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Образование оксидов азота при горении угля или биотоплива из связанного с топливом азота

остается важной экологической проблемой. В качестве простейшей модельной системы для опи-
сания горения угля можно использовать молекулу пиридина, которая, с одной стороны, имеет
ароматическую структуру, а с другой — содержит в своем составе атом азота. Данная рабо-
та посвящена теоретическому изучению путей реакции взаимодействия пара-пиридила с мо-
лекулярным кислородом. Была построена поверхность потенциальной энергии взаимодействия
пара-пиридила с молекулярным кислородом. Радикал пара-пиридил безбарьерно присоединяет
молекулу кислорода с образованием радикала PyOO, далее реакция может пойти по трем путям,
приводя к четырем возможным продуктам: 3H-пиррол, HCO + HCN, 1λ2-пиррол и 1λ3,4-оксазин.
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ВВЕДЕНИЕ

Несмотря на развитие зеленой энергети-
ки и проведение исследований по использова-
нию экологически чистых топлив, в настоя-
щее время многие промышленные предприя-
тия продолжают использовать уголь. Связано
это в первую очередь с доступностью и от-
носительной дешевизной такого топлива. Хотя
исследования горения угля проводятся в тече-
ние многих лет, их предсказательная способ-
ность зачастую оказывается недостаточной в

современных условиях, так как требования по
уменьшению вредных выбросов с каждым го-
дом становятся жестче. Теоретические, в част-
ности квантово-химические, методы позволя-
ют уменьшить стоимость дорогостоящих экс-
периментов, а также получить результаты для
процессов, которые затруднительно реализо-
вать в экспериментах.

В качестве модельной системы для описа-
ния горения угля можно использовать молеку-
лу пиридина, которая, с одной стороны, имеет
ароматическую структуру, а с другой — содер-
жит в своем составе атом азота [1, 2]. Азот в уг-
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лях преимущественно содержится в гетероцик-
лических структурах в кольцах шестичленно-
го пиридинового и пятичленного пиррольного

типа. При моделировании горения связанного с
топливом азота обычно предполагается, что ге-
тероциклический азот быстро высвобождает-
ся в виде смолы и летучих соединений HCN и

NH3. Ожидается, что пиридин и пиррол будут,
по крайней мере, такими же реактивными, как
HCN, по отношению к кислороду, так что бо-
лее реалистичные модели окисления функцио-
нальности азота угля должны включать в се-
бя изучение механизмов окисления пиридино-
вой и пиррольной кольцевых структур. Иссле-
дования пиролиза пиридина в проточных ре-
акторах показали, что основными газофазны-
ми продуктами являются цианистый водород,
HCN и ацетилен [3, 4]. Эти исследования бы-
ли использованы для определения общих ско-
ростей пиролиза пиридина [4, 5].

Окисление пиридина, вероятнее всего,
происходит за счет взаимодействия с молеку-
лярным кислородом радикалов пиридина, кото-
рые образуются при отрыве атома водорода от

молекулы пиридина. При этом для пиридина

возможно образование трех радикалов: орто-,
мета- и пара-пиридилов в зависимости от поло-
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жения радикала в кольце молекулы. Кинетиче-
ская модель пиролиза пиридина, предложенная
авторами работы [6], включает в себя все пири-
дильные радикалы, объединенные в один вид,
тогда как в их следующем механизме [7] рас-
сматривался только орто-пиридил. Теоретиче-
ские исследования [8, 9] подтвердили предпола-
гаемый ранее основной процесс пиролиза пири-
дина, однако не дали расчетных констант ско-
рости. Достаточно полно описан процесс окис-
ления орто-пиридила молекулярным кислоро-
дом в работе [10], но и там не получены точные
константы реакций.

Ранее в работе [11] было показано, что
скорости образования всех радикалов пириди-
на сопоставимы, в то время как обратная ско-
рость такой реакции для орто-пиридила значи-
тельно ниже, чем для мета- и пара-пиридилов.
Таким образом, орто-пиридил является наибо-
лее стабильным из трех радикалов и, вероят-
нее всего, будет преимущественно образовы-
ваться и участвовать в реакциях с молеку-
лярным кислородом. Этим объясняется боль-
шее количество исследований окисления имен-
но этого радикала, тогда как окисление мета- и
пара-пиридилов практически не изучено.Одна-
ко для точного описания процесса горения угля

с использованием пиридина как модельного со-
единения необходимо учитывать процессы, ко-
торые протекают при окислении всех трех ра-
дикалов, так как вклад мета- и пара-пиридилов
также существенен, хотя и ниже, чем вклад

орто-пиридила. Данная работа посвящена тео-
ретическому изучению путей реакции взаимо-
действия пара-пиридила с молекулярным кис-
лородом.

РАСЧЕТНЫЕ МЕТОДЫ

Геометрии реагентов, продуктов и пере-
ходных состояний реакции были оптимизиро-
ваны на уровне теории функционала плот-
ности методом ωB97XD с базисным набором

6-311G**. Частоты колебаний были рассчита-
ны на том же уровне теории, чтобы охаракте-
ризовать стационарные точки как локальные

минимумы или переходные состояния, а так-
же чтобы получить поправки на энергию ну-
левых колебаний (ZPE) для использования в
расчетах статистической суммы. Кроме того,
оптимизированная геометрия ωB97XD исполь-
зовалась для уточнения одноточечных энергий

с использованием комбинированного метода ab
initio G3(MP2,CC).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На рис. 1 представлена поверхность по-
тенциальной энергии взаимодействия пара-
пиридила с молекулярным кислородом. Ради-
кал пара-пиридил безбарьерно присоединяет

молекулу кислорода с образованием радика-
ла PyOO с энергией по отношению к реа-
гентам −42.9 ккал/моль. Далее реакция мо-
жет пойти по трем путям. На первом пу-
ти PyOO теряет один атом кислорода с об-
разованием интермедиата А1 с относитель-
ной энергией −4.5 ккал/моль. В дальнейшем

возможен отрыв молекулы СО с образовани-
ем 1λ2-пиррола, который протекает через ба-
рьер высотой 29.5 ккал/моль. Энергия про-
дуктов по отношению к реагентам составляет

4.7 ккал/моль.
Второй путь взаимодействия пара-

пиридила с О2 приводит к образованию того

же продукта, что и по первому пути, однако
это происходит через образование интермеди-
ата R1 и последующий отрыв молекулы СО2.
Относительная энергия барьера составляет

12.5 ккал/моль.
Третий путь реакции пара-пиридила с мо-

лекулярным кислородом реализуется за счет

образования семичленного цикла R2 с отно-
сительной энергией −89.6 ккал/моль через

интермедиат R1 с относительной энергией

−24.1 ккал/моль и невысокие барьеры PyOO—
R1 и R1—R2 (энергия по отношению к исход-
ным веществам −19.1 и −8.9 ккал/моль со-
ответственно). Таким образом видно, что ин-
термедиат R2 находится в достаточно глубо-
кой потенциальной яме. Далее происходит рас-
крытие цикла за счет разрыва связи С О

и образования интермедиата R3 (относитель-
ная энергия −76.5 ккал/моль). Барьер та-
кого преобразования невысокий и составляет

16.7 ккал/моль. Интермедиат R3 может поте-
рять молекулу СО с образованием B1 с от-
носительной энергией −38.0 ккал/моль, одна-
ко барьер такого превращения довольно высо-
кий и равен 44.4 ккал/моль. В дальнейшем от
B1 может оторваться молекула ацетилена с об-
разованием B2 (энергия относительно реаген-
тов −32.0 ккал/моль), который после разрыва
связи С С образует продукт HCN + HCO с

энергией, рассчитанной по отношению к реа-
гентам, −29.0 ккал/моль. Барьеры превраще-
ний В1—В2 и В2—(HCN + HCO) составляют
19.9 и 3.0 ккал/моль соответственно.

Кроме того, интермедиат R3 может об-
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Рис. 1. Поверхность потенциальной энергии взаимодействия пара-пиридила с молекулой кисло-
рода

разовать шестичленный цикл С1 через ба-
рьер высотой 30.2 ккал/моль. Энергия отно-
сительно исходных веществ для С1 составля-
ет −67.4 ккал/моль. Далее происходит отрыв
молекулы СО от С1 с образованием С2 с отно-
сительной энергией −87.7 ккал/моль.

Также интермедиат R3 может образо-
вывать пятичленный цикл с относительной

энергией −91.3 ккал/моль. Данное превра-
щение осуществляется через наименьший из

возможных для превращений R3 барьер вы-
сотой 5.2 ккал/моль. Далее от получивше-
гося интермедиата R4 отрывается НСО и

образуется продукт с относительной энерги-
ей −58.1 ккал/моль, однако барьер для его

образования достаточно высок и составляет

33.4 ккал/моль. Из рис. 1 видно, что интерме-
диаты R2–R4 находятся в заметной потенци-
альной яме, тогда как остальные интермеди-
аты и продукты, за исключением С2, имеют
заметно более высокие значения относитель-
ной энергии. Однако следует учесть, что все
преобразования R2 идут через большое коли-
чество барьеров, в то время как образование
1λ2-пиррола требует прохождения только од-
ного относительно высокого барьера. Безуслов-
но, эти факторы будут оказывать влияние на

значения констант скоростей реакции пара-
пиридила с молекулярным кислородом, кото-
рые определяются совокупностью энтальпий-
ных и энтропийных вкладов.

Следует также отметить, что для интер-
медиата R3 возможно образование конформе-
ров за счет изменения положения атомов водо-
рода относительно связи С С. На рис. 2 пред-

Рис. 2. Поверхность потенциальной энергии

изомеризации (один из возможных вариантов)
интермедиата R3 (см. рис. 1):

энергии рассчитаны относительно энергий пара-
пиридила и молекулярного кислорода в рамках

теории функционала плотности ωB97XD/6-311G**
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ставлен пример такой конформационной изоме-
ризации. Из рисунка видно, что рассмотрен-
ные конформеры имеют сопоставимые значе-
ния энергий, рассчитанных относительно реа-
гентов, и процесс изомеризации идет через низ-
кий барьер. При этом к дальнейшей циклиза-
ции и образованию С1 и R4 способен только
исходный конформер R3. Отрыв СО и образо-
вание В1 возможны от любого конформерa. По-
скольку энергии конформеров сопоставимы, то
включать их все в поверхность нецелесообраз-
но, в связи с чем на графике поверхности по-
тенциальной энергии оставлен только R3.

ЗАКЛЮЧЕНИЕ

Таким образом, присоединение молекуляр-
ного кислорода к пара-пиридилу на первом

шаге происходит безбарьерно с образованием

промежуточного соединения PyOO. В даль-
нейшем реакция может реализовываться по

трем путям, однако наиболее короткими яв-
ляются пути, приводящие к образованию 1λ2-
пиррола, тогда как образование других про-
дуктов (HCO + HCN, 1λ2-пиррола и 1λ3,4-
оксазина) протекает через значительно боль-
шее количество барьеров. Стоит также отме-
тить, что радикал R2 термодинамически выго-
ден, поскольку находится в глубокой потенци-
альной яме и поэтому может, благодаря столк-
новительной стабилизации, быть промежуточ-
ным продуктом, способным вступать во взаи-
модействие с другими соединениями в условиях

горения.
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