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УДАРНО-ИНДУЦИРОВАННОГО ПЫЛЕНИЯ МЕТАЛЛОВ, ОСНОВАННОЙ
НА ФИЗИКЕ НЕУСТОЙЧИВОСТИ РИХТМАЙЕРА — МЕШКОВА,
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Модель источника ударно-волнового пыления, основанная на физике неустойчивости Рихтмайе-
ра — Мешкова и развитая для расчета выброшенной массы частиц металла и ее распределения

по скоростям в потоке, применена для расчета распределения частиц по размерам. Модель раз-
работана для металлов, переходящих в жидкое состояние после ударно-волнового воздействия.
Показано, что для прогнозирования спектра размеров частиц при пылении жидкой среды необ-
ходимо знать не только ее плотность и поверхностное натяжение, но и начальную амплитуду

и длину волны возмущений, а также профиль ударной волны. Согласно развитой теории раз-
мер частиц в потоке в большей мере определяется длиной волны возмущений, чем начальной
амплитудой. Проведено сравнение с экспериментальными данными по размерам частиц, вы-
брошенных из узких полос с начальными возмущениями на свободной поверхности образцов из

олова и свинца.
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ВВЕДЕНИЕ

Выход ударной волны (УВ) на свобод-
ную границу вещества, имеющую геометриче-
ские возмущения, может сопровождаться раз-
витием неустойчивого течения с последующим

образованием струй и отрывом частиц веще-
ства от поверхности. В российской литера-
туре этот процесс получил название ударно-
индуцированного пыления (иногда встречается
название ударно-волновое пыление), в амери-
канской — ejection. Причиной этого процесса
является развитие неустойчивости Рихтмайе-
ра — Мешкова [1, 2], которая реализуется в
случае, когда УВ проходит через возмущен-
ную границу веществ с различной плотностью.
Развитие неустойчивости Рихтмайера—Меш-
кова при числе Атвуда A ≈ −1, как прави-
ло, приводит к формированию микрокумуля-
тивных струй, которые впоследствии из-за на-
личия градиента скорости вдоль струи и реоло-
гических свойств среды разрываются на мик-
рочастицы или капли. В качестве начальных

возмущений границы могут выступать любые

локальные неоднородности, сконцентрирован-
ные вблизи свободной границы вещества (по-
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ры, включения, границы зерен), либо периоди-
ческие возмущения, оставленные после механи-
ческой обработки поверхности. При токарном
способе изготовления деталей из металла на их

свободной поверхности всегда имеются неод-
нородности, вызванные шероховатостью, что
приводит к выбросу частиц металла с поверх-
ности.

В настоящее время достаточно хорошо

изучены экспериментально и теоретически

массовые и скоростные характеристики про-
цесса выброса частиц со свободной поверх-
ности (СП) металла, когда после ударно-
волнового нагружения материал оказывается в

жидком состоянии [3–10]. Этому способствова-
ло развитие диагностической базы [6, 7, 10–
13] — радиография, методы пьезоэлектриче-
ского датчика и индикаторных экранов, а так-
же численный и теоретический анализ разви-
тия неустойчивости Рихтмайера — Мешкова

(нРМ) [3, 4, 9, 14]. Однако эксперименталь-
ной информации о дискретных характеристи-
ках потока частиц — спектре их размеров —
весьма немного. Дело в том, что для регистра-
ции спектра размеров частиц используются ме-
тоды, основанные на получении изображения
частиц с применением короткоимпульсных ис-
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Рис. 1. Выброс частиц c СП среды после воздействия ударной волны:

а — начальное состояние, б — стадия роста возмущений, в — нелинейная стадия роста струй и дроб-
ление

точников света [15–17]. Однако при ударно-
волновом пылении поверхности металла, про-
ходящем в условиях, когда металл плавится,
формируется поток частиц высокой плотности,
нарастающей по глубине от фронта частиц к

СП металла. Это приводит к тому, что по-
ток частиц становится оптически непрозрач-
ной средой, что не позволяет на изображени-
ях выделять отдельные частицы и определять

их количество и размеры. В последние несколь-
ко лет достигнуто продвижение в этом направ-
лении исследований. В Лос-Аламосской наци-
ональной лаборатории и во РФЯЦ-ВНИИЭФ
были разработаны постановки экспериментов,
обеспечивающие создание оптически прозрач-
ного потока частиц за счет применения ме-
тодов «узкой» полосы [17, 18]. В настоящей

работе проанализированы результаты подоб-
ных экспериментов с образцами олова и свин-
ца, нагруженными до давлений, достаточных
для плавления этих металлов при изоэнтропи-
ческой разгрузке в разреженную среду (ваку-
ум), с применением модели, основанной на фи-
зике нРМ и энергетическом критерии разруше-
ния [3, 9].

1. МОДЕЛЬ ДЛЯ РАСЧЕТА
СПЕКТРА РАЗМЕРОВ ЧАСТИЦ

ПРИ УДАРНО-ИНДУЦИРОВАННОМ ПЫЛЕНИИ

1.1. Расчет массовых и скоростных характеристик
потока частиц

В работе [3] подробно представлено при-
ближенное решение задачи о массовых и ско-
ростных характеристиках потока частиц, вы-
брошенного с СП жидкой среды. Шерохова-
тость поверхности рассматривалась как малые

двумерные периодические возмущения a0(y) =

−a0 sin(ky) (a0 = A0/2 — амплитуда началь-
ных возмущений, λ — длина волны возмуще-
ний, k = 2π/λ, A0 — полная начальная ампли-
туда, от вершины выступа до вершины впади-
ны канавки, рис. 1). Решение получено на осно-
ве рассмотрения поля скоростей, формирующе-
гося после выхода УВ со спадающим профилем

давления за ее фронтом на СП среды без проч-
ности:

u̇x = −Vm cos (ky) exp (kx) + ε̇x,

u̇y = Vm sin (ky) exp (kx), (1)

где Vm — скорость вершины струи относитель-
но UFS [3, 5]; UFS — скорость разгруженного

вещества после выхода УВ на его СП; ux, uy —
смещение вещества в направлениях x и y; ε̇ —
градиент скорости в разгруженном веществе,
определяемый градиентом скорости за фрон-
том УВ.

Система уравнений для расчета массы вы-
брошенных частиц ms, распределения средних
скоростей Vp и плотности частиц ρ в простран-
стве и их эволюции во времени имеет следую-
щий вид:

−dU
dτ

= expU + βU,

Vp(τ) = Vm

∣∣∣dU(τ)

dτ

∣∣∣,
ms(τ) =

ρ0

kVm

τ∫
0

Vp(τ)

2 (1 + βτ)
×

× τ2 + (τ + 1) [ln (1 + τ)]2

[τ + ln (1 + τ)]2
dτ, (2)
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ρ (x̂, τ) =
k

τr

∂ms(x̂, τ)

∂x̂
,

x̂ =
Vp(τ)

Vm

(
1− τ

τr

)
,

где U = kx, x̂ = x/xm — безразмерная коорди-
ната, x ∈ [0, xm], xm = Vmt — положение фрон-
та потока частиц относительно положения СП

металла, τ = kVmt — безразмерное время, τr —
время регистрации, β = ε̇/kVm ≈ 1/a0k

2∆x —
отношение градиента скорости за фронтом УВ

к начальному возмущению на СП жидкости

(соотношение начальной амплитуды возмуще-
ний a0, длины волны λ в квадрате, ширины
треугольного ударно-волнового импульса ∆x),
ρ0 — начальная плотность вещества.

В соответствии с полученными аналити-
ческими решениями системы (2) основным па-
раметром, определяющим «общую» выброшен-
ную массу частиц, является параметр β, т. е.
ms = (ρ0/k)f(β). При этом амплитуда УВ во
всей области существования жидкой фазы сре-
ды не влияет на данную характеристику про-
цесса ударно-индуцированного пыления. Тео-
ретический вывод, полученный в работе [3],
объяснил наблюдаемые в экспериментах с оло-
вом и свинцом эффекты влияния профиля УВ и

отсутствия изменения выброшенной массы ча-
стиц при увеличении давления на фронте УВ

в условиях, когда металл переходит в жидкую
фазу [5, 12, 19].

1.2. Расчет распределения частиц
по размерам в потоке

Аналитические решения системы (2), из-
ложенные в [3], позволяют рассчитать выбро-
шенную массу частиц, распределение плотно-
сти и скорости в потоке частиц. Эти характе-
ристики также можно рассчитать, используя
двумерные программные комплексы, в которые
заложены уравнения механики сплошной сре-
ды [4]. Однако нет программ, учитывающих
подробные механизмы разрушения жидкой сре-
ды с дальнейшим формированием частиц под

действием поверхностного натяжения на мас-
штабах размеров частиц и времени экспери-
ментов. Исключение составляют расчеты ме-
тодами молекулярной динамики [4, 14], но мас-
штабы подобных расчетов составляют пример-
но нанометры и наносекунды.

Для расчета характерных размеров ча-
стиц при дроблении среды с градиентом скоро-
сти в работах [3, 9] было предложено объеди-
нить решения системы уравнений (1), связан-
ные с физикой развития неустойчивого течения

на поверхности, и энергетический подход, раз-
витый Д. Грейди и А. Г. Ивановым [20, 21].
Последний определяет размер фрагмента (спе-
циалисты, занимающиеся вопросами ударно-
индуцированного пыления, используют термин
«частица»; таким образом, фрагмент и части-
ца в тексте являются синонимами) из уравне-
ния баланса локальной кинетической энергии

фрагмента и работы сил поверхностного натя-
жения и вязкости для жидкости:

ρ0
ε̇2
i d̄

2

8
= α

4σ

d̄
+ θµε̇i, (3)

где σ — коэффициент поверхностного натяже-
ния среды, µ — вязкость, ε̇i — скорость дефор-
мации, реализуемая во фрагменте при дробле-
нии, α, θ — безразмерные константы, подбира-
емые по экспериментальным данным.

Простые оценки показали, что компонен-
том, связанным с вязкостью, для большинства
жидких металлов можно пренебречь. При вяз-
кости жидкого свинца (2.6÷ 1.3) · 10−3 Па · с и
поверхностном натяжении σ = 0.44÷ 0.38 Н/м
в диапазоне температур T = 630 ÷ 1 000 К

влияние вязкости проявляется при скоростях

деформации ε̇i ≈ 109 с−1 и более. Скорости
деформации, характерные для развития куму-
лятивных струй на поверхностях образцов, ис-
пользуемых в экспериментах ВНИИЭФ, нахо-
дятся в диапазоне 105 ÷ 107 с−1.

Соотношение для расчета размера фраг-
ментов без учета вязкости имеет вид

d̄ = α 3

√
32σ

ρ0ε̇
2
i

. (4)

В случае развития нРМ (начальная стадия
пыления) на СП жидкости реализуется более

сложная картина течения: скорость деформа-
ции сразу распределена по глубине вещества x,
т. е. ε̇i(x). В соответствии с формулой (4) раз-
мер d̄ является переменным d̄(ε̇i(x)).

Распределение скорости деформации по

глубине вещества с учетом поля скоростей в

разгруженной жидкости описывается уравне-
ниями

ε̇i =

√
2

3

[(∂u̇x
∂x
−
∂u̇y
∂y

)2
+
(∂u̇x
∂x

)2
+
(∂u̇y
∂y

)2
+
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+
3

2

(∂u̇x
∂y

+
∂u̇y
∂x

)2]1/2
,

(5)

ε̇i =
2√
3

[(
kVm exp (kx) +

ε̇√
3

)2
−

− kVmε̇
(

cos (ky) +
2√
3

)
exp (kx)

]1/2
.

Распределением скорости деформации

вдоль оси y можно пренебречь:

ε̇i =
2√
3

√
(kVm)2 exp (2kx) +

ε̇2

3
. (6)

В соответствии с формулой (4) распреде-
ление характерных размеров частиц вдоль оси

x имеет вид

d̄ = α 3

√
24σ

ρ0

[
(kVm)2 exp (2kx) +

ε̇2

3

]−1/3
. (7)

Глубина слоя вещества x = 0 соответ-
ствует частицам, движущимся на фронте по-
тока. Такие частицы имеют минимальный ха-
рактерный размер. При малых начальных воз-
мущениях a0k < 1 относительная скорость

вершины струи (фронта потока частиц) равна
Vm ≈ 1.5a0kUFS . Тогда минимальный харак-
терный размер частиц (7), формирующийся из
вещества в вершине струи, равен

d̄m = α 3

√
2

3π4

σ

ρ0U
2
FS

(λ2

a0

)2
×

×
[
1 +

1

3

( λ2

6π2a0∆x

)2]−1/3
, (8)

где ∆x ≈ UFS/ε̇ — ширина треугольного им-
пульса. В конструкциях, использующих энер-
гию зарядов взрывчатого вещества для со-
здания УВ, ∆x ≈ 10 мм, поэтому членом

1

3

( λ2

6π2a0∆x

)2
в формуле (8) можно пренебречь

по сравнению с 1:

d̄m = α 3

√
2

3π4

σ

ρ0U
2
FS

(λ2

a0

)2
. (9)

Уравнение для расчета характерных размеров

частиц можно представить в безразмерном ви-
де d̂ = d̄/d̄m:

d̂ =
[ 1 + (β/

√
3)2

exp (2U) + (β/
√

3)2

]1/3
. (10)

Добавление уравнения (10) к системе (2) позво-
ляет проводить расчет характерных размеров

частиц по глубине потока частиц.
Плотность вероятности распределения ха-

рактерных диаметров частиц, связанных с из-
менением скорости деформации, определяется
выражением

dW

dd̂
=

1

Nmax
s

dNs

dd̂
=

=
1

τp∫
0

1

d̂3

(dms

dτ

)
dτ

dms

dτ

1

dd̂/dτ

1

d̂3
, (11)

гдеW (d̂ > 1) — вероятность обнаружить фраг-

мент размером больше d̂, Nmax
s — максималь-

ное общее количество выброшенных с единицы

поверхности частиц, шт/см2, dNs — количе-
ство выброшенных частиц размером в интер-
вале (d− 0.5∆d; d+ 0.5∆d).

Что касается характерного размера d, все-
гда присутствует разброс размеров частиц,
связанный с флуктуациями течения. Для его
учета можно использовать, например, распре-
деление Розина — Раммлера, логнормальное
распределение, Γ-распределение. Их использо-
вание экспериментально обосновано в рабо-
тах [22–24] по дроблению капли, движущей-
ся в газе. Для того чтобы определить весь

спектр размеров частиц, необходимо проинте-
грировать функцию распределения характер-
ных размеров частиц (11) совместно с одним из
возможных вариантов распределения фрагмен-
тов, учитывающих случайный характер разру-
шения:

dW

dD
=

d̂max∫
1

(dW
dD

)
1

dW

dd̂
dd̂ =

τp∫
0

(dW
dD

)
1
×

× 1

τp∫
0

1

d̂3

(dms

dτ

)
dτ

dms

dτ

1

d̂3
dτ, (12)

где

(dW
dD

)
1

— функция распределения частиц,

выбранная для учета стохастического характе-
ра разрушения.
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Рис. 2. Схема регистрации размеров частиц

Совокупность уравнений (2), (9)–(12) поз-
воляет рассчитать все интегральные и спек-
тральные характеристики процесса ударно-
волнового выброса частиц с СП жидкости, об-
ладающей поверхностным натяжением.

2. О МЕТОДЕ «УЗКОЙ» ПОЛОСЫ
И ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

При ударно-волновом пылении поверхно-
сти металла в условиях, когда он плавится,
формируется поток частиц, имеющий высо-
кую плотность, нарастающую по глубине от

фронта частиц к СП металла. При известном
распределении плотности потока частиц воз-
можность экспериментально зарегистрировать

спектр размеров частиц по всей глубине потока

существенно зависит от ширины зоны, с кото-
рой выбрасываются частицы (зона пыления), и
базы полета исследуемого образца (рис. 2).

Ослабление потока света, проходящего че-
рез дисперсную среду, зависит от параметров
потока частиц: n — концентрация частиц в

единице объема, H —ширина потока, S — пол-

Рис. 3. Требуемая геометрия образца с шероховатостью для оптических измерений спектра раз-
меров частиц (а), типичная фотография образца «бабочка» с зоной шероховатости Rz 20 и по-
лированными участками на уровне Ra 0.1 (б), увеличенная область (в) [13]

ное сечение ослабления прямого света части-
цей, равное сумме сечения рассеяния и сечения
поглощения света. Интенсивность проходяще-
го через дисперсную среду света зависит от ин-
тенсивности падающего света по закону Буге-
ра — Ламберта — Бера. Для крупных частиц
(d̄ � λL, где λL — длина волны излучения)
сечение поглощения равно сечению рассеяния.
Для сферических частиц в потоке закон имеет

вид

J = J0 exp
(
−3

ρ (x, t)

ρ0

H

d̄(x, t)

)
=

= J0 exp (−K), (13)

где J0 и J — интенсивность потока падающего

излучения и прошедшего через поток частиц.
Параметр J зависит от ширины зоны пы-

ления H, распределений плотности потока ча-
стиц ρ(x, t) и характерных размеров частиц
d̄(x, t) в пространстве и во времени.

Для регистрации оптическими метода-
ми спектра размеров частиц при ударно-
индуцированном пылении металлические об-
разцы, имеющие шероховатость, после изго-
товления должны полироваться таким обра-
зом, чтобы в центральной части образца со-
хранялась узкая полоса с шероховатостью ши-
риной H (рис. 3,а). При этом ширина поло-
сы H должна выбираться исходя из предпола-
гаемого времени регистрации. На основе это-
го принципа в РФЯЦ-ВНИИЭФ используют-
ся для исследования образцы [13] «бабочка»
(рис. 3,б), названные так из-за формы распо-
ложения шероховатых и полированных участ-
ков на поверхности. Эксперименты позволя-
ют получать одновременно информацию как
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о массово-скоростных характеристиках пото-
ка, так и о спектре размеров частиц, выбрасы-
ваемых с узкой полосы в центре. На рис. 3,б
обозначены зоны с шероховатостью и поли-
ровкой. Для зоны Rz 20 начальные возмуще-
ния по амплитуде и длине волны составляли

a0 = 10 мкм, λ = 150 мкм. Для зоны, обозначен-
ной Rа 0.1, начальные возмущения по ампли-
туде и длине волны составляли a0 = 0.25 мкм,
λ = 20 мкм.

3. СРАВНЕНИЕ РЕЗУЛЬТАТОВ РАСЧЕТОВ
С ЭКСПЕРИМЕНТАЛЬНЫМИ ДАННЫМИ

3.1. Олово

В работе [18] представлен эксперименталь-
ный спектр размеров частиц, выброшенных
под действием нестационарной УВ интенсивно-
стью ≈30 ГПа с СП олова. При таких условиях
нагружения металл после выхода УВ на СП об-
разца переходит в расплавленное состояние [5].
Величина начальных возмущений на СП оло-
вянных образцов составляла a0 = 20 мкм (по-
ловина глубины канавки), λ = 139 мкм. Оп-
тически прозрачный поток частиц создавался

за счет нанесения на поверхность образца од-
ной канавки (остальная часть полировалась),
а также за счет пролетной базы образца, рав-
ной в моменты регистрации ≈33 и 44 мм, обес-
печивающей уменьшение плотности потока ча-
стиц. На рис. 4 представлены расчетные па-
раметры: распределение плотности частиц по
глубине потока (а), отношение прошедшего из-
лучения через поток частиц к падающему (б),
связь характерного размера частиц со скоро-
стью в потоке (в). Черными квадратами на
рис. 4,в обозначены экспериментальные значе-
ния среднего размера частиц, измеренные на
некоторой глубине от фронта частиц. Расчеты
плотности и размеров частиц проведены по мо-
дели (2), (9), (10), расчеты прохождения излу-
чения через поток— по формуле (13). Значение
константы α = 3.8 подобрано исходя из наилуч-
шего описания экспериментальных данных по

среднему размеру частиц [18].
В работе [18] показано, что вблизи СП

образца олова дробление струи еще продол-
жается, а сферические частицы еще не сфор-
мированы. В этой части поток выброшенно-
го вещества представляет собой паутинчатую

структуру, толщина нитей которой составляет
≈25 мкм. В области расположения оптических

Рис. 4. Расчетные характеристики ударно-
индуцированного пыления СП образца олова.
Данные экспериментов [18]:

а — расчетное распределение плотности пото-
ка частиц по его глубине x в момент времени

t1 = 16.64 мкс; б — отношение интенсивности

прошедшего излучения к падающему в зависи-
мости от координаты x в моменты регистрации

t1 = 16.6 мкс и t2 = 21.6 мкс, H = 140 мкм,
штрихпунктирные линии — расположение опти-
ческих окон в эксперименте; в — связь характер-
ного размера частиц с их скоростью (отношением
скорости частиц к скорости СП образца)
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Рис. 5. Дифференциальные спектры размеров
частиц, выброшенных с СП образца олова, на-
груженного УВ амплитудой 30 ГПа, достаточ-
ной для плавления олова. Сравнение расчета
и эксперимента [18]:

на глубине потока частиц, скорость которых пре-
вышает скорость СП образца: а — на 60 %,
Up/UFS = 1.6 — фронт потока частиц, б —
на 20 %, Up/UFS = 1.2, в — на 10 ÷ 60 %,
Up/UFS = 1.1÷ 1.6 (не учитывались частицы, ин-
тервал скоростей которых Up/UFS = 1.35 ÷ 1.45);

окон поток выброшенного вещества с СП об-
разца олова достигает требуемой для получе-
ния голографических изображений прозрачно-
сти на уровне 85 % (рис. 5,б). Таким образом,
в Лос-Аламосской национальной лаборатории
впервые была получена структура выброшен-
ного жидкого металла по всей глубине пото-
ка частиц. Этого удалось добиться за счет по-
лировки образца с сохранением узкой полосы

с возмущением и регистрацией процесса в мо-
менты времени, необходимые при данных усло-
виях эксперимента. Это позволяет протестиро-
вать модель для расчета спектра размеров ча-
стиц по всей глубине потока с учетом случай-
ного разброса размеров частиц (2), (9)–(12).

На рис. 5 представлены дифференциаль-
ные спектры размеров частиц, рассчитанные
для различных участков потока частиц при ва-
рьировании функций, отвечающих за случай-
ный характер дробления, в сравнении с экс-
периментальными данными, полученными на
различной глубине потока частиц. На рисун-
ке приведено также полное дифференциальное

распределение частиц по размеру, соответству-
ющее интервалу скоростей Up/UFS = 1.1÷ 1.6
(за исключением интервала Up/UFS = 1.35 ÷
1.45, так как в работе [18] данные в этой обла-
сти не представлены).

Экспериментальные распределения ча-
стиц по размеру на фронте потока частиц

(Up/UFS = 1.6) и вблизи СП образца олова

(Up/UFS = 1.2) отличаются. На фронте по-
тока сосредоточены более мелкие частицы,
вблизи СП образца вероятность нахождения

крупных частиц увеличивается на порядок.
Хорошее согласие между расчетом и экспе-
риментом достигается при использовании в

модели (2), (9)–(12) Γ-распределения с показа-
телем k = 2÷ 3 для учета случайного разброса
размеров частиц. Можно использовать более
простую функцию Розина — Раммлера с

показателем n = 1.6, однако в таком варианте
модели вероятность образования крупных

фрагментов может быть занижена. В моделях
α = 3.8 (см. (3), (4), (7)–(9)).

точки — эксперимент, линии — расчет: 1, 4, 5 —
на основе нРМ с учетом распределения Розина —
Раммлера, n = 1.6 (1), 2 (4), 3 (5); 2, 3 — на основе

нРМ с учетом Γ-функции, k = 2 (2), 3 (3)
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Рис. 6. Изображения (с применением методики МиОР [17]) потока частиц, выброшенных с СП
образцов свинца, расплавленных после ударно-волнового воздействия:

а — при выбросе частиц со всей поверхности образца свинца диаметром 30 мм, б — при выбросе

частиц из узкой полосы 0.5 мм на образце свинца

Некоторые особенности регистрации спектра размеров частиц, выброшенных с СП
образцов из свинца, и результаты численных расчетов работы нагружающих устройств

Номер

опыта

A0/λ,

мкм
a0k

H,

мм

t1/t2,

мкс

PSB ,

ГПа

dP/dx,

ГПа/см

UFS ,

км/с

ε̇,

105 c−1

Vm,

км/с

d̄m
(α = 3.8)

β

1 19/90 0.66 0.25 7.0/7.6 34 179 1.85 7.7 1.21 1.9 0.009

2 14/110 0.40 0.55 4.6/6.0 44 78.6 2.26 2.86 0.9 2.6 0.005

3.2. Свинец

Для измерения спектра размеров ча-
стиц в РФЯЦ-ВНИИЭФ применяется методика
микроскопической электронно-оптической ре-
гистрации (МиОР) [17]. Подсветка процесса

проводится коротким одно- или двухимпульс-
ным лазерным излучением с разнесенными по

времени импульсами. Методика позволяет раз-
решать отдельные частицы размером от 3 мкм,
движущиеся со скоростью до ≈4 км/с. Прин-
ципиально важные результаты были получе-
ны в 2016 г. после реализации идеи регистра-
ции частиц, выброшенных с шероховатой «уз-
кой» полосы шириной ≈0.3 ÷ 1 мм. На рис. 6
представлены изображения процесса пыления

с СП образца из свинца, расплавленного после
ударно-волнового воздействия, в условиях ре-
гистрации МиОР без применения (а) и с при-
менением (б) метода «узкой» полосы. Умень-
шение полосы с ≈30 до ≈0.5 мм привело к со-
зданию оптически прозрачного потока частиц.

Образцы свинца [13, 17] нагружались заря-
дом взрывчатого состава на основе октогена че-

рез стальную пластину, разделяющую взрыв-
чатое вещество и образец. Выброс частиц про-
исходил в вакуум (≈0.1 атм). Варьированием
толщин взрывчатого вещества, стальной пла-
стины и образца достигались разные уровни

нагружения образцов. После ударно-волнового
воздействия и последующей изоэнтропической

разгрузки образец свинца находился в жидкой

фазе.
В таблице приведены некоторые парамет-

ры регистрации размеров частиц: начальные
возмущения A0/λ на образце, соотношение a0k,
ширина полосы H, с которой регистрируется
выброс частиц, время t1/t2 регистрации ме-
тодикой МиОР, расчетная скорость СП образ-
ца UFS , давление на фронте УВ PSB и гра-

диент давления за фронтом УВ
dP

dx
, градиент

скорости в разгруженном образце ε̇, скорость
фронта частиц относительно скорости СП об-
разца Vm, наиболее вероятный размер частиц
на фронте потока d̄m при константе α = 3.8,
параметр β = 1/a0k

2∆x.
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Рис. 7. Расчетный и экспериментальный диф-
ференциальный спектры размеров частиц:

а — PSB = 34 ГПа, β = 0.009, б — PSB = 44 ГПа,
β = 0.005

Результаты расчетов и эксперименталь-
ных данных по спектру размеров частиц пред-
ставлены на рис. 7 и 8. Так как в экспери-
менте надежно разрешаются частицы разме-
ром от 3 мкм, то для сравнения расчетов с экс-
периментом была использована только часть

расчетной кривой.
dW

dd
(d > 3 мкм) норми-

ровалась на общее число частиц с размером

больше 3 мкм. Расчеты по модели воспроизво-
дят экспериментальное распределение частиц

по размерам. В качестве функции распределе-
ния частиц, ответственной за случайный ха-
рактер дробления, использовано распределение
Розина — Раммлера.

Экспериментальные спектры размеров ча-
стиц свинца описываются моделью при кон-

Рис. 8. Интегральные распределения массы

частиц по размерам d:

штриховая линия — предел разрешающей способ-
ности МиОР

стантах α = 3.8 и n = 1.6÷ 3, как и для случая
с оловом [18]. Влияние параметра n в распреде-
лении Розина — Раммлера проявляется в обла-
сти размеров частиц <3 мкм, недоступном на
сегодняшний день для регистрации методикой

МиОР. Однако, как показано на рис. 8, вклад
частиц размером менее 3 мкм в общую выбро-
шенную с поверхности массу вещества состав-
ляет 2÷ 5 %.

Из анализа результатов экспериментов по

исследованию ударно-волнового пыления оло-
ва и свинца, индуцированного УВ интенсив-
ностью, достаточной для плавления метал-
ла, можно сделать вывод, что модель, осно-
ванная на нРМ, описывает интегральные ха-
рактеристики (выброшенную массу, простран-
ственное распределение плотности потока) [3] и
спектральные характеристики потока частиц.
Плавление металлов происходило в волне раз-
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грузки. Наилучшего согласия расчетные за-
висимости достигают при использовании кон-
стант α = 3.8, n = 1.6, k = 2÷ 3.

ЗАКЛЮЧЕНИЕ

В работе приведена полная система

уравнений, описывающая «источник пыле-
ния» — распределение частиц по размерам

и пространственно-временное распределение

плотности и скоростей частиц. Представлен-
ная модель «пыления» жидкостей связывает

массу частиц, распределения плотности и

скоростей частиц в пространстве с распре-
делением частиц по размеру и изменением

этих зависимостей во времени. С помощью

модели, основанной на физике неустойчивости
Рихтмайера — Мешкова, при одинаковом

наборе параметров удалось описать экспе-
риментальные данные по спектру размеров

частиц «источника пыления», полученные с
использованием метода «узкой» полосы на

образцах олова и свинца.
Автор выражает благодарность М. О. Ле-

бедевой за помощь в подготовке рукописи ста-
тьи к печати.
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