления золы эти соединения практически все остаются. Проведенный анализ содержания тяжелых металлов в летучей золе и шлаке, образовавшихся в процессе переработки золы, при подаче и без подачи ПХБ показал, что выщелачивания тяжелых металлов, таких как As, Cd, Cr^{6+} , Hg и Pb, не происходит. В летучей золе обнаружены Cd и Pb, концентрация которых не превышала установленных норм.

выводы

По результатам исследований процесса переработки полихлорированного бифенилсодержащего изоляционного масла в плазменной установке для сжигания золы можно сделать следующие выводы:

1. При впрыске ПХБ-содержащего изоляционного масла суммарная концентрация наиболее токсичных компонентов (диоксины и Со-ПХБ) в отходящих газах составила 0,046-0,1 нг-TEQ/нм³;

2. Суммарная концентрация наиболее токсичных компонентов в шлаке составила от 0,0023 до 0,00001 нг-TEQ/г;

3. В летучей золе содержание диоксинов составило от 1,73 до 3,35 нг-TEQ/г, однако масса летучей золы не превышала 1 % суммарной массы отходящих газов и шлака.

4. Согласно расчетам, степень разложения в установке от 99,97 до 99,98 % полной массы ПХБ, а по токсичным веществам — 99,9986 ~ 99,9993 % (на основе DRE);

5. Выщелачивания тяжелых металлов из шлака обнаружено не было;

6. Выполненный комплекс аналитических исследований подтвердил высокие экологические показатели технологии плазмотермической переработки золы мусоросжигающих заводов как без ввода, так и с вводом ПХБ.

СПИСОК ЛИТЕРАТУРЫ

- 1. Liu P.Y., Zheng M.H., Zhang B., Xu X.B. Mechanism of PCBs formation from the pyrolysis of chlorobenzenes // Chemosphere. 2001. Vol. 43. P. 783–785.
- Kato M., Urano K. Convenient substitute indices to toxic equivalent quantity for controlling and monitoring dioxins in stack gas from waste incineration facilities // Waste Management. 2001. Vol. 21. P. 55–62.
- 3. Tsushima S., Saitoh H., Akamatsu F., Katsuki M. Evolution and Structure of the Free Convective Layer Developing under a Water Surface // JSME Inter. J. 2001. Vol. 44, No. B. P. 616–623.
- McKay Gordon. Dioxin characterization, formation and minimization during municipal solid waste (MSW) incineration: review // Chemical Engng J. 2002. Vol. 86. P. 343–368.
- Gerven T.V., Geysen D., Vandecasteele C. Estimation of the contribution of a municipal waste incinerator to the overall emission and human intake of PCBs in Wilrijk, Flanders // Chemosphere. 2004. Vol. 54. P. 1303–1308.
- 6. Sakurai T., Weber R., Ueno S., Nishino J., Tanaka M. Relevance of coplanar PCBs for TEQ emission of fluidized bed incineration and impact of emission control devices // Chemosphere. 2003. Vol. 53. P. 619–625.
- Park H.S., Kim S.J. Analysis of a Plasma Melting System for Incinerated Ash // J. Ind. Engng. Chem. 2005. Vol. 11, No. 5. P. 657–665.
- 8. Лукашов В.П., Ващенко С.П., Багрянцев Г.И., Пак Х.С. Плазмотермическая переработка твердых отходов // Экология и промышленность России, 2005. № 11. С. 2–7.
- Park H.S., Kim C.G., Kim S.J. Characteristics of PE Gasification by Steam Plasma // J. Ind. Engng // Chem. 2006. Vol. 12. P. 216–223.
- Hwang M.S., Park H.S. Evaluation of combustion mechanism of droplet cluster by simultaneous timeseries measurement in premixed spray flame // J. Ind. Engng. Chem. 2007. Vol. 13, No. 2. P. 206–213.
- 11. Wald S., Glocker B., Weiss E., Pokryvailo A. et al. Treating hazardous wastes with pulsed-plasma technology // JOM, 53. 2001. P. 28–31.
- Rahuman M., Pistone L., Triffir F. et al. Destruction technologies for polychlorinated biphenyls. ICS-UNIDO publications: 2000. Published in November.

Статья поступила в редакцию 6 июля 2009 г.