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For a 3-dimensional dynamical system considered as a model of a gene network with nonlinear degradation
of its components, the uniqueness of an equilibrium point is proved. Using approaches of qualitative theory
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invariant domain which contains all such cycles in the phase portrait. Numerical experiments with trajectories
of this system are conducted.

Keywords: non-linear dynamical systems, gene networks models, phase portraits, equilibrium points,
invariant domains and toruses, stability, cycles, bifurcations, fast and slow variables, software package STEP.

Введение

Следуя общим подходам построения математических моделей функционирования
генных сетей, мы рассматриваем системы нелинейных дифференциальных уравнений ки-
нетического типа относительно набора неотрицательных функций xj(t), описывающих
концентрации компонент генной сети, которые взаимодействуют между собой посред-
ством только отрицательных регуляторных связей. Такие сети в литературе называют
молекулярными репрессиляторами [1,2].
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Типичное уравнение в такой системе имеет вид dxj

dt
= Lj(X)−Γj(X), где положитель-

ная монотонно убывающая функция Lj описывает скорость синтеза вещества с концен-
трацией xj = xj(t), а положительная монотонно возрастающая ограниченная функция
Γj(X) описывает скорость его деградации (разложения) [1].

Ранее в [2–4] мы рассматривали подобные модели генных сетей, в том числе в раз-
мерностях 10 и выше, при этом функции Γ были линейными: Γj(X) ≡ kjxj , где kj —
положительная постоянная (см. также [5–7]). Система, у которой Γj(X) =

Ajxj

Bj + xj
, опи-

сана в [8].
В настоящей работе нас будут особенно интересовать случаи, в которых такие моде-

ли молекулярного репрессилятора с произвольной нелинейной деградацией компонент
имеют периодические траектории (циклы). В фазовых портретах этих моделей мы опи-
сываем инвариантные области, содержащие все такие циклы. Были также проведены
вычислительные эксперименты, иллюстрирующие полученные теоретические результа-
ты и известную теорему Андронова–Хопфа о бифуркации циклов.

1. Существование цикла

Трёхмерная динамическая система

dx

dt
= L1(z)− Γ1(x);

dy

dt
= L2(x)− Γ2(y);

dz

dt
= L3(y)− Γ3(z) (1)

моделирует кинетику взаимодействия трёх компонент кольцевой генной сети. Неотри-
цательные переменные x = x(t), y = y(t), z = z(t) обозначают концентрации веществ,
участвующих в реакциях по кольцевой схеме: скорость синтеза первой компоненты, име-
ющей концентрацию x, зависит от z, скорость синтеза второй компоненты с концентра-
цией y зависит от x и т. д. В изучаемом нами случае скорости синтеза описываются глад-
кими монотонно убывающими положительными функциями Lj , их убывание означает,
что в моделируемой генной сети регуляторные связи между компонентами отрицатель-
ные, все эти компоненты ингибируют друг друга по кольцевой схеме [1, 9, 10]. Здесь и
далее j = 1, 2, 3.

Скорость разложения компоненты с номером j данной сети описывается монотонно
возрастающей ограниченной гладкой функцией Γj такой, что Γj(0) = 0.

Приравнивая к нулю скорости изменения концентраций, описываемые системой (1),
и исключая из полученных уравнений переменные y и z, находим координату x стацио-
нарной точки системы (1) из уравнения

x = L(x) := Γ−11

(
L1

(
Γ−13

(
L3

(
Γ−12 (L2(x))

))))
. (2)

Для того, чтобы правая часть этого равенства была определена при всех неотрицатель-
ных x, необходимы дополнительные предположения:

sup Γj > Lj(0) при всех j. (3)

Правая часть L(x) уравнения (2) является композицией трёх монотонно убывающих и
трёх монотонно возрастающих функций, и поэтому она сама монотонно убывает. Значит,
её график имеет в точности одну точку пересечения с прямой ξ = x. Единственное ре-
шение x = x0 уравнения (2) задаёт все координаты единственной стационарной точки S0
системы (1). Вторая и третья координаты y0 и z0 точки S0 имеют вид
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y0 = Γ−12

(
L2(x0)

)
; z0 = Γ−13

(
L3(y0)

)
. (4)

Одной из задач при исследовании данной динамической системы является построение
инвариантной области для локализации циклов в фазовом портрете. Область Q назы-
вается (положительно) инвариантной, если траектории её точек не покидают область Q
при t→ +∞.

1.1. Инвариантный параллелепипед и его разбиение

Пусть a1 < x0 и b1 > x0 — ближайшие к x0 решения уравнения x = L(L(x)).
Тогда a1 = L(b1), b1 = L(a1). И пусть также a2 := Γ−12 (L2(b1)), b2 := Γ−12 (L2(a1)),
a3 := Γ−13 (L3(Γ

−1
2 (L2(b1)))), b3 := Γ−13 (L3(Γ

−1
2 (L2(a1)))). На рисунке 1 схематично изобра-

жены пересечения графиков функций ξ = x и ξ = L(L(x)). В интересующем нас случае
существования цикла, т. е. когда стационарная точка неустойчива, производная функции
ξ = L(L(x)) при x = x0 строго больше единицы; на самом деле она больше 64 (см. (7)
ниже).

Рис. 1. Построение первого ребра инвариантного параллелепипеда системы (1)

Во всех наших рассуждениях рассматривается только случай общего положения, ко-
гда графики всех рассматриваемых функций пересекаются трансверсально. Подобные
итерации рассматривались в [10] при построении и изучении аналогичных моделей ген-
ных сетей, смотри также [1].

Лемма 1. При выполнении условий (3) параллелепипед Q = [a1, b1] × [a2, b2] × [a3, b3]
является инвариантной областью системы (1). Описанная уравнениями (4) стацио-
нарная точка S0 системы (1) лежит во внутренности Q.

Доказательство. Для доказательства определим знаки скоростей dx

dt
, dy

dt
, dz

dt
изме-

нения концентраций всех трёх компонент генной сети на гранях параллелепипеда Q.
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Для того, чтобы эта область была инвариантной, необходимо и достаточно, чтобы

- при x = a1 для всех z ∈ [a3, b3] выполнялись неравенства Γ1(a1) ≤ L1(b3) ≤ L1(z);

- при z = b3 для всех y ∈ [a2, b2] выполнялись неравенства Γ3(b3) ≥ L3(a2) ≥ L3(y);

- при y = a2 для всех x ∈ [a1, b1] выполнялись неравенства Γ2(a2) ≤ L2(b1) ≤ L2(x);

- при x = b1 для всех z ∈ [a3, b3] выполнялись неравенства Γ1(b1) ≥ L1(a3) ≥ L1(z);

- при z = a3 для всех y ∈ [a2, b2] выполнялись неравенства Γ3(a3) ≤ L3(b2) ≤ L3(y);

- при y = b2 для всех x ∈ [a1, b1] выполнялись неравенства Γ2(b2) ≥ L2(a1) ≥ L2(x).

Проверка всех этих условий вытекает из равенств (2), (4) и определений aj , bj .

Следуя [11,12], разобьём этот инвариантный параллелепипед проходящими через ста-
ционарную точку S0 плоскостями x = x0, y = y0, z = z0 на восемь более мелких парал-
лелепипедов, которые мы будем называть блоками. Каждый блок занумеруем бинарным
мультииндексом {ε1ε2ε3}, где ε1 = 1, если для всех точек данного блока x ≥ x0; ε1 = 0,
если в этом блоке x < x0; ε2 = 1, если для всех точек данного блока y ≥ y0; ε2 = 0,
если в этом блоке y < y0. Аналогично определяются и оставшиеся бинарные индексы ε3,
соответствующие третьей координатной оси z [11].

В работах [4,5,8] при моделировании других генных сетей с целью локализации рас-
положения циклов рассматривались и разбивались на блоки аналогичные содержащие
стационарную точку инвариантные параллелепипеды вида [0, b1]× [0, b2]× · · · × [0, bn], у
которых “нижние” грани лежат на координатных плоскостях.

1.2. Условия существования циклов

Так же как и в работах [4, 5, 8], из монотонности функций Lj и Γj выводится

Лемма 2. При выполнении условий (3) для системы (1) траектории всех точек, при-
надлежащих перечисленным в кольцевой диаграмме

{100} → {101} → {001}
↑ ↓

{110} ← {010} ← {011}
(5)

блокам разбиения параллелепипеда Q, могут переходить из блока в блок только согласно
стрелкам этой диаграммы.

Доказательство леммы состоит в проверке знаков производных dx

dt
, dy

dt
, dz

dt
на гранях,

разделяющих соседние блоки диаграммы (5), в направлениях, перпендикулярных этим
граням, так же как и в доказательстве леммы 1.

Пусть W — объединение этих шести блоков, F0 — общая грань блоков {101} и {001},
через которую траектории точек блока {101} переходят в блок {001}, и Φ : F0 → F0 —
композиция сдвигов вдоль траекторий системы (1), описываемых стрелками этой диа-
граммы [2,11].

Обозначим через qj вычисленную в стационарной точке S0 производную функции Γj ;
отрицательную производную убывающей функции Lj , вычисленную в точке S0, обозна-
чим через −pj .

Устойчивость этой точки определяется знаками вещественных частей корней харак-
теристического многочлена матрицы линеаризации системы (1)
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det

−q1 − λ 0 −p1
−p2 −q2 − λ 0

0 −p3 −q3 − λ

 = 0,

или
λ3 + λ2(q1 + q2 + q3) + λ(q1q2 + q2q3 + q3q1) + q1q2q3 + p1p2p3 = 0. (6)

Все коэффициенты c2 = q1 + q2 + q3, c1 = q1q2 + q2q3 + q3q1 и c0 = q1q2q3 + p1p2p3 этого
многочлена положительны. Согласно известному критерию Вышнеградского [13], веще-
ственные части корней характеристического многочлена отрицательны тогда и только
тогда, когда выполняется неравенство c2c3 > c0, и в таком случае стационарная точка S0
оказывается устойчивой. Неустойчивой она будет в том и только в том случае, когда
выполняется противоположное неравенство

p1p2p3
q1q2q3

> 8 +

(√
q1
q2
−
√
q2
q1

)2

+

(√
q2
q3
−
√
q3
q2

)2

+

(√
q1
q3
−
√
q3
q1

)2

. (7)

Здесь левая часть равна абсолютной величине вычисленной в стационарной точке про-
изводной правой части уравнения (2). При выполнении неравенства (7) вычисленная в
этой точке производная итерации L(L(x)) строго больше 64.

Поскольку из условия (7) следует, что характеристическое уравнение (6) имеет один
отрицательный корень λ1 и два комплексно-сопряжённых корня с положительными ве-
щественными частями, то, согласно теореме Гробмана–Хартмана [14], динамическая си-
стема (1) в некоторой достаточно малой окрестности U(S0) своей стационарной точки S0
может быть линеаризована с помощью непрерывной замены переменных. При этом отри-
цательный корень λ1 многочлена (6) соответствует (одномерной) поверхности быстрых
переменных системы (1), а комплексные корни этого многочлена задают двумерную по-
верхность медленных переменных.

Так же как и в [11], проверяется, что усечённая грань F̂0 = F0\(U(S0)∩F0) компактна
стягиваема и переходит в себя при отображении Φ. При этом область W \ (U(S0) ∩W )
является положительно инвариантным полноторием. Из теоремы Брауэра о неподвиж-
ной точке [15] следует, что в компакте F̂0 существует по крайней мере одна неподвижная
точка P0 отображения Φ. После прохождения по всем блокам диаграммы (5) траектория
точки P0 возвращается в P0. Таким образом, имеет место

Теорема 1. При выполнении условий (3), (7) динамическая система (1) имеет в обла-
сти W ⊂ Q по крайней мере один цикл, который переходит из блока в блок, согласно
стрелкам диаграммы (5), и пересекается с усечённой гранью F̂0.

Аналогичные положительно инвариантные полнотории в фазовом портрете систе-
мы (1) могут быть построены для любой пары a 6= b решений уравнения x = L(L(x))
такой, что a = L(b), b = L(a).

Лемма 3. Динамическая система (1) не имеет инвариантных двумерных торов.

Доказательство. Обозначим через P (x, y, z) векторное поле, координатами которо-
го являются правые части уравнений системы (1). Дивергенция этого векторного поля
строго отрицательна:

divP (x, y, z) = −Γ′1 − Γ′2 − Γ′3.
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Если бы в фазовом портрете системы (1) существовал инвариантный двумерный тор,
то ограниченная им область G0 ⊂ R3

+ при сдвигах вдоль траекторий этой системы оста-
валась бы инвариантной: G(t) = G0, и её объём Vol(G(t)) не зависел бы от времени t.
С другой стороны, как хорошо известно [16],

d

dt
Vol(G(t)) =

∫∫∫
G(t)

div(P (x, y, z)) dx dy dz;

правая часть этого равенства строго отрицательна, поэтому при сдвигах вдоль траек-
торий системы (1) объём любой ограниченной области её фазового портрета монотонно
убывает. Полученное противоречие доказывает лемму.

Подобные результаты можно формулировать и для многомерных аналогов динами-
ческой системы (1); в этих старших размерностях условие неустойчивости стационарных
точек будет задаваться критерием Рауса–Гурвица.

2. Вычислительные эксперименты

Для системы (1) проведены численные эксперименты в пакете STEP, который был
разработан под руководством С.И. Фадеева (см. [17] и цитируемую там литературу). Па-
кет программ STEP используется в различных прикладных областях, таких как матема-
тическое моделирование каталитических реакций, математическая биология и в смеж-
ных с ними дисциплинах (см., например, [4]). Он помогает описывать разнообразные
процессы в случаях, когда изучение свойств математической модели связано с числен-
ным анализом автономной системы дифференциальных уравнений.

В ядре пакета STEP используются высоко эффективные алгоритмы, направленные
на исследование динамических систем произвольных размерностей.

Вычислительная его часть написана на языке FORTRAN. Интерфейс реализован в
среде визуального программирования Visual Basic.NET. Пакет состоит из четырех раз-
делов: создание модели, задача Коши, стационарные решения и нелинейные системы.
Для задачи Коши и исследований стационарных решений пакет позволяет получать ана-
литическое представление матрицы Якоби динамической системы и матрицы частных
производных по параметрам [18].

К алгоритмам численного исследования решения автономной системы, используе-
мым в пакете STEP, относятся: интегратор (многошаговый метод Гира) для численного
решения задачи Коши, метод продолжения по параметру для построения зависимости
решения от параметра, а также метод Годунова–Булгакова для определения асимптоти-
ческой устойчивости стационарных решений. Для неустойчивых стационарных решений,
рассматриваемых в настоящей работе, пакет STEP учитывает такие нелинейные эффек-
ты, как сильная параметрическая чувствительность и возникновение автоколебаний, что
позволяет находить бифуркационные значения параметров системы, при которых рож-
даются осциллирующие траектории [19]. На рис. 2 представлены результаты вычисли-
тельных экспериментов в пакете STEP с симметричной версией системы (1)

dx

dt
=

12

3 + zm
− 15x

4 + x
;

dy

dt
=

12

3 + xm
− 15y

4 + y
;

dz

dt
=

12

3 + ym
− 15z

4 + z
. (8)

У системы (8) стационарная точка имеет координаты (1, 1, 1), m — параметр, при ко-
тором эта точка неустойчива. Начальные данные были выбраны следующим образом:
x(0) = 0.9, y(0) = 2, z(0) = 0.6 (слева); x(0) = 0.5, y(0) = 1.2, z(0) = 0.9 (справа).
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Рис. 2. Траектории системы (8) и их предельные циклы; m = 16 (слева), m = 6.45 (справа)

Отметим, что значение параметра m = 6.45 достаточно близко к его бифуркационно-
му значению mb = 6.4, что хорошо видно на правой части рис. 2, в отличие от его левой
части, для которой значение параметра m = 16 расположено довольно далеко от mb.
При всех таких значениях параметра m инвариантные параллелепипеды Q системы (7)
лежат во внутренности куба [0, 4]× [0, 4]× [0, 4].

У несимметричной версии динамической системы (1)

dx

dt
=

150

3 + z3
− 160x

31 + x
;

dy

dt
=

16

1 + xm
− 20y

3 + y
;

dz

dt
=

90

14 + y4
− 8z

5 + z
(9)

стационарная точка имеет координаты (1, 2, 3). Здесь, как и выше, m — параметр, ко-
торый мы будем варьировать. Из критерия Вышнеградского следует, что при m > 2
эта стационарная точка неустойчива, и в таком случае в окружающем её инвариантном
параллелепипеде Q ⊂ [0, 50]× [0, 16]×

[
0,

45

7

]
система (9) имеет цикл.

На рис. 3 представлены результаты аналогичных вычислительных экспериментов с
этой системой, в том числе и для значения параметра m, близкого к бифуркационно-
му. Здесь начальные данные для обеих частей рисунка одинаковы: x(0) = 8, y(0) = 4,
z(0) = 6.

Рис. 3. Траектории системы (9) и их предельные циклы; m = 4.5 (слева), m = 2.2 (справа)
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Полученные результаты, математические и численные, можно перенести и на дина-
мические системы старших размерностей, как это было проделано в [2–4], но, в отличие
от этих публикаций, а также и от [5, 7, 9, 11], в представляемой работе рассматриваются
модели генных сетей, у которых скорости деградации их компонент нелинейны, что на-
блюдается в генных сетях с пост-транскрипционными регуляторными связями [1]. Кроме
того, в отличие от [5, 7, 9, 10], мы не конкретизируем аналитический вид правых частей
рассматриваемых систем уравнений (функции Хилла, Гласса–Маки и т. п.), ограничи-
ваясь минимальными аналитическими требованиями к структуре этих правых частей
уравнений.
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