Mechanochemical Synthesis of Diborane(6) by Reactions of Alkaline Tetrahydroborates with Iron (III) Chloride

KLAVDIY G. MYAKISHEV and VLADIMIR V. VOLKOV

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Pr. Akademika Lavrentyeva 3, Novosibirsk 630090 (Russia)

(Received March 31, 2003; in revised form June 20, 2003)

Abstract

Reactions of $FeCl_3$ with MBH_4 (M = Li, Na, K) which take place during mechanical activation (MA) of mixtures of crystalline substances in a vibratory vacuum mill have been studied. The reactions form diborane(6) or B_2H_6 ; the product yields depend on the nature of MBH_4 , on the molar ratio of reagents, and on the mechanical activation time. Under optimal conditions, the yield of B_2H_6 is 81.5, 79.5, and 73.5% when LiBH₄, NaBH₄, and KBH₄, respectively, are used. When mixtures of $FeCl_3$ with MBH_4 are heated without MA, reactions occur with liberation of H_2 , while B_2H_6 is not formed.

INTRODUCTION

Diborane(6), or B_2H_6 , is a substrate for the synthesis of boron hydrides. Of many synthetic procedures leading to B_2H_6 [1], mechanical activation is preferable from ecological viewpoint. This method gave high yields of B_2H_6 as a result of solid-phase reactions between anhydrous transition metal halides and MBH_4 (M=Li, Na, K) avoiding the use of organic solvents as reaction media [2]. In this respect, it is of interest to examine feasibility of solid-phase reactions with iron (III) chloride according to the following scheme:

$$FeCl3(s.) + 3MBH4(s.) = 3/2H2(g.) + 3/2B2H6(g.) + Fe(s.) + 3MCl(s.)$$
(1)

Thermodynamic data of [3] were used to calculate ΔG_{298}^{o} for reactions (1) with LiBH₄, NaBH₄, and KBH₄, and this resulted in -110.3, -101.1, and -90.9 kJ/mol MBH₄, respectively. The reactions are thermodynamically feasible.

As is known, the reaction of iron (III) chloride with LiBH $_4$ in ether forms B_2H_6 [4].

This compound was also generated by passing iron (III) chloride vapours through $NaBH_4$ or by adding $NaBH_4$ to a $FeCl_3$ melt [1, p. 178].

To obtain diborane(6), in this work we investigated the interaction of anhydrous $FeCl_3$ with MBH_4 (M = Li, Na, K) induced by mechanochemical activation (MA) or by heating.

EXPERIMENTAL

Anhydrous iron (III) chloride was of pure grade; LiBH₄, NaBH₄, and KBH₄ contained 96.5, 95.5, and 98.6 % main substance, respectively. In view of their hygroscopicity, the starting reagents were handled in a box with dry nitrogen. Mechanochemical reactions were conducted in a vibratory vacuum ball mill [5]. The cylindrical reactor (5 cm in height, 100 cm³ capacity) was charged with steel balls 6 mm in diameter (total weight 100 g); reactor vibration frequency was 23 Hz, vibration amplitude 6 mm. The synthesis was monitored according to the liberation of $\rm H_2$ and $\rm B_2H_6$. The gas mixtures formed by reactions of MBH₄ with FeCl₃

in the course of MA were identified by IR and mass spectroscopy. IR spectra were recorded on a UR-20 spectrophotometer using a gas cell (0.1 mm in length) with KBr windows. The presence of B₂H₆ was inferred from the characteristic absorption bands (v, cm⁻¹: 2630, 2520, 1915, 1600, 1177, 978) [6]. Mass spectra were measured on an MI-1201 mass spectrometer. Apart from B2H6, no other volatile products such as HCl or BCl3 have been detected in the gas phase. The total volume of the evolved gas was determined by gasometry; the volume of B₂H₆ was evaluated by the weight method from the amount of boron formed by passing the gas through a weighed quartz tube heated to 700 °C; the amount of H_2 was determined from the volume difference. After MA, the diffraction patterns of powders covered with a Teflon film for protecting them from contact with atmosphere were recorded on a DRON-3M diffractometer (CuK_{α} radiation). Thermal gas volumetric patterns were measured on a device described in [7] using chromel-alumel thermocouples (Al₂O₃ as a standard, heating rate 6-7 °C/min). The samples were heated in glass ampules at a standard pressure of 1.3 Pa. After thermography, the composition of the gas phases was determined by the method described above.

RESULTS AND DISCUSSION

In the course of this study, we investigated the effects of MA time (τ), the nature of MBH₄, and the molar ratio of reagents n (n = molesof MBH₄/moles of FeCl₃) on the yield of B₂H₆. When the reagents were taken in a stoichiometric ratio, n = 3 according to Eq. (1). Gasometric and IR and mass spectrometric measurements indicated that the gas phase formed in the reaction consisted of H₂ and B₂H₆. No other volatile products such as higher boranes, BCl₃, or HCl have been detected. The diffraction patterns of the samples of reagent mixtures recorded after MA showed clear-cut reflections corresponding to alkaline chlorides. Consequently, the reactions in general occur by Eq. (1). The yields of B_2H_6 were calculated from Eq. (1) or from the amount of the reagent taken in deficiency when the reagents were taken in amounts other than stoichiometric. Table 1 lists typical data on MA synthesis of B_2H_6 . According to Eq. (1), the gas phase should contain equal amounts of H_2 and B_2H_6 . The content of B_2H_6 is actually smaller than that of H_2 (see Table 1), indicating that the reactions (partially) follow another route, possibly

$$1/3 \text{FeCl}_3 + \text{MBH}_4$$

= $2 \text{H}_2 + 1/3 \text{Fe} + \text{B} + \text{MCl}$ (2)

Calculation of ΔG_{298}^{0} by Eq. (2) gave -156.4, -147.1, -136.9 kJ/mol for LiBH₄, NaBH₄, and KBH₄, respectively; therefore, reactions (2) are thermodynamically more favorable than reactions (1).

The content of diborane(6) in the gas phase, as well as the yield of B₂H₆, increases with decreasing n, i. e., with the increasing content of FeCl₃, the yield of B_2H_6 reaches 70-80 % when $n \approx 1$ (see Table 1). It is noteworthy that the yields of B₂H₆ and the conversion of the starting boron become equal near n = 3corresponding to the stoichiometry of reaction (1). The yield of B_2H_6 in these reactions generally correlates with the calculated values of ΔG_{298}^{0} , increasing slightly from KBH₄ to NaBH₄ and LiBH₄. The dependence of the yield of B₂H₆ on the MA time is illustrated by the history of the gas liberation curves shown in Fig. 1. It can be seen that when n > 3 (curves 1-3) the rate of formation of B₂H₆ from KBH₄ is much smaller than in the cases of NaBH4 and LiBH₄. For the latter two compounds, the rates differ insignificantly. For $n \approx 1$ (curves 4– 6), the rate of formation of B₂H₆ from NaBH₄ is much higher than from LiBH₄ and KBH₄. Thus a significant excess of FeCl₃ over stoichiometry in the reaction mixture favors reaction (1), and the yields of B₂H₆ reach 70-80 %, permitting the use of these reactions for the synthesis of diborane(6) on a scale other than laboratory.

Based on the data of [1], one would expect that B_2H_6 will be formed by heating mixtures of $FeCl_3$ with MBH_4 . Thermography together with simultaneous gas liberation measurements was carried out for $FeCl_3$ thoroughly mixed with LiBH₄, NaBH₄, and KBH₄. Our study showed that after heating to $600-700\,^{\circ}\text{C}$, gas liberation

TABLE 1 $\label{eq:B2H6} \mbox{Mechanochemical synthesis of B_2H_6 by reactions of $FeCl_3$ with MBH_4}$

Run No.	Reagent mass, g		n	τ, min	Volume of liberated gas, cm ³			Volume of B ₂ H ₆ ,	, Content	Yield of	Conversion
	MBH_4	FeCl_3			Total	$\mathrm{B_2H_6}$	H_2	calculated by Eq. (1), cm ³	of B_2H_6 in the gas phase*, %	B ₂ H ₆ , %	of starting boron, %
	${\rm LiBH_4}$										
1	0.890	0.825	8.1	140	504	75	429	171	14.9	43.9	16.4
2	0.811	0.913	6.6	120	566	90	476	189	15.9	47.6	21.6
3	0.438	1.363	2.4	110	560	127	423	226	23.1	56.2	56.3
4	0.309	1.501	1.5	90	368	111	257	159	30.2	69.8	69.9
5	0.325	2.151	1.1	120	523	137	386	168	26.3	81.5	81.5
	NaBH_4										
6	0.790	0.496	6.9	80	266	43	223	102	16.0	41.9	18.3
7	0.458	0.539	3.7	80	260	47	213	112	18.0	41.8	34.4
8	0.210	0.376	2.4	80	151	29	122	62	19.4	46.8	46.8
9	0.159	0.451	1.5	80	116	31	85	40	26.6	65.5	65.5
0	0.145	0.774	8.0	70	105	34	71	43	32.4	79.5	79.5
	KBH_4										
1	1.457	0.402	10.9	130	217	34	183	83	15.7	40.8	11.1
2	0.624	0.382	4.9	130	211	34	177	79	16.1	43.3	26.1
3	0.477	0.525	2.7	130	266	42	224	99	15.7	42.1	42.1
4	0.460	0.790	1.8	120	246	53	193	96	21.5	55.2	55.2
5	0.353	1.501	0.7	100	266	54	212	73	22.0	73.5	73.5

^{*}The ratio of the volume of liberated B_2H_6 to the total volume of the liberated gas.

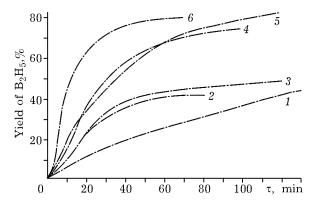


Fig. 1. Kinetic curves for the synthesis of B_2H_6 depending on the nature of MBH_4 and the molar ratio of reagents n:

Curve	Reagents	n	Run No. in Table 1
1	KBH ₄ + FeCl ₃	4.9	12
2	$NaBH_4 + FeCl_3$	3.7	7
3	$LiBH_4 + FeCl_3$	6.6	2
4	$KBH_4 + FeCl_3$	0.7	15
5	$LiBH_4 + FeCl_3$	1.1	5
6	$NaBH_4 + FeCl_3$	0.8	10

started at 45 °C for mixtures of FeCl $_3$ with LiBH $_4$ and NaBH $_4$ and at 60 °C for mixtures with KBH $_4$. Analysis showed that the gas phase contained H $_2$ but no B $_2$ H $_6$; *i. e.*, reactions with heating follow route (2). Similar results were obtained for reactions of NaBH $_4$ with CoCl $_2$ [8] and NiCl $_2$ [9], which also liberated H $_2$ upon heating. The difference between our results and the data of [1] is probably explained by the difference in synthetic conditions.

A comparison of the experimental and theoretical values of $\Delta G_{298}^{\rm o}$ for reactions (1) and (2) indicates that reaction (1) is preferable under conditions of mechanochemical activation, although it is thermodynamically less favour-

able. The case is similar for related systems, for which mechanochemical activation initiated thermodynamically less favourable processes, in particular, the formation of thermodynamically unstable B_2H_6 [2, 10].

CONCLUSIONS

Thus mechanochemical activation of $FeCl_3$ with $LiBH_4$, $NaBH_4$, and KBH_4 forms diborane(6), the yields being 73.5, 79.5, and 81.5 %, respectively, under optimum conditions. These rather high yields of diborane(6) allow one to replace $LiBH_4$ by $NaBH_4$ and KBH_4 , which are less expensive and more convenient to handle, while $FeCl_3$ is ecologically preferable to other metal halides such as Cd, Cr, or Pb halides [2].

REFERENCES

- 1 A. F. Zhigach, D. S. Stasievich, Khimiya gidridov, Leningrad, 1969, pp. 146-183.
- 2 V. V. Volkov, K. G. Myakishev, Khimiya v interesakh ustoichivogo razvitiya, 7 (1999) 1.
- 3 A. I. Efimov, L. P. Belorukova, I. V. Vasil'kova, V. P. Chechev, Svoystva neorganicheskikh soyedineniy: Spravochnik, Khimiya, Leningrad, 1983.
- 4 G. W. Schaeffer, J. S. Roscol, A. C. Stewart, J. Amer. Chem. Soc., 78 (1956) 729.
- 5 V. V. Volkov, K. G. Myakishev, I. I. Gorbacheva, Izv. SO AN SSSR. Ser. khim. nauk, 5 (1983) 79.
- 6 W. J. Lehman, C. O. Wilson, I. J. Shapiro, J. Chem. Phys., 34 (1961) 783.
- 7 V. V. Volkov, K. G. Myakishev, *Izv. SO AN SSSR. Ser. khim. nauk*, 5 (1977) 111.
- 8 Z. K. Sterlyadkina, L. S. Alekseeva, N. N. Mal'tseva, Zhurn, neorgan. khimii, 18 (1973) 260.
- 9 Z. K. Sterlyadkina, N. N. Mal'tseva, O. N. Kryukova, V. I. Mikheeva, *Ibid.*, 11 (1966) 981.
- 10 K. G. Myakishev, I. I. Gorbacheva, O. G. Potapova, L. Ya. Solomatina, Sib. khim. zhurn., 5 (1992) 134.