2009. Том 50, № 6

Ноябрь – декабрь

C. 1084 – 1094

УДК 539.27:539.194

ИССЛЕДОВАНИЕ СТРУКТУРЫ И ЭНЕРГЕТИКИ β-ДИКЕТОНАТОВ. XVI. МОЛЕКУЛЯРНОЕ СТРОЕНИЕ И КОЛЕБАТЕЛЬНЫЙ СПЕКТР АЦЕТИЛАЦЕТОНАТА ЦИНКА ПО ДАННЫМ ГАЗОВОЙ ЭЛЕКТРОНОГРАФИИ И КВАНТОВО-ХИМИЧЕСКИХ РАСЧЕТОВ

© 2009 Е.В. Антина², Н.В. Белова¹, М.Б. Березин², Г.В. Гиричев¹*, Н.И. Гиричева³, А.В. Захаров¹, А.А. Петрова¹, С.А. Шлыков¹

¹Ивановский государственный химико-технологический университет

²Учреждение Российской академии наук Институт химии растворов РАН, Иваново ³Ивановский государственный университет

Статья поступила 30 декабря 2008 г.

Выполнено исследование структуры молекулы ацетилацетоната цинка посредством синхронного электронографического и масс-спектрометрического эксперимента при температуре 376(7) К, а также квантово-химических расчетов. Установлено, что молекула Zn(acac)₂ имеет структуру симметрии D_{2d} с хелатными циклами, расположенными во взаимно-перпендикулярных плоскостях. Основные геометрические параметры молекулы Zn(acac)₂ следующие: $r_{h1}(Zn-O) = 1,942(4)$ Å, $r_{h1}(C-O) = 1,279(3)$ Å, $r_{h1}(C-C_r) = 1,398(3)$ Å, $r_{h1}(C-C_m) = 1,504(5)$ Å, $\angle(O-Zn-O) = 93,2(7)^\circ$, $\angle(Zn-O-C) = 125,9(7)^\circ$, $\angle(C-C_r-C) = 125,8(14)^\circ$, $\angle(O-C-C_m) = 115,2(9)^\circ$. Значение эффективного угла поворота метильных групп, близкое к 30°, свидетельствует об их свободном вращении. На основании квантово-химических расчетов получены частоты колебаний и проведена интерпретация ИК спектра молекулы Zn(acac)₂.

Ключевые слова: газовая электронография, квантовая химия, масс-спектрометрия, ацетилацетонат цинка, молекулярная структура, частоты колебаний.

Настоящая работа продолжает серию исследований структуры и энергетики бис-β-дикетонатов металлов [1—9] и посвящена изучению строения молекул и спектроскопических свойств бис-ацетилацетоната цинка методом газовой электронографии и посредством квантово-химических расчетов.

Электронографическое исследование ацетилацетоната цинка впервые было выполнено в 1981 г. Авторы работы [10] сделали вывод о том, что молекула Zn(acac)₂ имеет равновесную структуру симметрии D_{2d} с расположением двух хелатных фрагментов О—С—С_г—С—О во взаимно-перпендикулярных плоскостях. Заметим, что при интерпретации электронографических данных авторами [10] были сделаны некоторые допущения. В частности, фиксировались значения межъядерных расстояний $r_{\rm g}$ (С—Н) = 1,10 Å. Положение метильных групп принимали таким, что связь С_m—Н, лежащая в плоскости хелатного кольца, "заслоняет" связь С—О лиганда. Однако такое расположение групп СН₃, согласно недавним исследованиям внутреннего вращения радикалов-заместителей в β-дикетонатах [11], соответствует седловой точке четвертого порядка на поверхности потенциальной энергии (ППЭ). Минимуму ППЭ соответствует положение метильных групп, где связь С_m—Н, лежащая в плоскости хелатного кольца, "заслония, "заслония," сответствует седловой точке четвертого порядка на поверхности потенциальной энергии (ППЭ). Минимуму ППЭ соответствует положение метильных групп, где связь С_m—Н, лежащая в плоскости хелатного кольца, "заслония," связь С—С_г пиганда.

^{*} E-mail: girichev@isuct.ru

Рис. 1. Модель молекулы Zn(acac)₂. В тексте статьи приняты следующие обозначения: C = C6, C7, C8, C9; C_r = C9, C10; C_m = C12, C13, C14, C15; H' = H24, H25, H26, H27

Кроме того, для расчета величин амплитуд колебаний и поправок на перпендикулярные смещения к межъядерным расстояниям авторы [10] использовали диагональное силовое поле, оцененное авторами [12] на основании спектроскопических исследований Cu(acac)₂, а также силовые постоянные растяжения связей

Zn—O и C—O, найденные авторами [13] при исследовании ИК спектров Zn(acac)₂ [13]. Но, как известно, именно колебания с низкими частотами, лежащие за пределами экспериментальных диапазонов исследований [12-14], в значительной степени определяют величины колебательных поправок. Стартовые значения амплитуд колебаний могут быть уточнены МНК. Но авторами [10] из 79 термов, определяющих дифракционную картину Zn(acac)₂, в ходе структурного анализа амплитуды колебаний уточнялись только для пяти. Причем, все выбранные 5 термов относятся к разным пикам на кривой радиального распределения f(r). Остальные амплитуды, относящиеся к данному пику f(r), фиксировались. В работе [9] отмечалось, что если для всех бис- β -дикетонатов *sp*-элементов характерна симметрия молекул D_{2d} , то для комплексов *d*-металлов реализуется как структура D_{2d} , так и D_{2h} с расположением двух хелатных колец в одной плоскости. Но, несмотря на различие в строении координационного полиздра MO₄ в комплексах sp- и d-элементов, наблюдается общая тенденция уменьшения угла $\angle OMO$ при увеличении межъядерного расстояния r(M - O). Геометрическое строение лиганда при этом практически не меняется. Однако структурные параметры молекулы Zn(acac)₂, найденные авторами [10], оказались несколько выпадающими из этой зависимости. Указанное обстоятельство явилось одной из причин, побудивших нас провести повторное электронографическое исследование молекулы ацетилацетоната цинка. Использование современных методик проведения эксперимента и обработки данных, а также использование данных квантово-химических расчетов для определения колебательных поправок позволяет определять структурные параметры молекул с большим числом атомов с более высокой точностью, чем это было сделано в работе [10].

В литературе имеются экспериментальные данные об инфракрасных спектрах ацетилацетонатов двухвалентных металлов, включая $Zn(acac)_2$ [13, 14]. Авторами [13] был получен ИК спектр ацетилацетоната цинка в диапазоне 400—1600 см⁻¹, а также проведены теоретические расчеты и сделаны отнесения частот колебаний. В работе [14] получены ИК спектры поглощения $Zn(acac)_2$ в матрице CO₂ и в полимерном материале при температуре 77 К, спектр $Zn(acac)_2$, осажденного на подложку при испарении препарата из эффузионной ячейки, а также спектр твердого $Zn(acac)_2$, полученного нагреванием подложки после экспериментов с матрицей из CO₂ до комнатной температуры. Использование современных квантово-химических расчетов позволяет проверить правильность сделанных в работе [13] отнесений, а также получить значения частот, лежащих за пределами диапазонов, исследованных в работах [13, 14].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез комплекса Zn(acac)₂ выполнен в соответствии с общей методикой, описанной в [15, 16], следующим образом: 10 г (0,046 моль) ацетата цинка, 40 мл H₂O и 9,4 мл (0,092 моль) ацетилацетона нагревали на водяной бане до растворения соли, раствор отфильтровывали горячим, охлаждали, перекристаллизовывали из смеси гексан—хлороформ. Выход продукта составил 63 %.

Таблица 1

Услови	я съемки электронограмм	паров насыщенного	пара на	д ацетилаце	тонатом ц	инка(II)
-						

Расстояние сопло ампулы-фотопластинка, мм	598	338
Интенсивность электронного пучка, мкА	0,74	1,21
Температура эффузионной ячейки, К	378(5)	374(5)
Ускоряющее напряжение, кВ	79,5	76,9
Длина волны быстрых электронов, Å	0,04191(5)	0,04267(5)
Время экспозиции электронограмм, с	50	60
Остаточное давление в колонне ЭМР-100, мм рт. ст.	$3,1 \cdot 10^{-6}$	$1,9 \cdot 10^{-6}$

Синхронный электронографический и масс-спектрометрический эксперимент выполнен на комплексе аппаратуры ЭМР-100/АПДМ-1 [17—19]. Для проведения эксперимента использовали эффузионную ячейку, выполненную из молибдена, с псевдобарабанным цилиндрическим эффузионным соплом размером 0,6 × 1,2 мм (диаметр × длина). Отношение площади поверхности испарения к площади эффузионного отверстия превышало 500.

Температуру ампулы измеряли с помощью вольфрам-рениевых термопар ВР 5/20, предварительно откалиброванных по точкам плавления олова и алюминия. Длину волны электронов определяли по дифракционным картинам поликристаллического ZnO, съемки которых проводили непосредственно до и после получения электронограмм изучаемого вещества.

Основные условия эксперимента приведены в табл. 1.

Мониторинг состава пара осуществляли при помощи съемки масс-спектров при ионизирующем напряжении $U_{ион} = 50$ В в течение всех основных стадий эксперимента, от начала нагрева образца до экспозиции фотопленок. Согласно полученным масс-спектрам, насыщенный пар над Zn(acac)₂ при температуре 376(7) К состоял исключительно из мономерных молекул. Каких-либо летучих примесей, а также продуктов разложения образца в паре при температуре эксперимента зафиксировано не было.

Для регистрации электронограмм использовали пленки фирмы Кодак для электронной микроскопии (тип SO-163). Оптическую плотность измеряли с помощью модифицированного микроденситометра MD-100 (Carl Zeiss, Jena) с компьютерным управлением [20]. Усреднен-

Рис. 2. Функции молекулярной составляющей интенсивности рассеяния sM(s) для $Zn(acac)_2$: экспериментальная (*) и теоретическая (—), а также разностные функции $\Delta sM(s)$

Рис. 3. Функции радиального распределения f(r), соответствующие экспериментальным функциям $sM_{3\kappacn}(s)$ (*) для насыщенного пара бис-ацетилацетоната цинка и теоретической функции $sM_{\text{теор}}(s)$ (—) для молекулы Zn(acac)₂, а также раз-

ностная $\Delta f(r)$

ные функции интенсивности были получены в пределах углов рассеяния $s_1 = 1,2-14,4$ Å⁻¹ (расстояние сопло ампулы—фотопластинка $L_1 = 598$ мм) и $s_2 = 2,3-28,3$ Å⁻¹ ($L_2 = 338$ мм). Экспериментальные и теоретические кривые молекулярной составляющей интенсивности рассеяния sM(s), а также разностные кривые показаны на рис. 2. На рис. 3 приведены экспериментальная и теоретическая кривые радиального распределения f(r), а также разностные кривые.

КВАНТОВО-ХИМИЧЕСКИЕ РАСЧЕТЫ

Расчеты геометрии, а также силового поля и частот колебаний молекул Zn(acac)₂ и Zn(mda)₂ проводили с помощью версии PC GAMESS [21] программы GAMESS [22]. Был использован метод DFT (гибридный функционал B3LYP). В случае атома цинка остовные оболочки $(1s^22s^22p^6)$ описывали релятивистским эффективным остовным потенциалом [23], а для описания валентных оболочек использовали набор базисных функций (8s7p6d/6s5p3d) [23], дополненный трехэкспонентным набором поляризационных функций с показателями экспонент ξ_{f} 9,4202681, 3,3783250, 1,4466388. Все остальные атомы (С, О и Н) в расчетах, далее обозначаемых как B3LYP/TZV и MP2/TZV, описывали валентно-трехэкспонентными наборами базисных функций (10*s*6*p*/5*s*3*p*) в случаях атомов С и О и (5*s*/3*s*) для атомов Н [24] (базисы TZV в программе GAMESS), дополненными одноэкспонентными наборами поляризационных функций с показателями экспонент $\xi_p = 1,0$ (H), $\xi_d = 0,72$ (C) и 1,28 (O), взятыми из программы GAMESS [22]. Расчеты, обозначаемые ниже как B3LYP/cc-pVTZ, проводили с использованием корреляционно-согласованных трехэкспонентных наборов базисных функций (10s5p2d1f/ /4s3p2d1f) для описания атомов C, O и (5s2p1d/3s2p1d) — для H [25]. Релятивистский эффективный остовный потенциал и набор базисных функций для атома Zn, а также наборы базисных функций сс-рVTZ для атомов С, О и Н были взяты из базы данных [26].

Была выполнена оптимизация геометрии и расчет силового поля и частот колебаний для трех возможных структур молекулы ацетилацетоната цинка: (I) структуры симметрии D_{2d} с расположением двух хелатных фрагментов О—С—С_г—С—О во взаимно-перпендикулярных плоскостях и ориентацией метильных групп, такой, что связь С_m—H, лежащая в плоскости хелатного цикла, "заслоняет" связь С—С лиганда; (II) структуры симметрии D_{2d} с ориентацией метильных групп, принятой авторами [10], где связь С_m—H, лежащая в плоскости хелатного цикла, "заслоняет" связь С—О лиганда; (III) структуры симметрии D_{2h} с расположением двух хелатных циклов в одной плоскости.

Согласно результатам расчетов (как B3LYP/TZV, так и B3LYP/cc-pVTZ) структура I, приведенная на рис. 1, отвечает минимуму энергии и, соответственно, является равновесной. Конфигурация (II) обладает более высокой энергией, а расчет ее силового поля показал наличие четырех мнимых частот, соответствующих вращению метильных групп. Структура III имеет одну мнимую частоту, соответствующую внутреннему вращению лигандов относительно друг друга вокруг оси C_rZnC_r', т.е. внутримолекулярной перегруппировке $D_{2d} \rightarrow D_{2h} \rightarrow D_{2d}$. Таким образом, наше теоретическое исследование указывает на то, что молекула Zn(acac)₂ имеет равновесную структуру симметрии D_{2d} . Положение метильных групп в молекуле таково, что связь C_m —H, лежащая в плоскости лиганда, "заслоняет" связь С—C в хелатном цикле, а также CH₃группы имеют наклон в направлении атомов кислорода в хелатном цикле, понижающий их локальную симметрию до C_s . Подобное расположение групп CH₃ было установлено авторами [8] для молекул Mg(acac)₂ и Be(acac)₂. Причем, авторы [8] предполагают, что подобная ориентация метильных групп должна быть характерна для всех бис-ацетилацетонатов.

Рассчитанные геометрические параметры молекулы Zn(acac)₂ приведены в табл. 2. Частоты колебаний молекулы ацетилацетоната цинка, активных в ИК спектре, представлены в табл. 3 в сравнении с экспериментальными данными [13, 14]. Частоты колебаний, неактивных в ИК спектре, приведены в табл. 4. Отнесения частот выполнены в соответствии с распределением потенциальной энергии (РПЭ) по внутренним координатам, рассчитанным с помощью программы SHRINK [27—29]. Координаты в табл. 3 и 4 приведены в порядке убывания их вклада в РПЭ (вклады менее 20 % не приводятся).

Таблица 2

Параметр	B3LYP/TZV	B3LYP/ cc-pVTZ	ЭГ данные (<i>r</i> _{h1})	Параметр	B3LYP/TZV	B3LYP/ cc-pVTZ	ЭГ данные (<i>r</i> _{h1})		
Межъядерные расстояния, Å				Валентные и двугранные углы, град.					
<i>r</i> (Zn—O)	1,961	1,959	1,942(4)*	\angle (Zn—O—C)	123,5	123,0	125,9(7)		
<i>r</i> (O—C)	1,276	1,274	1,279(3)	$\angle (O - C - C_m)$	115,0	114,9	115,2(9)		
<i>r</i> (00)	2,899	2,907	2,823(9)	∠(O—Zn—O)	95,3	95,8	93,2(7)		
$r(C-C_r)$	1,406	1,403	1,398(3)	$\angle (C - C_r - C)$	126,2	126,3	125,8(14)		
$r(C - C_m)$	1,510	1,508	1,504(5)	\angle (C—C _m —H)	109,1	109,1	107,0(20)		
<i>r</i> (C _r —H)	1,080	1,079	1,060(5)	$\angle (C - C_m - H')$	112,7	112,7	108,5(20)		
$r(C_m - H)$	1,093	1,091	1,071(5)	$\angle (C - C - C_m - H')$	0,0	0,0	32,7(48)		
$r(C_m - H')$	1,089	1,088	1,071(5)						

Структурные параметры молекул Zn(acac)₂, полученные в результате квантово-химических расчетов и на основании анализа МНК функций молекулярной составляющей интенсивности рассеяния

* В скобках приведена полная погрешность, которую рассчитывали по формуле $\sigma = (\sigma_{\text{масш}}^2 + (2,5\sigma_{\text{MHK}})^2)^{1/2}$, где $\sigma_{\text{масш}} = 0,002r$ — для межъядерных расстояний; для углов принято $\sigma = 3\sigma_{\text{MHK}}$.

Таблица З

B3LYP/cc-pVTZ [данная работа]				[13]	[14]			
v, симметрия		Отнесение*	Интен- сивность, км/моль	ν	Отнесение	ν (77 K) матрица CO ₂	ν (77 K)** полистирол	v (комн. темп.)***
1		2	3	4	5	6	7	8
3200	B_2	$r(C_r - H)$	18					
3127	B_2	$r(C_{m}-H')$	65					
3091	Ε	$r(C-H_m)$	26					
3036	B_2	<i>r</i> (C _m —H), <i>r</i> (C _m —H')	4,2					
3036	Ε	<i>r</i> (C _m —H)	25					
1609	B_2	<i>r</i> (O—C)	1162	1592	C=C str., C=O str.	1579 s	1589 s	1597 s
1556	Ε	$r(C - C_r),$ $\alpha(C - C_r - H)$	811	1523	C=O str., CH bend.	1528 s	1524 s	1528 s
1496	Ε	r(O_C)	104	1464	То же	1457 m	1456 m	1463 m
1479	B_2	$\alpha(H - C_m - H'),$	161			1427 m	1423 m	1450 m
1474	Ε	$\alpha(H - C_m - H')$	26					
1436	Ε	<i>r</i> (O—C), <i>r</i> (C—C _r)	799	1394	CH ₃ deg. def.	1390 s	1397 s 1383 sh	1402 s
1398	<i>B</i> ₂	$\alpha(C-C_m-H), \alpha(H-C_m-H)$	4,6					1375 s

Частоты активных в ИК спектре колебаний молекулы Zn(acac)₂, полученные в результате квантово-химических расчетов, и экспериментальные ИК спектры

1397	Ε	α(C—C _m —H),	60	1361	CH ₃ sym. def.	1363 m	1362 m	1367 s
$\alpha(H - C_m - H)$								
					() конч	ание та	абл. З
1		2	3	4	5	6	7	8
1282	<i>B</i> ₂	$r(C-C_m),$ $r(C-C_r)$	103	1264	CC str. + $C \cdot CH_3$ str.	1267 m 1263 m	1268 m	1263 s
1230	Ε	α(C—C _r —H), <i>r</i> (O—C)	34	1197	C—H in-plane bend	1198 w	1198 w	1207 w 1197 w
1048	Ε	$\alpha(C - C_m - H)$	25	1019	CH ₃ rock.	1021 m	1017 m	1019 m
1041	<i>B</i> ₂	$\alpha(C - C_m - H'),$ $r(C - C_m)$	61					
1041	Ε	$\alpha(C - C_m - H'),$ $\alpha(C - C_m - H)$	9,7					
951	B_2	$r(C-C_r)$	13					
944	Ε	$r(C-C_m)$	43	927	CCH_3 str. + CO str.	931 m	925 m	928 m
802	Ε	H' out-of-plane	32	769	CH out-of-plane bend	777 w 766 w 728 w 717 w	773 w	807 w 788 w
678	<i>B</i> ₂	$r(C-C_m)$	21	666	Ring def. + M—O str.			
677	Ε	H' out-of-plane, $\varphi(CC),$ $\alpha(C'-C, -H)$	6,8	651	CCH ₃ bend + M—O str.			
577	Ε	$\alpha(C - C_m - H)$ $r(Zn - O),$ $\alpha(O - C - C_m),$ $\alpha(Zn - O - C)$	44	559	Out-of-plane (?)			
462	B_2	r(Zn - O)	61	422	M—O str.			
414	Ē	$\alpha(C_{r}-C_{r}-C_{m}),$ $\alpha(O_{r}-C_{r}-C_{r}),$ $\alpha(Z_{n}-O_{r}-C)$	21					
280	<i>B</i> ₂	r(Zn-O), $\alpha(O-C-C_m),$ $\alpha(C_r-C-C_m)$	29					
265	Ε	r(Zn—O)	3,7					
245	B_2	α (Zn—O—C)	42					
162	Ε	CH ₃ rock.	0					
148	Ε	φ(OO)	9,3					
98	Ε	CH ₃ rot.	0,8					
33	Ε	ϕ_P	1,5					

^{*} Выполненное на основании РПЭ, см. раздел "Квантово-химические расчеты". Использованы следующие обозначение внутренних координат: *r* — растяжение связи; α — изменение валентного угла; φ — поворот фрагмента Zn—O—C—C_r—C—O относительно оси, проходящей через пару атомов, указанных в скобках (φ_P — поворот фрагмента Zn—O—C—C_r—C—O относительно оси, перпендикулярной плоскости фрагмента и проходящей через его центр).

1089

^{**} Комплекс Zn(acac)₂ осажден из пара (без матрицы CO₂).

*** Спектр твердого Zn(acac)₂, полученного нагреванием подложки после экспериментов с матрицей из CO₂ до комнатной температуры.

v, симметрия		Отнесение*	v, симметрия		Отнесение*				
3200	A_1	<i>r</i> (C _r —H)	1043	A_1	$\alpha(C - C_m - H'), r(C - C_m)$				
3127	A_1	$r(C_m - H')$	952	A_1	$r(C-C_r)$				
3091	B_1	$r(C_m - H)$	674	A_1	$r(C-C_m)$				
3091	A_2	<i>r</i> (C _m —H)	575	A_2	α (C—C _m —H)				
3036	A_1	$r(C_m - H), r(C_m - H')$	575	B_1	α (C—C _m —H)				
1631	A_1	<i>r</i> (O—C)	445	A_1	<i>r</i> (Zn—O)				
1480	A_1	α (H—C _m —H'), α (H—C _m —H)	258	A_1	α (Zn—O—C), α (Cr—C—C _m)				
1473	B_1	$\alpha(H - C_m - H')$	156	A_1	α (Zn—O—C)				
1473	A_2	$\alpha(H - C_m - H')$	150	B_1	ξ(Z…C _r)				
1398	A_1	α (C—C _m —H), α (H—C _m —H)	130	A_2	$\xi(Z \cdots C_r)$				
1284	A_1	$r(C-C_m), r(C-C_r)$	108	B_1	CH ₃ rot.				
1061	B_1	α (C—C _m —H)	107	A_2	CH ₃ rot.				
1061	A_2	α (C—C _m —H)	36	B_1	$\alpha(O-Zn-O^*), \xi(Z\cdots C_r)$				

Частоты неактивных в ИК спектре колебаний молекулы Zn(acac)2, полученные в результате
квантово-химических расчетов (B3LYP/cc-pVTZ)

Таблица 4

* См. сноску * к табл. 3.

Силовое поле молекулы Zn(acac)₂, полученное в результате расчета B3LYP/cc-pVTZ, было использовано для расчета колебательных поправок с помощью программы SHRINK [27—29] (использовали так называемое второе приближение, учитывающее нелинейность при переходе от декартовых к внутренним координатам). Автоматическое формирование набора внутренних координат, описывающих геометрию молекулы Zn(acac)₂, и входного файла для программы SHRINK по результатам квантово-химических расчетов, а также анализ полученных данных о колебательных поправках и распределении потенциальной энергии по внутренним координатам производили с помощью программ Q2SHRINK, SHRINK Extractor и ExPED*.

СТРУКТУРНЫЙ АНАЛИЗ

Анализ функции молекулярной составляющей интенсивности рассеяния проводили методом наименьших квадратов с использованием модифицированного варианта программы КСЕD 35 [30]. Для расчета функций g(s) использовали амплитуды и фазы атомного рассеяния из работы [31].

Выбор модели молекулы для описания ее геометрической конфигурации основывался на результатах квантово-химических расчетов, а также имеющихся в литературе данных о строении бис- β -дикетонатов металлов. Модель молекулы симметрии D_{2d} , принятая как наиболее вероятная, включала 10 независимых параметров. Разницу между расстояниями $r_{h1}(C-H)$ фиксировали равной рассчитанной (B3LYP/cc-pVTZ). Предусматривалась возможность изменения симметрии молекулы до D_{2h} за счет поворота лигандов относительно друг друга вокруг оси второго порядка. Первоначально принятое положение метильных групп с локальной симметрией C_{3v} могло изменяться за счет изменения угла γ , отвечающего за поворот вокруг оси третьего порядка ($\gamma = 0$ отвечает положению, в котором связь C_m -H, лежащая в плоскости хелатного

^{*} Программы Q2SHRINK, SHRINK Extractor и ExPED разработаны A.B. Захаровым. Информацию о программах можно получить по электронной почте (a_zakahrov@isuct.ru).

цикла, "заслоняет" связь С—С лиганда), а также за счет изменения углов ∠HC_mC и ∠H'C_mC, разница которых свидетельствует о наличии "наклона" CH₃-групп в сторону атомов кислорода хелатного фрагмента. Анализ данных о параметрах молекулы ацетилацетоната цинка проводи-

Таблица 5

Связь	r _a , Å	<i>r</i> _{<i>h</i>1} , Å	<i>l</i> , Å	$l_{ m pacч}$, Å	$D_{ m pacч}$, Å			
Zn—O*	1,941(4)**	1,942(4)	0,071(2)	0,068	0,0012			
O—C*	1,279(3)	1,279(3)	0,038(6)	0,042	0,0003			
C-C _r *	1,399(4)	1,398(3)	0,043(6)	0,046	-0,0010			
$C - C_m^*$	1,504(5)	1,504(5)	0,048(6)	0,052	-0,00007			
C _m —H*	1,069(5)	1,071(5)	0,074(6)	0,077	0,0016			
$C_m - H'$	1,069(5)	1,071(5)	0,075(6)	0,078	0,0017			
С _г —Н	1,058(5)	1,060(5)	0,072(6)	0,075	0,0017			
OO	2,812(9)	2,823(9)	0,136(3)	0,098	0,0110			
Zn—C	2,869(6)	2,885(6)	0,097(3)	0,075	0,0154			
Zn—C _r	3,218(8)	3,239(8)	0,085(5)	0,088	0,0203			
Zn—C _m	4,215(9)	4,238(9)	0,104(5)	0,086	0,0231			
Значения углов, град.; <i>r</i> _{h1} -структура								
∠OZnO	* = 93,2(7)	$\angle ZnOC^* =$	125,9(7) ∠	$CC_rC = 1$	125,8(14)			
$\angle OCC_m^* = 115,2(9)$ $\angle HC_mC = 107,0(20)$ $\angle H'C_mC^* = 108,5(20)$								
$\gamma^* = 32,7(48)^{***}$								
$R_{\rm f} = 4.9 \% * * * *$								

Основные молекулярные параметры Zn(acac)₂

* Независимые параметры.

** В скобках приведена полная погрешность, которая рассчитывалась по формуле $\sigma = (\sigma_{\text{масш}}^2 + (2,5\sigma_{\text{MHK}})^2)^{1/2}$, где $\sigma_{\text{масш}} = 0,002r$ — для межъядерных расстояний; для амплитуд колебаний и углов принято $\sigma = 3\sigma_{\text{MHK}}$.

*** γ — угол поворота *трет*-бутильной группы от положения, в котором связь С—Н, лежащая в плоскости хелатного кольца, "заслоняет" связь С—С лиганда.

$$R_{\rm f} = \left[\frac{\sum w(s)[sM_{\rm exp}(s) - hsM_{\rm theor}(s)]^2}{\sum w(s)[sM_{\rm exp}(s)]^2}\right]^{1/2}$$

ли в рамках геометрически согласованной r_{h1} -структуры. Для перехода от r_{a} - к r_{h1} -параметрам был применен набор колебательных поправок, рассчитанный с помощью программы SHRINK (см. раздел "Квантово-химические расчеты"). Стартовые значения среднеквадратичных амплитуд также были взяты из данного расчета. Амплитуды уточняли в группах, соответствующих отдельным пикам на кривой радиального распределения.

Структурные параметры, полученные в ходе анализа МНК экспериментальных функций *sM*(*s*), приведены в табл. 5.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В результате выполненного структурного анализа установлено, что молекула $Zn(acac)_2$ имеет симметрию D_{2d} с двумя эквивалентными лигандами, расположенными во взаимноперпендикулярных плоскостях. Аналогичный вывод сделан и на основании проведенных квантово-химических расчетов. Основные структурные параметры ацетилацетоната цинка, полученные в настоящем исследовании, представлены в табл. 2 и 5. В табл. 6 приведены структурные параметры бис-ацетилацетонатов металлов, полученные на основании электронографических данных. Можно отметить, что геометрия лигандов не изменяется с заменой центрального атома металла и, более того, не зависит от общей симметрии комплекса. Строение же координационных полиэдров МО₄ соответствует представлениям о структуре комплексов *sp*-элемен-

Таблица б

Параметр	Be(acac) ₂	Mg(acac) ₂	Ni(acac) ₂	Cu(acac) ₂	Zn	(acac) ₂
nupumerp	[36]	[8]	[37]	[38]	[10]	[Наст. работа]
<i>r</i> _g (M—O)	1,615(6)	1,960(4)	1,876(5)	1,914(2)	1,942(6)	1,944(4)
$r_{\rm g}(\rm CO)$	1,270(4)	1,280(3)	1,273(7)	1,273(2)	1,261(9)	1,280(3)
$r_{g}(C - C_{r})$	1,397(4)	1,416(3)	1,401(10)	1,402(3)	1,418(21)	1,400(4)
$r_{g}(C - C_{m})$	1,499(5)	1,534(4)	1,504(13)	1,512(4)	1,516(30)	1,506(5)
$r_{g}(C_{m}-H)$	1,093(11)	1,099(4)	1,10	1,109(9)	1,10	1,074(5)
$r_{g}(OO)$	2,580	2,851	2,700(27)	2,761	2,909(31)	2,819(9)
∠OMO	106,0(10)	93,3(4)	93,6(11)	92,3(9)	97,2(13)	93,2(7)
∠MOC	123,4(9)		127,0(11)	124,8(10)	122,9(10)	125,9(7)
∠OCC _m	116,3(10)	116,2(5)	115,0(15)	115,7(10)	116,7(42)	115,2(9)
Симметрия	D_{2d}	D_{2d}	D_{2h}	C_{2h}	D_{2d}	D_{2d}

Структурные параметры бис-ацетилацетонатов некоторых металлов

тов [9] и коррелирует с ожидаемыми изменениями в ряду комплексов *d*-элементов [9]. Так, в ряду Ni(acac)₂—Cu(acac)₂—Zn(acac)₂ межъядерное расстояние r(M—O) растет с одновременным уменьшением валентного угла \angle OMO. Причем величины структурных параметров ацетилацетоната цинка, полученные в настоящем исследовании, несколько лучше согласуются с параметрами других ацетилацетонатов, чем данные авторов [10]. Интересно отметить, что межъядерное расстояние $r_{h1}(Zn$ —O) = 1,942(4) Å ближе к сумме ковалентных радиусов атомов Zn и O (1,91 Å), чем к сумме ионных радиусов (2,14 Å). Однако, согласно данным авторов [32], связь М—O в β-дикетонатах носит преимущественно ионный характер.

Как видно из рис. 4, полученные в настоящем исследовании параметры координационного полиэдра ZnO₄ укладываются в рамки линейной корреляции между величинами \angle OMO и r(M-O), установленной в работе [9]. Причем эта тенденция, характерная для всех бис- β -дикетонатов (как *sp*-, так и *d*-металлов), является следствием того, что с увеличением размеров центрального атома увеличивается расстояние r(M-O) и одновременно уменьшается угол \angle OMO (см. табл. 6).

Как уже отмечалось выше, в исследовании [10] положение метильных групп фиксировали: $r_{g}(C_{m}$ —H) принимали равными 1,10 Å, угол $\angle CC_{m}H = 109^{\circ}$, а величина угла $\gamma = 60^{\circ}$, т.е. связь C_{m} —H, лежащая в плоскости лиганда, "заслоняет" связь С—O в хелатном цикле. Такое положение метильных групп не отвечает равновесной конфигурации (см. раздел "Квантовохимические расчеты"). Однако заметим, что из-за малой рассеивающей способности атомов водорода неправильные представления о положении CH₃-групп, принятые авторами [10], не-

существенно сказываются на определении других структурных параметров (см. табл. 6). Полученное в настоящем исследовании значение угла поворота метильных групп вокруг оси третьего порядка γ является эффективным. Величину угла γ следует считать не параметром статической модели, а величиной, отражающей динамику крутильных колебаний групп CH₃,

 Рис. 4.
 Зависимость величины угла ОМО в хелатном фрагменте от межъядерного расстояния r(M-O) в молекулах бис- β -дикетонатов металлов.
 (\circ соответствует данным для $Zn(acac)_2$, полученных авторами [10])

Таблица 7

Параметр	Zn(acac) ₂ ЭГ [настоящая работа]	[Zn(acac) ₂] ₃ PCA [35]	Zn(acac) ₂ ·H ₂ O PCA [34]	Zn(dpm) ₂ PCA [33]	Асас ЭГ [39—42]
<i>r</i> (Zn—O), Å	1,944(4)	1,999(3)-term, 2,106(3)-центр,	2,02(2)	1,962(7)	
<i>r</i> (C—O), Å	1,280(3)	1,274(2)	1,29(2)	1,274(12)	1,315(7)
					1,287(5)
					1,319(3) 1,243(2)
					1,321(21) 1,262(5)
<i>r</i> (C—C _r), Å	1,400(4)	1,386(2)	1,40(2)	1,405(12)	1,416(10)
					1,405(5)
					1,382(7) 1,430(8)
					1,359(34) 1,443(19)
<i>r</i> (C—C _m), Å	1,506(5)	1,506(2)	1,51(2)	1,517(16)	1,497(10)
					1,510(5)
					1,493(9) 1,525(7)
					1,504(21) 1,518(23)
r (OO), Å	2,819(9)	2,820	2,814	2,886	
∠OZnO, град.	93,2(7)	89,7	88,3(8)	94,7(6)	
∠ZnOC, град.	125,9(7)		127,0(13)	121,8	
∠ОСС _т , град.	115,2(9)	116,1(2)	116,6(22)	114,7(17)	112,9(27) 118,7(31)

))		\ ·
1	ппуктупные хапактепистики	сходных молек	сул по данным	структурных	исследовании
~				chip yith y phow	

недостаточно адекватно описываемую моделью малых гармонических колебаний. При квантово-химическом исследовании внутреннего вращения радикалов-заместителей в β -дикетонатах [11] установлено, что величина барьера внутреннего вращения групп СХ₃, по-видимому, не зависит ни от природы центрального атома, ни от количества лигандов, и для метильных групп составляет величину 2,5÷3,0 кДж/моль. Если сравнить эту величину с *RT* для температуры электронографического эксперимента для Zn(acac)₂ (*RT* = 3,12 кДж/моль), можно считать вращение групп CH₃ практически свободным. О свободном вращении CH₃-групп в молекуле Zn(acac)₂ свидетельствует и полученное в настоящем исследовании эффективное значение угла $\gamma = 32.7(48)^{\circ}$.

В табл. 7 приведены структурные параметры комплексов цинка, полученные в результате электронографических и кристаллографических исследований, а также структурные параметры свободных молекул ацетилацетона. Можно отметить хорошее согласие величин межъядерных расстояний и валентных углов в хелатных фрагментах сходных молекул. Наибольшие отличия наблюдаются для величин r(Zn-O). Это связано, вероятно, с различным координационным числом атомов Zn в этих соединениях. Если в комплексе Zn(dpm)₂ атом Zn, как и в случае Zn(acac)₂, имеет тетраэдрическое окружение [33], то в акваацетилацетонате цинка Zn(acac)₂··H₂O окружение центрального атома ближе к тетрагональной пирамиде [34], а в тримерной молекуле [Zn(acac)₂]₃ центральный атом Zn имеет октаэдрическое окружение, а два терминальных атома цинка пентакоординированы, в результате чего в молекуле различаются два типа расстояний r(Zn-O) [35].

ЗАКЛЮЧЕНИЕ

Е.В. АНТИНА, Н.В. БЕЛОВА, М.Б. БЕРЕЗИН И ДР.

Выполненное исследование показало, что структура молекул $Zn(acac)_2$ с симметрией D_{2d} с двумя плоскими эквивалентными лигандами, расположенными во взаимно-перпендикулярных плоскостях, согласуется с основными тенденциями в строении комплексов бис- β -дикетонатов металлов, отмеченными авторами работы [9].

Данная работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант 07-03-00656а).

СПИСОК ЛИТЕРАТУРЫ

- 1. Гиричева Н.И., Белова Н.В., Гиричев Г.В. // Журн. структур. химии. 1992. 33, № 6. С. 63 75.
- 2. Гиричева Н.И., Белова Н.В., Гиричев Г.В. и др. // Там же. С. 76 83.
- 3. Белова Н.В., Гиричева Н.И., Гиричев Г.В. // Там же. 1994. 35, № 4. С. 135 138.
- 4. Белова Н.В., Гиричева Н.И., Гиричев Г.В. и др. // Там же. 1997. 38, № 3. С. 480 488.
- 5. Гиричева Н.И., Исакова Н.А., Гиричев Г.В. и др. // Там же. 1999. 40, № 3. С. 468 476.
- 6. Гиричева Н.И., Гиричев Г.В., Белова Н.В. и др. // Там же. № 4. С. 647 653.
- 7. Гиричева Н.И., Гиричев Г.В., Белова Н.В. и др. // Там же. № 6. С. 1067 1073.
- 8. Zakharov A.V., Dakkouri M., Krasnov A.V. et al. // J. Mol. Struct. 2004. 701. P. 1 8.
- 9. *Гиричев Г.В., Гиричева Н.И., Белова Н.В., Кузьмина Н.П. //* Координац. химия. 1999. **25**. С. 892 899.
- 10. Shibata S., Ohta M. // J. Mol. Struct. 1981. 77. P. 265 270.
- 11. Белова Н.В., Гиричев Г.В., Оберхаммер Х. // III Школа-Семинар "Квантово-химические расчеты: структура и реакционная способность органических и неорганических молекул". Иваново: ИвГУ, 2007. С. 39 40.
- 12. Mikami M., Nakagawa I., Shimanouchi T. // Spectrochim. Acta, Part A. 1967. 23. P. 1037.
- 13. Nakamoto K., McCarthy P.J., Martell A.E. // J. Amer. Chem. Soc. 1961. 83. P. 1272 1276.
- 14. Fackler J.P. Jr., Mittleman M.L., Weigold H., Barrow G.M. // J. Phys. Chem. 1968. 72, N 13. P. 4631 4636.
- 15. Березин Б.Д., Нурматов А.А., Семейкин А.С., Березин М.Б. // Координац. химия. 1994. **20**, № 5. С. 391 396.
- 16. Березин Б.Д., Трофименко Г.М., Березин М.Б. // Журн. физ. химии. 1995. 69, № 7. С. 1202.
- 17. Гиричев Г.В., Уткин А.Н., Ревичев Ю.Ф. // Приборы и техника эксперимента. 1984. 2. С. 187 190.
- 18. Гиричев Г.В., Шлыков С.А., Ревичев Ю.Ф. // Там же. 1986. 4. С. 167 169.
- 19. Шлыков С.А., Гиричев Г.В. // Там же. 1988. **2**. С. 141 142.
- 20. Гиричев Е.Г., Захаров А.В., Гиричев Г.В., Базанов М.И. // Изв. вузов., Технол. текст. пром-сти. 2000. № 2. С. 142 146.
- 21. Granovsky A.A. // PC GAMESS version 7.0, http://classic.chem.msu.su/gran/gamess/index.html
- Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.J., Koseki S., Matsunaga N., Nguyen K.A., Su S.J., Windus T.L., Dupuis M., Montgomery J.A. // J. Comput. Chem. – 1993. – 14. – P. 1347 – 1363.
- 23. Dolg M., Wedig U., Stoll H., Preuss H. // J. Chem. Phys. 1987. 86. P. 866 872.
- 24. Dunning T.H. // Ibid. 1971. 55. P. 716 723.
- 25. Dunning T.H. // Ibid. 1989. 90. P. 1007 1023.
- 26. *The Extensible* Computational Chemistry Environment Basis Set Database, Version 02/25/04, developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory, P.O. Box 999, Richland, Washington 99352, USA, and funded by the U.S. Department of Energy.
- 27. Sipachev V.A. // J. Mol. Struct.: THEOCHEM. 1985. 121. P. 143 151.
- 28. Sipachev V.A. // Struct. Chem. 2000. 11. P. 167 172.
- 29. Sipachev V.A. // J. Mol. Struct. 2001. 567-568. P. 67 72.
- 30. Anderson B., Seip H.M., Strand T.G., Stølevik R. // Acta Chem. Scand. 1969. 23. P. 3224 3234.
- 31. Ross A.W., Fink M., Hilderbrandt R.L. // International tables for crystallography. C. Dodrecht: Kluwer Acad. Publ., 1992.
- 32. Слизнев В.В., Лапшина С.Б., Гиричев Г.В. // Журн. структур. химии. 2004. **45**. С. 611 623.
- 33. Cotton F.A., Wood J.S. // Inorg. Chem. 1964. 3, N2. p.245 251.
- 34. Montgomery H., Lingafelter E.C. // Acta Crystallogr. 1963. 16. P. 748 752.
- 35. Bennet M.J., Cotton F.A., Eiss R. // Ibid. 1968. B24. P. 904 913.
- 36. Shibata S., Ohta M., Iijima K. // J. Mol. Struct. 1980. 67. P. 245.
- 37. Shibata S., Ohta M., Tani R. // Ibid. 1981. 73. P. 119.
- 38. Shibata S., Sasase T., Ohta M. // Ibid. 1983. 96. P. 347.

- 39. Lowrey A.H., George C., D'Antonio P., Karle J. // J. Amer. Chem. Soc. 1971. 93. P. 6399 6403.
- 40. Andreassen A.L., Bauer S.H. // J. Mol. Struct. 1972. 12. P. 381 401.
- 41. Iijima K., Ohnogi A., Shibata S. // Ibid. 1987. 156. P. 111 118.
- 42. Srinivasan R., Feenstra J.S., Park S.T. et al. // J. Amer. Chem. Soc. 2004. 126. P. 2266 2267.