УДК 539.374.1, 422.2

НЕУСТОЙЧИВОСТЬ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ И РАЗРУШЕНИЕ. ДИАГРАММА ДЕФОРМАЦИИ НЕОДНОРОДНЫХ СРЕД

А. М. Авдеенко

Московский институт стали и сплавов, 117934 Москва

На основе модели нелинейного псевдоконтинуума Коссера построена диаграмма деформации локально-неоднородной среды (пористой структуры либо системы с неперерезаемыми частицами). Рассмотрен модифицированный критерий геометрического разупрочнения, позволяющий установить зависимость момента потери устойчивости пластического течения от статистических характеристик среды.

Поле деформации, возникающее в процессе нагружения среды с порами или частицами второй фазы, неоднородно: частицы (поры) являются концентраторами напряжений и при больших значениях средних деформаций взаимодействуют друг с другом (течение окрестности поры вблизи соседней происходит интенсивнее). Нарастание локальных отклонений изменяет осредненную диаграмму деформации "чистой" (без пор или частиц) среды, причем мера влияния определяется не только концентрацией пор, но и статистикой — взаимным расположением пор (частиц), т. е. корреляционными функциями второго и, возможно, высших порядков.

Процесс разрушения необходимо рассматривать вместе с процессом деформации. Вопервых, пластическая деформация инициирует зарождение микротрещин (пор) на структурных неоднородностях — частицах второй фазы, заторможенных полосах сдвига, ослабленных сегрегациями границах зерен. Во-вторых, от величины деформации зависит слияние зародышевых микротрещин в мезотрещину, что ведет к "ямочному" вязкому излому в масштабах 0,1 ÷ 10,0 мкм. Наконец, в-третьих, когда возможность пластической релаксации внешних нагрузок в целом исчерпана, это приводит к образованию магистральной трещины — макроразрушению [1].

Для построения адекватной модели разрушения необходимо прежде всего построить диаграмму деформации пористой среды (среды с частицами второй фазы) с учетом флуктуаций пластической деформации в ней, связать обобщенные параметры диаграммы деформации (например, эффективный показатель упрочнения) со статистикой неоднородности и сформулировать модифицированный критерий геометрического разупрочнения, позволяющий, в частности, решить задачу структурной оптимизации — найти соотношение количества и распределения частиц второй фазы (пор) при заданной диаграмме "чистой" среды, гарантирующее максимальную макроравномерную деформацию. Для решения этих вопросов необходимо модифицировать рассмотренную ранее в работах [2, 3] статистическую модель нелинейного псевдоконтинуума для учета локальных структурных неоднородностей.

Для статистического описания медленной (склерономной) деформации введем функционал плотности распределений флуктуаций полей смещения $A_{\mu}(\mathbf{r})$ ($\mu = 1, 2, 3$): $f[A_{\mu}] = \exp(-W[A_{\mu}])$. Производящий функционал рассматриваемой системы представим в виде функционального ряда

$$W[A_{\mu}] = \int \dots \int \sum_{k=2}^{\infty} \frac{V_k^{\mu p \dots q \nu}(\boldsymbol{r}_i)}{k} A_{\mu, p} \dots A_{q, \nu} \, d\boldsymbol{r}_1 \dots d\boldsymbol{r}_i \dots$$
(1)

Действительные тензоры $V_k^{\mu...\nu}(\mathbf{r}_i)$ ранга 2k назовем вершинами, первые k индексов ($\mu = 1, 2, 3$) будем относить к компонентам поля смещений A_{μ} , последующие k индексов ($\mu = 1, 2, 3$) — к пространственным производным $A_{\mu,p} = \partial A_{\mu}/\partial x_p$, $\mathbf{r} = (x_1, x_2, x_3)$.

Изменение поля $A_{\mu}(\mathbf{r})$ со временем деформации t назовем траекторией нагружения $A_{\mu}(\mathbf{r},t)$. Плотность распределения $f[A_{\mu}]$ — монотонная функция $W[A_{\mu}]$, поэтому наиболее вероятному процессу соответствует траектория \bar{A}_{μ} , удовлетворяющая вариационному уравнению $\delta W[A_{\mu}]/\delta A_{\mu} = 0$ при заданных граничных условиях. Его решение \bar{A}_{μ} назовем "классической" траекторией, разность $\delta A_{\mu,\nu} = A_{\mu,\nu} - \bar{A}_{\mu,\nu}$ — флуктуациями. В дальнейшем ограничимся рассмотрением так называемых "активных" траекторий. Длина

траектории
$$s = \int_{t_0}^{s} \left(\frac{\partial \bar{A}_{\mu,\nu}}{\partial t} \frac{\partial \bar{A}^{\mu,\nu}}{\partial t}\right)^{1/2} d\tau$$
, где $\bar{A}_{\mu,\nu} = \partial \bar{A}_{\mu}(\boldsymbol{r},t)/\partial x_{\nu}$, увеличивается в процес-

се нагружения, "активная" эволюция вдоль "классической" траектории одинакова для всех микрообъемов v_i (М-образец в терминологии школы А. А. Ильюшина [4]).

Для построения производящего функционала флуктуаций полей деформации разложим функционал (1) в ряд в окрестности "классической" траектории $\bar{A}_{\mu,\nu}$. Если в (1) вершины имеют максимальный порядок n, то вершина флуктуаций $\bar{V}_{k}^{\mu...\nu}(\boldsymbol{r}_{i})$ имеет вид

$$\bar{V}_{k}^{\mu...\nu}(\boldsymbol{r}_{i}) = \bar{V}_{k}^{\mu...\nu}(\boldsymbol{r}_{i}) + \int \dots \int \sum_{p=3}^{n} V_{p,r...q}^{\mu...\nu}(\boldsymbol{r}_{i},\boldsymbol{r}_{i}')\bar{A}^{r,l}(\boldsymbol{r}_{1}',t) \dots \bar{A}^{s,q}(\boldsymbol{r}_{p}',t) \, d\boldsymbol{r}_{1}' \dots d\boldsymbol{r}_{p}'$$

Интегрирование по $\mathbf{r}'_1 \dots \mathbf{r}'_p$ на "М-образце" дает несущественную константу, пропорциональную объему тела в степени p - k. Тензору $\bar{A}^{r,l}$ поставим в соответствие вектор в *m*-мерном пространстве E_m (m — количество независимых компонент тензора $\bar{A}^{r,l}$) и представим комбинацию $\bar{A}^{\mu,\nu} \dots \bar{A}^{p,s}$ в виде функции внутренней геометрии "классической" траектории — ее длины *s*, кривизн $\vartheta_1(s) \dots \vartheta_{n-1}(s)$ и кручения $\vartheta_n(s)$ [4]. В этом случае $\bar{V}_k^{\mu,\dots\nu}(\mathbf{r}_i,t) = \bar{V}_k^{\mu,\dots\nu}(\mathbf{r}_i,\vartheta_n(s),s)$. В дальнейшем ограничимся рассмотрением простых процессов (пропорционального нагружения), для которых скалярные кривизны и кручения тождественно равны нулю. Тогда $\bar{V}_k^{\mu,\dots\nu}(\mathbf{r}_i) = \bar{V}_k^{\mu,\dots\nu}(\mathbf{r}_i,s)$, т. е. производящий функционал для простого (пропорционального) нагружения "М-образца" параметризуется вторым инвариантом тензоров производных полей смещения. Черта над вершиной и δ перед флуктуациями в дальнейшем опускаются.

Нормированное гауссово среднее с весом $\exp(-W)$ при $V_k^{\mu...\nu} = 0$ (k > 2) назовем свободной корреляционной функцией деформации и представим в виде

$$R_{20}^{\mu...\nu}(\mathbf{r}) = C_2^{\mu...\nu} R_{20}(\mathbf{r}) = \langle A^{\mu,p}(\mathbf{r}') A^{q,\nu}(\mathbf{r}'+\mathbf{r}) \rangle = = \int A^{\mu,p}(\mathbf{r}') A^{q,\nu}(\mathbf{r}'+\mathbf{r}) \exp\left(-W[A_{\mu}]\right) dA_{\mu} / \int \exp\left(-W[A_{\mu}]\right) dA_{\mu}.$$
(2)

Здесь dA_{μ} — символ континуального интегрирования; $C_2^{\mu...\nu}$ — некоторый симметричный тензор.

Оператор $V_{20}^{\mu...\nu}(\boldsymbol{r}_i)$, обратный свободной корреляционной функции $R_{20}^{\mu...\nu}(\boldsymbol{r})$, определим с помощью соотношения

$$\int V_2^{\mu...\nu}(\boldsymbol{r}_1, \boldsymbol{r}_1') R_{20,mpqn}(\boldsymbol{r}_1' - \boldsymbol{r}_2) \, d\boldsymbol{r}_1' = \delta_m^{\mu} \delta_n^{\nu} \delta(\boldsymbol{r}_1 - \boldsymbol{r}_2) \tag{3}$$

и назовем свободной вершиной второго порядка. Для системы с $V_k^{\mu...\nu}(\mathbf{r}_i) = 0$ (k > 2) свободная вершина второго порядка совпадает с вершиной $V_2^{\mu...\nu}(\mathbf{r}_i)$. В общем случае, когда $V_k^{\mu...\nu}(\mathbf{r}_i) \neq 0$ (k > 2), нормированное двухточечное среднее с весом $\exp(-W)$ определяет полную корреляционную функцию $R_2^{\mu...\nu}(\mathbf{r})$. Оператор $V_2^{\mu...\nu}(\mathbf{r}_i)$, обратный полной корреляционной функции, задается выражением (3) при замене $R_{20}^{\mu...\nu}(\mathbf{r}) \to R_2^{\mu...\nu}(\mathbf{r})$. Этот оператор учитывает взаимодействия флуктуаций полей деформации (нелинейные эффекты) и в дальнейшем будет называться полной вершиной второго порядка. Полная вершина, вообще говоря, не совпадет с оператором при квадрате полевых переменных в производящем функционале (1), который теперь будет обозначаться $V_{20}^{\mu...\nu}(\mathbf{r}_i)$.

Положим, что в исходном (ненагруженном) состоянии "классическая" траектория соответствует уравнению равновесия модели упругого псевдоконтинуума Коссера [5]

$$\nabla^2 A_{\mu} + \frac{1}{1 - 2\nu} \nabla_{\mu} (\nabla_{\nu} A^{\nu}) - \xi_0^2 \nabla^2 (\nabla^2 A_{\mu} - \nabla_{\mu} \nabla^{\nu} A_{\nu}) = 0,$$

где ξ_0 — структурный масштаб упругого псевдоконтинуума; $\nabla_{\mu} = \frac{\partial}{\partial x_{\mu}}, \nabla^2 = \sum_{i=1}^{3} \frac{\partial^2}{\partial x_{\mu}^2}.$

Разобьем поле A_{μ} на продольную и поперечную составляющие: $A_{\mu} = A_{\mu}^{n} + A_{\mu}^{t}$, тогда соответствующие дисторсии $A_{\mu,\nu}^{n} = 1/(n\delta_{\mu\nu}A_{k,k})$ и $A_{\mu,\nu}^{t} = A_{\mu,\nu} - A_{\mu,\nu}^{n}$. Свободную вершину второго порядка представим в виде суммы $V_{20}^{\mu...\nu}(\boldsymbol{r}_{i}) = V_{20}^{\mu...\nu,n}(\boldsymbol{r}_{i}) + V_{20}^{\mu...\nu,t}(\boldsymbol{r}_{i})$:

$$V_{20}^{\mu\dots\nu,n}(\boldsymbol{r}_{i},s\rightarrow+0) = \frac{T_{2}^{\mu\dots\nu,n}}{V\langle\varepsilon_{2}^{2}\rangle} \Big[\frac{3-2\nu}{1-2\nu}\Big]\delta(\boldsymbol{r}_{1}-\boldsymbol{r}_{2}),$$
$$V_{20}^{\mu\dots\nu,t}(\boldsymbol{r}_{i},s\rightarrow+0) = \frac{T_{2}^{\mu\dots\nu,t}}{V\langle\varepsilon_{1}^{2}\rangle} [1+\xi_{0}^{2}\nabla^{2}]\delta(\boldsymbol{r}_{1}-\boldsymbol{r}_{2}),$$

где $\langle \varepsilon_1^2 \rangle = V^{-1} \int R_{20\mu\nu}^{\mu\nu,t}(\mathbf{r}) d\mathbf{r}, \ \langle \varepsilon_2^2 \rangle = V^1 \int R_{20\mu\nu}^{\mu\nu,n}(\mathbf{r}) d\mathbf{r}$ — поперечные и продольные дисперсии флуктуаций полей деформации в ненагруженном состоянии; V — объем тела.

Можно показать, что в нагруженном состоянии свободные вершины продольных флуктуаций остаются неизменными, а для поперечных принимают вид

$$V_{20}^{\mu\ldots\nu,t}(\boldsymbol{r}_i,s\to+0) = \frac{T_2^{\mu\ldots\nu,t}}{V\langle\varepsilon_1^2\rangle} \left[\theta(s) + \xi_0^2 \nabla^2\right] \delta(\boldsymbol{r}_1 - \boldsymbol{r}_2),$$

где $\theta(s) = (1/G) d\tau/ds$ — касательный модуль упрочнения вдоль "классической" траектории, нормированный на модуль сдвига.

Соответствующие свободные корреляционные функции имеют вид

$$R_{20}^{\mu...\nu,t}(\boldsymbol{r},s) = \frac{C_2^{\mu...\nu,t}V\langle\varepsilon_1^2\rangle}{4\pi r\xi_0^2} \exp{(r/\xi)}, \qquad R_{20}^{\mu...\nu,n}(\boldsymbol{r},s) = C_2^{\mu...\nu,n}V\langle\varepsilon_{12}^2\rangle\delta(\boldsymbol{r}_1 - \boldsymbol{r}_2),$$

где $C_2^{\mu...\nu,t} = \delta^{\mu p} e^q e^{\nu}$; $C_2^{\mu...\nu,n} = e^{\mu} e^{\mu} e^{\nu} e^{\nu}$; e^{ν} — единичный вектор в направлении r; $\xi = \xi_0 \theta^{-\alpha/2}$ — интервал корреляций флуктуаций поперечной деформации; $\alpha = 1 - (n + 2)g_4/2$, где величина g_4 связана с вершиной четвертого порядка флуктуаций деформации соотношением $\int V_4^{\mu...\nu}(\mathbf{r}_i, s \to +0) d\mathbf{r}_i = T_4^{\mu...\nu}g_4$; n — количество компонент поля A_{μ} [2, 3]. Дисперсии флуктуаций полей поперечной и продольной деформации выражаются со-

Дисперсии флуктуации полеи поперечнои и продольнои деформации выражаются соответственно следующим образом:

$$\langle \varepsilon^2(\theta) \rangle = V^{-1} \int R^{\mu\nu,t}_{20\mu\nu}(\boldsymbol{r},\theta) \, d\boldsymbol{r} = \langle \varepsilon_1^2 \rangle \theta^{-\alpha}, \qquad \langle \varepsilon^2(\theta) \rangle = V^{-1} \int R^{\mu\nu,n}_{20\mu\nu}(\boldsymbol{r},\theta) \, d\boldsymbol{r} = \langle \varepsilon_2^2 \rangle,$$

и, так как за исключением узкой области в окрестности макроупругости $\theta \ll 1$ и $\langle \varepsilon_1^2 \rangle \approx \langle \varepsilon_2^2 \rangle$, то $\langle \varepsilon^2(\theta) \rangle \gg \langle \varepsilon_2^2 \rangle$. В дальнейшем ограничимся рассмотрением статистики лишь поперечных флуктуаций полей деформации.

Безразмерный модуль упрочнения в процессе нагружения уменьшается $(d\theta/ds < 0)$, что ведет к степенным особенностям $\xi(\theta)$, $\langle \varepsilon^2(\theta) \rangle$ с сохранением подобия $\langle \varepsilon_1^2 \rangle / \langle \varepsilon^2(\theta) \rangle = \xi_0^2 / \xi^2(\theta)$. Для экспериментальных зависимостей $\xi(\theta)$, $\langle \varepsilon^2(\theta) \rangle$ для поликристаллов железа [6] и алюминия [2] значение индекса α лежит в интервале 1,1 ÷ 1,2. Экстраполяция $\xi(\theta)$ к ненагруженному состоянию $s \to +0$ дает структурный масштаб $\xi_0 = 25 \div 100$ мкм.

ненагруженному состоянию $s \to +0$ дает структурный масштаб $\xi_0 = 25 \div 100$ мкм. Перейдем к приведенным переменным: $A_{\mu,\nu} \to A_{\mu,\nu} \xi_0 V^{-1/2} \langle \varepsilon_1^2 \rangle^{-1/2}$, тогда в состоянии s > 0 свободная вершина второго порядка $V_{20}^{\mu...\nu}(\boldsymbol{r}_i) = T_2^{\mu...\nu}(\theta(s)\mu^2 + \nabla_{\mu}\nabla^{\mu})\delta(\boldsymbol{r}_1 - \boldsymbol{r}_2)$. После фурье-преобразования

$$V_{20}^{\mu\dots\nu}(\boldsymbol{p}) = \int V_{20}^{\mu\dots\nu}(\boldsymbol{r},\boldsymbol{r}_1) \exp(i(\boldsymbol{p}\boldsymbol{r} + \boldsymbol{p}_1\boldsymbol{r}_1)) d\boldsymbol{r} d\boldsymbol{r}_1$$

имеем $V_{20}^{\mu...\nu}(p) = T_2^{\mu...\nu}(\theta(s)\mu^2 + p^2)$, где $\mu = \xi_0^{-1}$. Отсюда безразмерный модуль $\theta(s)$ упрочнения в состоянии s > 0 связан с $V_{20}^{\mu...\nu}(\boldsymbol{p}, \theta)$ соотношением

$$\theta(s) = \lim_{\boldsymbol{p} \to 0} \left(V_{20}(\boldsymbol{p}, \theta) \mu^{-2} \right).$$
(4)

Учет дисперсных неоднородностей проведем в предположении, что величина λ^2 зависит от пространственной координаты: $\lambda^2 = \lambda^2(\mathbf{r})$. Определим среднее

$$\bar{\lambda}^2 = V^{-1} \int \lambda^2(\boldsymbol{r}) \, d\boldsymbol{r}$$

и введем случайную функцию $\varphi(\mathbf{r}) = \mu^{-2} (\lambda^2(\mathbf{r}) - \bar{\lambda}^2).$

В исходном состоянии $s \to +0$ для сред с заданным структурным масштабом среднее $\bar{\lambda}^2$ ($s \to +0$) стремится к величине $\lambda^2 \to \mu^2(1 + \eta N_0)$, где N_0 — объемная доля неоднородностей. Величина $\eta = (G - G_1)/G$ (G_1 и G — упругие модули дискретной неоднородности и среды соответственно) определяет тип неоднородности: если структурная неоднородность — пора, то $\eta = -1$. В общем случае ($\eta \ge -1$) положительному значению η соответствует частица с бо́льшим упругим модулем. Полагается, что неоднородности не образуют связного кластера, их средний размер много меньше структурного масштаба среды, а случайная функция $\varphi(\mathbf{r})$ реализует дельта-коррелированный (поры либо частицы не перекрывают друг друга) изотропный процесс: $\langle\langle\varphi(\mathbf{r}_1)\varphi(\mathbf{r}_2)\rangle\rangle = \Delta(\mathbf{r}_1 - \mathbf{r}_2) = \Delta\delta(\mathbf{r}_1 - \mathbf{r}_2)$, где угловые скобки означают осреднение по всем реализациям случайного поля $\varphi(\mathbf{r})$. Для пор $\Delta = N_0(1 - N_0)$, для частиц $\Delta = \eta^2 N_0(1 - N_0)$.

Производящий функционал для поля φ имеет вид

$$W_1[\varphi] = \int \frac{\varphi^2}{2\Delta} \, dr,$$

общий производящий функционал для системы с локальными неоднородностями — $W'[A_{\mu}, \varphi] = W[A_{\mu}] + \Delta W[A_{\mu}, \varphi] + W_1[\varphi]$, где $W[A_{\mu}]$ — производящий функционал в модели нелинейного псевдоконтинуума

$$\Delta W[A_{\mu},\varphi] = \int \frac{\mu^2}{2} T_2^{\mu p q \nu} \varphi A_{\mu,p} A_{q,\nu} \, d\boldsymbol{r}.$$

Осредняя систему с производящим функционалом $W'[A_{\mu}, \varphi]$ по полю φ в континуальном смысле, получим производящий функционал флуктуаций полей деформации в модели нелинейного псевдоконтинуума с локальными неоднородностями

$$\exp\left(-W''[A_{\mu}]\right) = \int \exp\left(-W[A_{\mu},\varphi]\right) d\varphi$$

или

$$W'' = -\ln \int \exp\left(-W[A_{\mu},\varphi]\right) d\varphi,$$

где $d\varphi$ — символ континуального интегрирования по полю φ .

Нормированные двухточечные средние с весом $\exp(-W'[A_{\mu}])$ являются полными кор-реляционными функциями $R_2^{\mu...\nu}(\mathbf{r})$ в модели нелинейного псевдоконтинуума с неодно-родностями. Оператор $V_2^{\mu...\nu}(\mathbf{r}_i)$ (полная вершина второго порядка), обратный $R_2^{\mu...\nu}(\mathbf{r})$, зависит теперь от статистики неоднородности — величины Δ . Соответствующий безразмерный модуль упрочнения по аналогии с (4) определяется соотношением $\Omega(s)$ = $\lim_{s \to \infty} V_2(\boldsymbol{p}, \Delta, \theta(s))$. Эффективное напряжение вдоль "классической" траектории имеет вид

$$\sigma(s) = \int_{1}^{\theta(s)} \Omega(\theta) \, \frac{ds(\theta)}{d\theta} \, d\theta.$$
(5)

Таким образом, построение диаграмм деформации для нелинейных сред с заданной статистикой некоррелированных локальных неоднородностей сводится к осреднению функционала $W'[A_{\mu}, \varphi]$ по полю φ и вычислению полной вершины второго порядка $V_2^{\mu...\nu}(\boldsymbol{p})$ в точке $\boldsymbol{p} = 0$ с последующим интегрированием (5). Пусть в исходной модели $V_k^{\mu...\nu}(\boldsymbol{r}_i) = 0$ (k > 2), тогда единственная нелинейность

в системе с локальными неоднородностями связана со слагаемым $\varphi A_{\mu,\nu} A^{\mu,\nu}$. Дисперсию локальной неоднородности $\Delta \approx N_0 \ll 1$ будем рассматривать как малый параметр разложения, тогда парная корреляционная функция в модели с неоднородностями в состоложения, тогда парная корреляционная функция в модели с неоднородностами в состо янии s > 0 имеет вид $R_2^{\mu...\nu}(\boldsymbol{p}) = R_{20}^{\mu...\nu}(\boldsymbol{p}) - R_{20}^{\mu...\nu'}(\boldsymbol{p})\Sigma_{\mu'...\nu'}(\boldsymbol{p})R_{20}^{p...\nu'}(\boldsymbol{p})$, где $R_{20}^{\mu...\nu}(\boldsymbol{p}) = C_2^{\mu...\nu}(\mu^2\theta(s) + p^2)^{-1}$, $\Sigma_{\mu'...\nu'}(\boldsymbol{p}) = \Delta T_{2,\mu'...\nu'}\left(\int R_{20}(\boldsymbol{q}) d\boldsymbol{q} + 2\Delta \int R_{20}^2(\boldsymbol{q}) d\boldsymbol{q} + \dots\right) + O(\Delta^3)$. Учитывая, что $C_2^{\mu\nu\rhoq}T_{2,k\nu\rhoq} = \delta_k^{\mu}$, $V_2(\boldsymbol{p}) = R_2^{-1}(\boldsymbol{p})$, и разрешая это выражение относи-

тельно $V_2(\boldsymbol{p})$, имеем

$$V_2(\boldsymbol{p}) = V_{20}(\boldsymbol{p}) + \Sigma(\boldsymbol{p}, \Delta) = V_{20}(\boldsymbol{p}) - \bar{\Delta}(\theta) \int R_{20}(\boldsymbol{q}) d\boldsymbol{q},$$

где $\overline{\Delta}(\theta) = \Delta + 2\Delta^2 \int R_{20}^2(\boldsymbol{q}) d\boldsymbol{q} + O(\Delta^3).$

Переходя к пределу $\boldsymbol{p} \to 0$ и учитывая определение (5), получим выражение для безразмерного модуля упрочнения локально-неоднородной среды в виде

$$\Omega(\theta) = (1 + \eta N_0)(\theta + \mu^{-2}\bar{\Delta}(\theta)) \int R_{20}(\boldsymbol{q}) d\boldsymbol{q}, \qquad \bar{\Delta}(\theta) = \Delta + 2\Delta^2 \int R_{20}^2(\boldsymbol{q}) d\boldsymbol{q} + \dots$$

При вычислении интегралов $J_1 = \int R_{20}(\boldsymbol{q}) \, d\boldsymbol{q}, \ J_2 = \int R_{20}^2(\boldsymbol{q}) \, d\boldsymbol{q}$ для исключения особенностей необходима регуляризация, определяемая таким образом, чтобы в ненагруженном состоянии $\Omega(\theta) = \theta(s \to +0)(1 + \eta N_0) = 1 + \eta N_0$ [3, 6]. Соответствующие регуляризованные интегралы имеют вид

$$J_1(\text{reg}) = \int R_{20}(\boldsymbol{q}) \, d\boldsymbol{q} = -\frac{1}{2} \, \mu^2 \theta \ln \theta, \qquad J_2(\text{reg}) = \int R_{20}^2(\boldsymbol{q}) \, d\boldsymbol{q} = -\frac{1}{2} \, \ln \theta.$$

Окончательно получаем

$$\Omega(\theta) = (1 + \eta N_0)\theta \left(1 + \frac{1}{2}\bar{\Delta}(\theta)\ln\theta + \dots\right), \qquad \bar{\Delta}(\theta) = \Delta(1 - \Delta\ln\theta + \dots). \tag{6}$$

Соотношений (6) достаточно для построения диаграммы деформации нелинейной среды с неоднородностями: первое соотношение учитывает локальную перегрузку структуры ($\Omega(\theta) \approx \Delta \ln \theta$), второе — эффективное взаимодействие локальных неоднородностей ($\bar{\Delta}(\theta) \approx \Delta^2 \ln \theta$). Существенно, что в полученные соотношения для Ω и $\bar{\Delta}$ не входит величина структурного масштаба ξ_0 .

Уточнение соотношения (6) возможно следующим образом. Введем функции $F_1(\theta) = \Omega/\theta$, $F_2(\theta) = \bar{\Delta}(\theta)/\Delta$. Поскольку $F_1(1) = F_2(1) = 1$, то справедливы равенства $F_1(\theta_1)/F_1(\theta_2) = 1/F_1(\theta_1/\theta_2)$, $F_2(\theta_1)/F_2(\theta_2) = 1/F_2(\theta_1/\theta_2)$, что равносильно системе ренормгрупповых уравнений

$$\theta \frac{d \ln \Omega}{d\theta} = \theta \frac{d \ln \Omega}{d\theta} \Big|_{\theta=1} + \frac{d \ln \Omega}{d\Delta} \frac{d\Delta}{d\theta} \Big|_{\theta=1}, \qquad \theta \frac{d\Delta}{d\theta} = \theta \frac{d \ln \Delta}{d\theta} \Big|_{\theta=1}.$$

Решение этой системы при начальном условии $\Omega(s \rightarrow +0) = 1 + \eta N_0$ имеет вид

$$\Omega(\theta) = (1 + \eta N_0)\theta \exp\bigg(\int_{\Delta}^{\Delta} \frac{A(\Delta)}{B(\Delta)} d\Delta\bigg),$$

где $A(\Delta) = \frac{d \ln \Omega}{d \ln \theta}\Big|_{\theta=1}; B(\Delta) = \frac{d\bar{\Delta}}{d\theta}\Big|_{\theta=1}.$

Первые члены разложения $\Omega(\theta)$ по Δ совпадают с выражением (4), однако приближение более точное за счет эффективного суммирования слагаемых, содержащих сколь угодно высокую степень Δ .

Выполняя вычисления в первом приближении Δ , имеем

$$\Omega(\theta) = (1 + \eta N_0)\theta^{1+\nu(\theta)},\tag{7}$$

где $\nu(\theta) = (1/2) \ln (1 + 2\Delta \ln \theta) / \ln \theta = (1/2)\overline{\Delta}(\theta) \approx \Delta (1 - \Delta \ln \theta)^{-1} + O(\Delta^3).$

Подстановка (7) в (5) позволяет получить диаграмму деформации "чистой" среды ($N_0 = 0$), учитывающую статистику неоднородности.

Явное интегрирование (5) возможно лишь в первом порядке по Δ для некоторых частных зависимостей $\theta(s)$. Пусть "классическая" траектория в истинных координатах аппроксимируется зависимостью $\sigma(s) = \sigma_0 s^m \ (m < 1)$.

В ненагруженном состоянии $(s \to +0)$ $\theta(s) \approx s^{m-1} \to \infty$, поэтому ограничимся рассмотрением деформации $s \ge s_1$, при этом $\lim_{s \to s_1} \theta(s) \to 1 - 0$. Отсюда соответствующее значение напряжения $\sigma(s_1) = \sigma_1 = m^{-1} (\sigma_0 m)^{1/(1-m)}$. Подставляя эту зависимость

щее значение напряжения $\sigma(s_1) = \sigma_1 = m^{-1}(\sigma_0 m)^{1/(1-m)}$. Подставляя эту зависимость в (3), после интегрирования получим $\sigma(\theta) = (1 + \eta N_0)\sigma_1(1 + (m/M)(\theta^{M/(m-1)} - 1)) = (1 + \eta N_0)\sigma_1(1 + (m/M)((s/s_1)^M - 1)),$ где $M = m - \Delta(1 - m)$.

Для большинства пластичных материалов $\sigma_0 = (2 \div 9) \cdot 10^{-3}$ (истинное напряжение нормируется модулем сдвига), $m = 0, 2 \div 0, 3$ [1], отсюда $s_1 = 10^{-4} \div 10^{-3}$ и для реальных процессов $s/s_1 \gg 1$, поэтому $\sigma(s) \approx \sigma_0 s^M$. Показатель упрочнения M всегда меньше показателя для "чистой" среды, причем относительная погрешность $(M - m)/m = \Delta(1 - m)/m \approx \eta^2 N_0(1 - m)/m$ увеличивается с увеличением N_0 , η и уменьшением m. В области малых $N_0 < 0,02$ величина (M - m)/m сравнима с дисперсией воспроизводимости показателя упрочнения "чистой" среды $\delta m/m$, и ее вкладом можно пренебречь [7]. Уменьшение безразмерного модуля упрочнения θ ведет к увеличению Δ , т. е. к уменьшению величины M независимо от знака η (при $-\Delta \ln \theta \approx 1$ необходимо учитывать высшие порядки теории возмущений). Для активного простого нагружения определим эффективный показатель упрочнения

$$M(\theta) = \frac{d \ln \sigma(\theta)}{d \ln \theta} \frac{d \ln \theta}{d \ln s} = \frac{\Omega(\theta)s(\theta)}{\sigma(\theta)},$$

где $s(\theta)$ — истинная деформация; $\Omega(\theta), \sigma(\theta)$ — эффективный модуль упрочнения и напряжение соответственно.

В ненагруженном состоянии $s \to +0 \ (\theta \to 1-0)$, поэтому $\sigma(\theta \to 1-0) = \lim_{s \to +0} \theta(s) s(\theta)$

и $M(s \rightarrow +0) = 1$ (упругая система).

Рассмотрим простой активный процесс — одноосное растяжение. Пусть Σ — текущее сечение образца, F — приложенная сила. Пластическое течение устойчиво при dF = $-\sigma d\Sigma + \Sigma d\sigma > 0$ или $d \ln \sigma / d \ln s > s$, поскольку $d\Sigma = -\Sigma ds$. В противном случае $d \ln \sigma / d \ln s < s$ макрооднородное течение неустойчиво: при одноосном растяжении образуется шейка $(d \ln \sigma/d \ln s = s)$. Для степенной аппроксимации истинной диаграммы $\sigma = \sigma_0 s^m$ решение уравнения $d \ln \sigma/d \ln s = s$ принимает наиболее простой вид $s_{\rm p} = m$. При s > m течение устойчиво, при s < m происходит локализация.

Учет флуктуационных поправок в рамках рассматриваемой концепции требует замены показателя m эффективной величиной $M(\theta)$. Модифицированный критерий потери устойчивости течения принимает вид

$$M(\theta) - s(\theta) = 0 \tag{8}$$

или

$$\sigma(\theta) - \Omega(\theta) = 0. \tag{9}$$

Единственное решение уравнений (8), (9) относительно θ (величина $\theta_{\rm p})$ и соответствующая равномерная деформация $s_{\rm p}$ зависят от дисперсии Δ и параметров диаграммы деформации, поскольку $\theta(s)$ — гладкая убывающая функция истинной деформации. В нулевом приближении теории возмущений $s_{\rm p}^0 = m$, в высших приближениях необхо-

димо численное решение уравнений (8), (9). Для пористой структуры на основе чистого железа ($\sigma_0 = 8,63 \cdot 10^{-3}, m = 0,31, \eta = -1$) получены следующие результаты: увеличение концентрации пор уменьшает равномерную деформацию с $s_{\rm p} \approx 0.27$ при $N_0 = 0.05$ до $s_{\rm p} \approx 0.14$ при $N_0 = 0.15$. Если $\Delta \ll m/(1-m)$, можно пренебречь изменением величины Δ в процессе нагружения: $\Delta \ll \ln^{-1} \theta_{\rm p}^0$, где $\theta_{\rm p}^0 = \theta_{\rm p}|_{s=m} \ll 1$. Тогда $s_{\rm p}(\Delta) = s_{\rm p}(0) - \Delta(1-m)$, где $s_{\rm p}(0) = m$ — макроравномерная деформация "чистой" среды. Для пористой структуры $\Delta = N_0(1 - N_0)$, тогда при $N_0 \ll 1$

$$s_{\rm p}(N_0) = m - N_0(1 - m). \tag{10}$$

Сопоставим это соотношение с экспериментом для пористого железа, полученного спеканием и компактированием с различной объемной долей пор N₀ [7]. Технологические поры распределены изотропно и равномерно. Их диаметр 1,5 ÷ 3,0 мкм много меньше структурного масштаба $\xi_0 = 20 \div 30$ мкм упругого псевдоконтинуума, определенного для матрицы из статистики рельефа деформации [6]. На рисунке представлена зависимость макроравномерной деформации (одноосное растяжение) от концентрации пор N₀ по данным [7] с учетом стандартной оценки среднеквадратичного отклонения. Увеличение концентрации пор приводит к уменьшению макроравномерной деформации с примерно 0,27 при $N_0 = 0,003$ до примерно 0,2 при $N_0 = 0,1$. В области $N_0 < 0,11$ зависимость $s_p(N_0)$ линейна: $s_{\rm p}(N_0) = (0.279 \pm 0.009) - (0.659 \pm 0.145)N_0$. Свободный член 0.279 ± 0.009 и угол наклона 0,659 ± 0,145 в пределах ошибки воспроизводимости совпадают с показателем упрочнения основы (чистого железа) $m = 0.27 \pm 0.02$ и величиной $1 - m = 0.63 \pm 0.02$ соответственно, что согласуется с (10) и подтверждает правомерность предложенной схемы построения диаграммы деформации неоднородной среды.

Равномерная деформация пористого железа:

1 — $N_0 = 0,003; 2 - N_0 = 0,037; 3 - N_0 = 0,062; 4 - N_0 = 0,110$

Таким образом, когда среднее расстояние между изотропными порами $N_0^{-1/3}$ не менее 2–3 диаметров пор, равномерная деформация пористой структуры хорошо определяется по диаграмме деформации сплошной среды в пределе дельта-коррелированной модели с учетом лишь двухточечных корреляционных функций полей деформации, хотя рост пор и зарождение микротрещин в явном виде не учитываются вплоть до значений истинных деформаций примерно 0,2.

Рассмотренная модель представляет собой лишь первое приближение реальной структуры локально-неоднородной среды. Эффекты следующего порядка связаны, очевидно, с размещением частиц второй фазы (пор) кластерами, когда интервал корреляции (полупериод структуры) l_{κ} может быть сравним с величиной структурного масштаба ξ_0 . Это требует учета поправок порядка l_{κ}/ξ_0 к величине Δ .

ЛИТЕРАТУРА

- 1. Штремель М. А. Прочность сплавов. М.: Моск. ин-т стали и сплавов, 1997. Ч. 2.
- 2. Авдеенко А. М. Критические явления при пластической деформации // Металлофизика. 1990. Т. 2, № 5. С. 7–12.
- 3. Авдеенко А. М. Скейлинг структурно-неоднородных сред // Изв. АН СССР. Металлы. 1992. № 9. С. 64–67.
- 4. Ильюшин А. А. Механика сплошных сред. М.: Изд-во Моск. ун-та, 1978.
- 5. **Лихачев В. А., Малинин В. Г.** Структурно-аналитическая теория прочности. СПб.: Наука. С.-Петерб. отд-ние, 1993.
- 6. Авдеенко А. М., Кузько Е. И., Штремель М. А. Развитие неустойчивости пластической деформации как самоорганизация // Физика твердого тела. 1994. № 10. С. 3158–3161.
- 7. Spitzig W. A., Smelser R. E., Richmond O. The evolution of damage and fracture in iron compacts with various initial porosities // Acta Metall. 1988. V. 36, N 5. P. 1201–1211.

Поступила в редакцию 16/VII 1999 г., в окончательном варианте — 11/X 1999 г.