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Рассмотрен подход по определению дистанции до теплоконтрастных объектов на основе

данных, полученных с инфракрасной камеры средневолнового диапазона. Анализируется
уравнение переноса излучения, и демонстрируется статистическая устойчивость тепло-
вого распределения цели в зависимости от дистанции до объекта и погодных условий.
На основе совокупности выявленных признаков объекта предложена модель многомерной

линейной регрессии, использующая обученную искусственную нейронную сеть и позволя-
ющая предсказывать дистанцию до объекта. Проведено моделирование полученного под-
хода по известным экспериментальным данным, показавшим преимущество оцениваемой
дистанции (менее ∆D/D < 0,04) в сравнении с прямым методом определения дальности
(∆D/D > 0,82). Даны направления дальнейших исследований и обоснована необходимость
совершенствования признакового пространства для повышения точности подхода.
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Введение. В настоящее время одним из перспективных направлений освещения об-
становки является использование камер инфракрасного (ИК) диапазона, которые позволя-
ют обнаруживать объекты в условиях плохой видимости и в ночное время суток [1, 2]. По-
следние исследования показали, что «прозрачность» атмосферы в ИК-диапазоне выше, чем
в видимой части спектра, причём динамика изменений (отношение дальности обнаруже-
ния тепловизором к метеорологической дальности видимости) может достигать значений
3,64–0,84 [3, 4]. Проблема автоматического обнаружения объектов на ИК-изображениях
является задачей компьютерного зрения, решение которой освещено в широком перечне
работ [5–8]. Однако одним из принципиальных недостатков тепловизионных систем, осу-
ществляющих пассивное (бесконтактное) обнаружение объекта, является отсутствие воз-
можности измерения дистанции до него. Поскольку пассивным средствам, как правило,
доступно определение угловых координат, измеренная дистанция является необходимым
условием оценки местоположения объекта в евклидовом пространстве R3:

{D,ϕ, θ} → {x, y, z} :


x = D cos θ · cosϕ;
y = D cos θ · sinϕ;
z = D sin θ,

(1)

где {D,ϕ, θ} — переменные дистанции D, азимута ϕ и угла места θ, определённые в
сферической системе координат; {x, y, z} — переменные продольной оси x, поперечной
оси y и вертикальной оси z, заданные в декартовой системе координат.

Известны косвенные способы определения дистанции до обнаруженных объектов,
включающие как оценку параметров пороговой температурной чувствительности [9] и
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температурного разрешения, так и методы фотограмметрического анализа и монокулярно-
го зрения [10, 11]. В диапазоне сантиметровых радиоволн существует подход, основанный
на распознавании детектируемого объекта с дальнейшим использованием его тактико-
технических характеристик для оценки местоположения [12, 13]. Однако подобные под-
ходы малопродуктивны при оценке дальности из-за чрезвычайной чувствительности к
различным атмосферным факторам и условиям измерений теплоконтрастных объектов.

Инфракрасный диапазон по своим физическим свойствам подразделяется на отражён-
ный и тепловой [14]. Тепловой ИК-диапазон (0,9–15 мкм) обладает тем преимуществом,
что излучаемые телами электромагнитные волны имеют интенсивность максимума, кото-
рый зависит от температуры тела. Тем самым достигается возможность создания бескон-
тактного термографического изображения на основе обнаруживаемого излучения, опреде-
ляющего перегретые или переохлаждённые места. Для формального описания подобного
явления используется закон Планка [14]:

Iλ(T ) =
2hc2

λ5

1

exp [hν/λkT ]− 1
, (2)

где I — излучательная способность тела (Вт ·м−3· ср−1); T — температура абсолютно

чёрного тела; h — постоянная Планка; c — скорость света; k — постоянная Больцмана.
Если два объекта с одинаковой физической температурой имеют разную излучатель-

ную способность, то в ИК-диапазоне они могут выглядеть по-разному. Это свойство поз-
воляет визуализировать на изображениях различные нагретые тела пропорционально ин-
тенсивности. Однако на свойства термографических изображений влияют условия распро-
странения излучения, т. е. процессы поглощения, испускания и рассеяния в атмосфере.
Если рассеяние игнорируется, то уравнение переноса излучения для плоскопараллельной
атмосферы математически может быть записано как сумма интенсивностей излучения

тела и поглощения в атмосфере [14]:

Iν(s) = Iν(s0)e−τν(s0,s) +

s∫
s0

jν(s∗)e−τν(s∗,s) ds∗, (3)

где Iν = dE/dν · da · dΩ · dt — интенсивность потока электромагнитной энергии dE отно-
сительно начальной (s0) или конечной (s) точек излучения, протекающего через элемент
площади da, который расположен под телесным углом dΩ в интервале времени dt в ча-

стотном интервале ν–dν; jν — коэффициент излучения объекта; τν(s1, s2)
def
=

∫ s2

s1

αν(s) ds—

оптическая глубина для объёмного коэффициента ослабления αν как функции рассматри-
ваемых позиций s1 и s2.

Таким образом, дальность наблюдаемого на ИК-изображении объекта может быть
оценена как функция от конечного числа параметров, включающих тепловые свойства об-
наруженного объекта, условия получения изображения и физические характеристики сре-
ды распространения [15]. Однако существенные флуктуации характеристик среды и теп-
ловых свойств объекта вносят значительные погрешности в точность измерений. Следова-
тельно, определение координат объекта прямым способом крайне затруднительно [12, 4].
Очевидно, что необходимы нетривиальные подходы к решению данной проблемы. Одним
из возможных направлений является применение методов машинного обучения на основе

так называемого «обучения с учителем» [16].
В машинном обучении класс задач, осуществляющих прогнозирование данных на ос-

нове известной совокупности признаков, относится к задачам многомерной регрессии. Пре-
имущество предложенного подхода заключается в том, что на базе косвенных признаков,
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выбираемых разработчиком, устанавливается неявная закономерность в определении нуж-
ного параметра: в данном случае дальности. При этом совокупность предложенных при-
знаков может быть гораздо менее чувствительна к оценке параметра, чем переменные,
используемые для аналитического решения уравнения (2). Это объясняется тем, что фи-
зический закон устанавливает закономерность между исследуемыми параметрами, но не
проверяет корреляционную связь между ними, существенно влияющую на применимость
закона.

В данной статье рассматривается проблема оценки местоположения объектов

ИК-средствами пассивного мониторинга с применением технологии многомерного регрес-
сионного анализа. Цель работы — возможность построения прогностической модели по

конечной совокупности семантических признаков, включающих тепловые свойства обна-
руженного объекта, условия получения изображения и физические свойства среды распро-
странения.

Математическая постановка задачи. Модель линейной регрессии предполагает
взаимосвязь между зависимой переменной — оценкой дальности до объекта — и независи-
мых переменных — косвенных признаков, по которым «восстанавливается» информация
об обнаруженном объекте. При этом в случае линейной регрессии все признаки систе-
мы равнозначны друг другу, а регрессионная модель должна решать задачу обучения по
выбранному алгоритму [17].

Пусть для k независимых переменных x1, . . . , xk их среднее значение µ[Y|x1, . . . , xk]
задаётся моделью множественной линейной регрессии

µ[Y | x1, . . . , xk] = β0 + β1x1 + . . .+ βkxk, (4)

где β0, β1, . . . , βk — коэффициенты регрессии.
Тогда для указанной модели необходимо найти такое общее решение в виде

Y =X> · β + E, (5)

где

Y =


y1

y2
...
yn

 , X =


1 x11 x21 · · · xn1

1 x12 x22 · · · xn2
...

...
...

...
1 x1k x2k . . . xnk

 , β =


β0

β1
...
βk

 , E =


e1

e2
...
en

 ,
которое бы обеспечило на выходе минимизацию функции E для определённого класса вход-
ных значений:

F{Xkn → Yn} : E→ min . (6)

Минимизация E может быть построена на основе различных методов (градиентный спуск,
метод Левенберга — Марквардта, байесовская регуляризация и т. д.). В простейшем слу-
чае поиск локальных максимумов в пространстве признаков Xkn осуществляется согласно
методу наименьших квадратов, когда необходимо минимизировать квадратичную форму
вида

E = (Y − X> · β)>(Y − X> · β).

Как и в случае с одной независимой переменной, модель множественной линейной ре-
грессии часто может быть адекватным представлением более сложной полиномиальной

структуры в определённом классе независимых переменных.
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Таб л иц а 1

Характеристики тепловизионной камеры

Параметр Величина

Разрешение, пиксели 640× 512
Спектральный диапазон, мкм 3,7–4,8 (MWIR)
Размеры пикселя, мкм 15× 15
Температурное разрешение, мК <17

Òóìàííàÿ âëàæíàÿ àòìîñôåðà
ßñíàÿ ñóõàÿ àòìîñôåðà

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0

Ï
îã

ëî
ù

åí
èå

Äëèíà âîëíû, ìêì

Рис. 1. График атмосферного поглощения в спектральной области MWIR для

двух атмосферных условий

Оценка переноса ИК-излучения MWIR-диапазона. Основным недостатком со-
временных ИК-камер является то, что они имеют относительно меньшее разрешение, чем
RGB-камеры. Для совершенствования разрешения и достижения соизмеримого качества
в последнее время применяются свёрточные нейронные сети [18]. Помимо этого, на по-
тенциальную точность обнаружения объектов могут влиять как технические характери-
стики ИК-камер, не позволяющие получать необходимого разрешения, так и погодные
условия, влияющие на перенос электромагнитного излучения в атмосфере [5]. Последний
фактор может существенно увеличить потери излучения. В данной работе был исполь-
зован ИК-датчик GSTIR модели C615M-5MT-RS046 c активной системой охлаждения по
методу Стирлинга (табл. 1).

Спектральный диапазон MWIR характеризуется сочетанием пониженного влияния

солнечного излучения и одновременно низкого теплового излучения объекта. В ряде ра-
бот [19, 20] отмечается, чтоMWIR-диапазон требует анализа взаимозависимых процессов:
компенсации воздействия атмосферы и исследования температурного коэффициента излу-
чения поверхности. В первом случае требуется рассчитать коэффициент поглощения ат-
мосферы k(ν) (газы, аэрозоли и разрежённые облака) с учётом погодных условий (рис. 1).

Для анализа ослабления параллельного монохроматического пучка ИК-излучения в
поглощающей среде — атмосфере — возьмём частный случай, описываемый первым сла-
гаемым из выражения (3). Это закон Бугера — Ламберта — Бера:

Iν(s) = Iν(s0)e−τν ,

где τν = (s−s0)k(ν), а k(ν) — коэффициент поглощения атмосферы [2]. Из этого выражения
можно установить дальность D:

D = s− s0 =
1

k(ν)
ln
[Iν(s0)

Iν(s)

]
. (7)
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Прямое применение этой формулы на практике даёт весьма некорректный результат,
поскольку не принимает во внимание многие факторы в условиях естественного освеще-
ния. Предположим, что учитываются следующие условия: Iν(s0) = I(s0): ν = const и
Iν(s) = I(s): ν = const. Тогда анализ точности измерений возможен на основе оценки
систематической погрешности по выражению

∆D =

√(∂D
∂I0

∆I0

)2
+
(∂D
∂I

∆I
)2

+
(∂D
∂k

∆k
)2
, (8)

где ∆I0 и ∆I — отклонения интенсивностей потока излучения от излучающего источника

и приёмного детектора соответственно.
Подставляя в выражение (8) необходимые значения и приняв во внимание, что для

MWIR-диапазона ln2[Iν(s0)/Iν(s)] ≈ 1 [19], получим выражение для расчёта погрешности
измерений дальности в условиях изменяющегося поглощения в атмосфере

∆D =
1

k

√
(∆I0)2

I2
0

+
(∆I)2

I2
+ (∆k)2 . (9)

Анализ выражения (9) показывает, что даже при отклонении измерений интенсивно-
стей ∆I0/I0 и ∆I/I не более чем на 5 % (для выбранного диапазона частот по табл. 1
и рис. 1) величина ∆D/D > 0,82. Стоит учесть, что полученные теоретические расчёты
дальности являются крайне оптимистическими, поскольку в условиях турбулентности ат-
мосферы значение ∆D/D > 0,82 может отличаться на несколько порядков. Кроме того,
в практических расчётах требуется находить траекторию излучения (рефракцию), что
также приводит к существенным погрешностям [20].

Анализ распределения интенсивности излучения теплоконтрастного объ-
екта. Как известно, для электромагнитных волн излучения среднего ИК-диапазона
(от 3 до 5 мкм) характерно наличие спектральных окон с низким коэффициентом поглоще-
ния атмосферы вблизи поверхности Земли. Характеристика излучающего ИК-объекта в
основном зависит от распределения температуры по поверхности тела. В этом случае для
минимально возможного разрешения по телесному углу Ω поля зрения формула Планка (2)
будет записана в следующем виде:

JΩ(T, λ) =

∫
λ

∫
T

2hc2

λ5

dT dλ

exp [hν/λkT ]− 1
, (10)

где JΩ(T, λ) задаёт интегральную характеристику интенсивности излучения для непре-
рывных переменных температуры T и длины волны λ, полученного от теплоконтрастного
объекта в пределах телесного угла Ω.

Излучение, получаемое детектором-приёмником камеры, может быть интерпретиро-
вано как конечное число пикселей различной интенсивности, соответствующих некоторой
совокупности телесных углов Ω ∈ N. Для того чтобы оценить излучаемую интенсивность
объекта в пределах всего поля зрения, где он расположен, необходимо просуммировать
JΩ(T, λ) по конечному числу разрешений телесного угла {Ω1,Ω2, . . . ,Ωk, . . .}:

JΩ =
∑
k∈N
Jλ,T (Ωk). (11)
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Построение аналитической модели по (10) и (11) является нетривиальной задачей
прежде всего из-за значительных флуктуаций T и λ. В работе [21] предложен под-
ход для подобного класса задач по созданию конечно-элементной аналитической моде-
ли, для которой рассчитывается распределение температуры, а затем строится серое

ИК-изображение на основе радиальной яркости. Разрешение интенсивности излучения мо-
жет быть найдено в виде

r =
Φmax − Φmin

G2 −G1
, (12)

где Φmax и Φmin — максимум и минимум значений интенсивности, G2 и G1 — верхнее и

нижнее значения шкалы в градации серых оттенков соответственно.
Уровень серых оттенков каждого пикселя изображения соответствует яркости

ИК-излучения той точки сцены, в поле зрения которой она отражается. Чем выше раз-
решение, тем качественнее оценивается тепловой портрет обнаруживаемого объекта. По-
лучаемое ИК-изображение нагретого тела может быть оценено на основе центральных
моментов случайной величины [22]:

1) математического ожидания количества пикселей, соответствующих конечному чис-
лу разрешений по телесному углу, в котором наблюдается объект:

M =
∑
k

xkpk, (13)

2) дисперсии интенсивности пикселей (контрастность объекта в пределах телесного
угла, в котором он наблюдается):

D =
∑
k

pk(xk −M)2. (14)

В выражениях (13) и (14) X : {xk = JΩ × r, r ∈ Q+} — оценка нормированной

интенсивности излучения JΩ × r, которая приходится на область телесного угла Ωk;
pk = P (X = xk) — плотность распределения вероятностей того, что случайная величина
нормированной интенсивности X примет значение xk.

Экспериментальные исследования в MWIR-диапазоне произведены для объектов

транспортных средств в условиях изменяющейся видимости для различных ракурсов.
Дальность дистанции до объектов колебалась в приблизительном диапазоне 3000–6500 м
(рис. 2).

a b c d

Рис. 2. Тепловизионные изображения грузовика: a — ракурс ∼355◦, D = 3567 м,
пасмурно, плохая видимость; b — ракурс ∼285◦, D = 3662 м, пасмурно, пло-
хая видимость; c — ракурс ∼135◦, D = 3129 м, облачно, средняя видимость;

d — ракурс ∼75◦, D = 3676 м, облачно, средняя видимость
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Рис. 3. Структурная схема многослойного персептрона, использующая метод
Левенберга — Марквардта и реализующая аппроксимирующую модель линей-

ной регрессии

При различных ракурсах транспортного средства отчётливо прослеживались кон-
трастные пятна, соответствующие его разогретым частям, где JΩ(T, λ)→ max. При этом
в пасмурную погоду заметно снижение видимости объекта, а следовательно, и количе-
ственных характеристикM(xk) и D(xk). Это объясняется наличием полосы поглощения
H2O в диапазоне 3–4 мкм [22] (см. рис. 1).

Выбор признакового пространства и реализация подхода. Прямое решение
уравнения переноса излучения (3) относительно переменной D даёт высокую погрешность

измерений. Альтернативный вариант — это построение регрессионной модели согласно

выражению (4) с дальнейшей минимизацией квадратичной функции E (6) на основе из-
вестной обучающей выборки. При этом наибольшими трудностями представляются:

— корректный выбор признаков, которые обеспечивают независимую оценку исследу-
емого параметра (в данном случае дальности);

— валидная обучающая выборка, отражающая наиболее разнообразные поведенческие
сценарии разрабатываемой модели.

В последнем случае использована выборка, которая состояла из пары «наблюдение —
ответ»: наблюдение включает вектор признаков Xk = [x1, . . ., x7]>, Xk ∈ N, ответом яв-
ляется конечное число Y ∈ R. Объём выборки составлял 160 наблюдений для исходно-
го множества X n

k × Yn: {(X 1
1,...,7, y

1), . . . , (X 160
1,...,7, y

160)}, где в качестве объектов наблю-
дения использовались следующие классы: автомобиль-фургон Газель, грузовик КамАЗ,
тягач МАЗ. Представленные транспортные средства фиксировались тепловизором случай-
ным образом на различных расстояниях в диапазоне 3000–6500 м. При этом расстояние
до объекта (ответ) было известной величиной, измеренной неоптическими средствами ди-
станционного зондирования.

В рамках исследования была построена искусственная нейронная сеть (ИНС), исполь-
зующая аппроксимирующую модель многомерной линейной регрессии по выражению (4).
Ввиду сравнительно малой обучающей выборки и конечного числа признаков, модель ИНС
была сформирована по принципу многослойного персептрона и содержала один скрытый

нелинейный и один линейный выходной слои (рис. 3).
В качестве признаков для формирования обучающей выборки были выбраны:
— признаки 1, 2: морфологические особенности портрета в ИК-диапазоне, т. е. мате-

матическое ожидание по теплоконтрастным пикселям цели X1 ∼M, дисперсия теплокон-
трастных пикселей цели X2 ∼ D;

— признак 3: класс объекта X3 ∼ R ∈ {Газель,КамАЗ,МАЗ} (задаётся автоматизи-
рованным способом, т. е. оператором);

— признак 4: ракурс объекта X3 ∼ K (задаётся в ручном режиме, кратном величине
15◦);
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— признаки 5, 6: погодные условия для двух режимов X3 ∼ K {температура; влаж-
ность};

— признак 7: фокусное расстояние камеры (доступно для используемой камеры).
Отметим две особенности предлагаемого подхода. Во-первых, это автоматическое из-

влечение признаков по теплоконтрастным пикселям обнаруживаемого объекта (см. рис. 1).
Во-вторых, ряд признаков вводится на основе субъективной оценки оператора, наблюда-
ющего движущийся (неподвижный) объект на мониторе тепловизионной камеры. Тело
алгоритма приведено ниже.

Выбор признаков сопровождался рядом допущений относительно их валидности:
1) теплоконтрастный портрет объекта выбран на основе растрового изображения с

глубиной 8 бит в градациях серого цвета с теплочувствительностью камеры не менее

17 мК;
2) для объектов исследования рассматривалось конечное число ракурсов с величиной,

кратной 15◦;
3) допускалось конечное число различных сценариев погодных условий (ясно, облачно,

пасмурно) с фиксацией температуры и влажности.

Оценка полученных результатов. На основе использованной архитектуры ИНС
и выбранных признаков с рядом допущений была оценена линейная зависимость

y(X ): {y ∈ R1, X ∈ R7}. С точки зрения прогностической модели необходимо ввести соот-
ветствующий критерий эффективности, в качестве которого выбран коэффициент детер-
минации R2 = 1−D[y | X ]/D[y], включавший D[y] — дисперсию случайной величины y и
D[y | X ] — дисперсию зависимой переменной при условии известных факторов X (рис. 4).

Алг о р и тм

Оценка дистанции до объекта на основе многомерной регрессии

Вход:
IIR{m× n× k} — массив данных по объекту ИК-изображения

Выход:
y ∈ R1 — прогнозируемое значение дистанции до объекта

1: создать обученную модель ИНС Method = NN
2: выбрать подход к оценке признака из String = {автоматический, ручной}
3: если String = {автоматический},

тогда

4: вычислить первый признак X1: IIR →M согласно выражению (13)
5: вычислить второй признак X2: IIR → D согласно выражению (14)
6: вычислить погодные условия X5,6 = {температура t, влажность Φ}
7: вычислить фокусное расстояние X7 = F ,

иначе String = {ручной}
8: выбрать класс объекта из k = 1, . . ., n классов (в ручном режиме):

случай X3 ∼ R = {класс 1},
случай X3 ∼ R = {класс n},

конец X3 ∼ R = {класс k} ∀k ∈ N
9: выбрать ракурс объекта из k = 1, . . ., 24 ракурсов с шагом 15◦:

случай X4 ∼ K = {ракурс 0◦},
случай X4 ∼ K = {ракурс 360◦},

конец X4 ∼ K = {ракурс k}
конец, если

10: создать массив признаков X = [M D R K t Φ F ]>

11: вычислить прогнозируемое значение y = NN [X ] ∀y ∈ R1, X ∈ R7
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Рис. 4. Модель линейной регрессии, описывающей оценку дистанции до цели:
по горизонтальной оси расположены экспериментальные данные (T), по вер-
тикальной — теоретические данные (y), полученные в результате применения

модели линейной многомерной регрессии (4)

a b c d

D= 3700,7
D= 3085,3 D= 3956,3

D=3200,7

Рис. 5. Оценка дальности до грузовика на основе линейной регрессии при извест-
ной дистанции: a — 3676 м в условиях падающего снега; b — 3033 м в условиях
падающего снега; c — 4144 м в условиях тумана; d — 3078 м в условиях тумана

Коэффициент детерминации относительно теоретической прямой показывает необъ-
яснённую дисперсию D[y | X ] в дисперсии зависимой переменной D[y]. Сам коэффициент
достигает величины R = 0,97184 для выбранной теоретической модели линейной регрес-
сии, описываемой выражением

Y ' (0,94)×T + 250. (15)

Уравнение (14) описывает ту прогностическую модель по факторам-признакам
X ∈ R7 и соответствующую этим признакам измеренную дистанцию до объекта

T ∈ N{160×1}, которая имеет наименьшее расхождение с теоретической моделью прогно-
за y. Результаты обученной модели на тестовой выборке для различных погодных усло-
вий, ракурсов и оцениваемых дистанций могут быть применены в системах визуального
контроля, где может выдаваться информация о дистанции до объекта (рис. 5).

С одной стороны, полученные результаты линейной регрессии вполне убедительны

в относительных единицах измерения, поскольку расхождения между экспериментальны-
ми и теоретическими данными (в этом частном случае) не превышают 0,6 (рис. 5, a),
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1,7 (рис. 5, b), 4,5 (рис. 5, c) и 3,9 % (рис. 5, d). С другой стороны, приведённые аб-
солютные значения не позволяют утверждать, что подход применим для точного пози-
ционирования объекта и требует методов дальнейшего совершенствования. Результаты
визуального контроля могут быть пересмотрены с учётом уравнения (1) и представлены
в виде географической системы координат.

Обсуждения и дискуссии. Проанализируем возможные направления по усовершен-
ствованию предложенного подхода.Очевидно, что повышение точности требует как допол-
нительных робастных признаков, включённых в предлагаемую искусственную нейронную
сеть, так и корректной оценки теплоизлучения рассматриваемого объекта.

Свойства теплового излучения (выражения (11) и (12)) указывают, что в пределах
конечного числа разрешений по телесному углу объект определяется интенсивностью из-
лучения JΩ(T, λ) [23]. При этом перенос излучения добавляет погрешности в оценке излу-
чаемой и принимаемой интенсивности. Это влечёт за собой некорректную оценку дистан-
ции до объекта ∆D/D > 0,82 (уравнение (9)). В этом смысле результаты, полученные на
основе ИНС, выглядят убедительными:

(∆D

D
= 0,82

)
теор
�

∆D

D
:=


0,006
0,017
0,045
0,039



эксп

. (16)

Для теоретической модели величина ∆D оценена аналитически по выражению (9).
Для экспериментальных данных расхождение ∆D = |y − T | согласно уравнению (15).

Подобная эффективность объясняется тем, что оценка дистанции происходит на ос-
нове независимых признаков, прямо не влияющих на распределение интенсивности излу-
чения согласно уравнению (3). Тем не менее проблема применения технологии обучения
ИНС, использующая многомерную регрессию, остаётся открытой. Во-первых, сама модель
обучения может быть выбрана на основе полиномиальной регрессии

µ[Y | x1, . . . , x7] = β0 + β1x1 + β2x
2
2 + . . .+ βkx

7
7.

В рассмотренном случае применение этого подхода может минимально повысить эффек-
тивность, поскольку коэффициент детерминации квазиоптимален R ' 0,97. Во-вторых,
значительный вклад в повышение точности может обеспечить корректный выбор при-
знаков. Для этих целей проведён анализ устойчивости и значимости признаков на основе
метода главных компонент (ГК).

Исходная редуцированная обучающая выборка Xm ⊂ {x1, x2, . . . , xm} преобразована в
ортогональный базис Vm ⊂ {v1, v2, . . . , vm}, где оси координат совпадают с максимальны-
ми значениями дисперсий в порядке их убывания λmax . . . λmin. Каждая компонента апри-
орных данных Xkn×Yn : {(x1,1, . . . , x7,1, y1), . . . , (x1,160, . . . , x7,160, y160)} определяет значи-
мость независимой переменной при прогнозировании результата обучения ИНС (табл. 2).

Таб л иц а 2

Первые пять ГК обучающей выборки,
полученные по методу PCA (principal component analysis)

Компонента Дисперсия, λ Вклад компоненты, δ (%)

Первая ГК 1,8155 25,9352
Вторая ГК 1,4801 21,1440
Третья ГК 1,2295 17,5639
Четвёртая ГК 1,1206 16,0090
Пятая ГК 0,6905 9,8648
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Рис. 6. Оценка первой, второй и третьей ГК обучающей выборки: v1 — класс

объекта; v2 — ракурс объекта; v3 — фокусное расстояние камеры; v4, v5 —
математическое ожидание и дисперсия по теплоконтрастным пикселям соответ-
ственно; v6, v7 — температура и влажность окружающей среды соответственно

Вклад первых трёх главных компонент (из семи возможных) составляет∑
1,...,3(δ) � 65 %, для первых пяти компонент — более

∑
1,...,5(δ) � 90 %. В условиях

достаточной эффективности полученных данных их оценку целесообразно представить в

проекциях трёх главных компонент (рис. 6).
Разложение обучающих данных на собственные векторы показывает, что ряд при-

знаков образует группы, которые наиболее независимы между собой из общего множества
V = [v1, . . . , v7]>. Наиболее коррелированными являются векторы v4 и v5. Отсюда соответ-
ствующие им признаки математического ожидания и дисперсии могут рассматриваться

совместно. Влияние каждого из этих признаков на регрессионную модель существенно,
и, как следствие, для оценки дистанции эту группу признаков необходимо принимать во
внимание.

Заключение. В представленной работе исследована проблема оценки дистанции до
обнаруживаемых объектов на изображениях, полученных в среднем ИК-диапазоне. Реше-
ние основано на извлечении признаков, включающих как интенсивность теплового излу-
чения объекта и погодных условий, влияющих на перенос этого излучения, так и характер
объекта излучения: его класс, ракурс относительно средства мониторинга и т. д.

На базе исследованных признаков объекта и по известным экспериментальным дан-
ным, включающим группы наблюдений «множество признаков — дистанция до объекта»,
осуществлено обучение искусственной нейронной сети, использующей архитектуру мно-
гослойного персептрона. Целевая задача обучения ИНС — прогнозирование расстояния —
решалась на основе методики аппроксимирующей линейной регрессии. В результате ана-
лиза установлено, что отношение точности измеренного расстояния к дистанции до объек-
та (∆D/D < 0,04) намного ниже соответствующего показателя в случае прямого пересчёта
дистанции по уравнению переноса излучения (∆D/D > 0,82).

Повышение точности в оценке дистанции до объектов может быть достигнуто как

за счёт увеличения признакового пространства исследуемых объектов, включающего
более глубокий анализ интенсивности и переноса излучения по маршруту «объект—
наблюдатель», так и применением более сложных моделей многомерной регрессии при
обучении ИНС на прогнозирование дистанции.
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