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Введение

При моделировании живых систем часто возникает необходимость в изучении дина-
мики пространственно неоднородных популяций. Характерные примеры представляют
собой система кроветворения и система иммунитета человека. Различные клетки этих си-
стем (эритроциты, лейкоциты, тромбоциты, лимфоциты и их клетки-предшественники)
проходят не только стадии размножения и превращения, но и перемещаются между раз-
личными органами (компартментами), под которыми понимаются костный мозг, тимус,
селезенка, лимфатические узлы, органы кровообращения и другие органы. Перемещение
клеток между компартментами осуществляется по нескольким путям, например через
лимфатические и кровеносные сосуды. Длительность перемещения клеток между ком-
партментами зависит от конкретного пути и ряда факторов, регулирующих скорость
кровотока, скорость течения лимфы и других физиологических параметров.

Описание моделей пространственно неоднородных популяций удобно вести в терми-
нах эволюции индивидуумов на графах. При детерминированном подходе для моделиро-
вания динамики пространственно неоднородных популяций обычно используются диф-
ференциальные уравнения высокой размерности, включая уравнения с запаздыванием и
уравнения в частных производных. Типичные модели приведены в [1–5] и содержащихся
в них ссылках на работы других авторов.

При стохастическом подходе динамику пространственно неоднородных популяций
можно описывать в терминах графов с многомерным процессом рождения и гибели
[6] или ветвящихся процессов Севастьянова [7], Крампа–Мода–Ягерса [8] с частицами
нескольких типов. Примеры построения стохастических моделей динамики простран-
ственно неоднородных популяций в приложении к задачам иммунологии приведены в
[9–11]. Специфика моделей из [9–11] проявляется в том, что длительности перемещения
частиц по ребрам графа могут задаваться тремя способами: константами; функциями,
зависящими от времени; семействами случайных величин с законами распределения,
отличными от экспоненциального или геометрического. Результаты работ [9, 11] пока-
зывают, что в отдельных случаях модели допускают детальное аналитическое иссле-
дование и, более того, достаточно рассмотреть простейший вариант модели, в которой
имеются две вершины и два соединяющих их ребра. Здесь можно использовать резуль-
таты теории систем массового обслуживания. Переход к аналитическому исследованию
более общего варианта модели с несколькими вершинами графа и несколькими ребра-
ми осуществляется по аналогии с простейшим вариантом. Вместе с тем, для изучения
переходных процессов, отражающих динамику численности популяций частиц на конеч-
ных промежутках времени, требуется разработка алгоритма численного моделирования
и моделирующей программы на основе метода Монте-Карло. Отметим, что результаты
аналитического исследования моделей можно рассматривать как тестовые примеры для
проверки правильности работы алгоритмов численного моделирования и моделирующих
программ.

В задачи настоящей работы входят: 1) формализация стохастической модели динами-
ки популяции в терминах эволюции индивидуумов на графе с двумя вершинами и двумя
однонаправленными ребрами; 2) аналитическое исследование закона распределения чис-
ленности популяции; 3) разработка алгоритма численного моделирования динамики по-
пуляции на основе метода Монте-Карло; 4) проведение вычислительных экспериментов
с моделью.
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1. Обозначения и предположения модели

Рассмотрим популяцию, эволюционирующую на графе с двумя вершинами V1, V2 и
двумя однонаправленными ребрами R12, R21. Вершины V1, V2 интерпретируются как
некоторые компартменты, в которых индивидуумы проводят основное время своей жиз-
недеятельности. Ребра R12, R21 интерпретируются как различные пути, по которым ин-
дивидуумы перемещаются соответственно из V1 в V2 и из V2 в V1. Длительности пе-
ремещения индивидуумов по ребрам графа задаются константами, значения которых
зависят от направления перемещения. Индивидуумы могут погибать или превращаться
в индивидуумов других популяций, не рассматриваемых в модели. Новые индивидуумы
популяции поступают из внешнего источника G.

Пусть вещественная переменная t > 0 означает время. Эволюция популяции начина-
ется в момент времени t = 0, причем при t = 0 индивидуумы в популяции отсутствуют.
С момента появления каждого из индивидуумов его поведение не зависит от поведения
других индивидуумов, присутствующих в популяции одновременно с ним. Обозначим:
• A1, A2 — индивидуум, находящийся соответственно в вершине V1, V2;
• B1, B2 — индивидуум, находящийся соответственно на ребре R12, R21.
Схема поступления, переходов и превращений индивидуумов в символьной записи

имеет следующий вид:
G

r1−→ G+A1, G
r2−→ G+A2, (1.1)

A1
µ1−→ D, A1

γ1−→ B1, A2
µ2−→ D, A2

γ2−→ B2, (1.2)

B1
λ1−→ D, B1|tB1

−→ A2|tB1
+ω1 , B2

λ2−→ D, B2|tB2
−→ A1|tB2

+ω2 . (1.3)

В (1.1) используются фиктивные индивидуумы, находящиеся в G. Для фиксирован-
ного j = 1, 2 и rj > 0 время до поступления из G очередного индивидуума Aj имеет
экспоненциальное распределение с параметром rj , который также задает интенсивность
пуассоновского потока индивидуумов Aj из источника G. Если rj = 0, то индивидуумы
Aj из источника G не поступают. Полагаем, что r1 + r2 > 0, т. е. поток индивидуумов в
популяцию из G не пустой.

В (1.2) для фиксированного i = 1, 2 принято, что время пребывания индивидуума Ai в
вершине Vi определяется минимумом из двух независимых случайных величин. Первая
величина означает время до превращения индивидуума Ai в индивидуума D и имеет
экспоненциальное распределение с параметром µi > 0. Вторая величина означает время
до превращения индивидуума Ai в индивидуума Bi (время до перехода индивидуума Ai
из вершины Vi на ребро Rij , j = 1, 2, j 6= i) и имеет экспоненциальное распределение с
параметром γi > 0. Константа µi задает интенсивность превращения индивидуума Ai,
находящегося в вершине Vi, в индивидуума D, константа γi — в индивидуума Bi.

В (1.3) для фиксированных i, j = 1, 2, j 6= i, величина tBi > 0 означает момент появ-
ления индивидуума Bi на ребре Rij (момент осуществления перехода индивидуума Ai из
вершины Vi на ребро Rij). Поступивший индивидуум Bi имеет экспоненциально распре-
деленное время жизни с параметром λi > 0, не зависящее от tBi и срезаемое на уровне
ωi > 0. Константа λi задает интенсивность превращения индивидуума Bi, находящего-
ся на ребре Rij , в индивидуума D. Константа ωi означает длительность перемещения
индивидуума Bi по ребру Rij . Если индивидуум Bi не превратится в индивидуума D
за промежуток времени (tBi , tBi + ωi), то в момент времени tBi + ωi он превратится в
индивидуума Aj (поступит в вершину Vj , вероятность этого события равна e−λiωi).

Случайные величины, указанные в (1.1)–(1.3), взаимно независимы, случайные вели-
чины, используемые в (1.1), (1.2), не зависят от величин tB1 , tB2 , приведенных в (1.3).
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2. Рекуррентные соотношения для переменных модели

2.1. Переменные модели

Динамику популяции будем описывать с помощью случайного процесса

H(t) =
(
X(t), Y (t),Ω(t)

)
, t ∈ [0, Tmod], (2.1)

где константа Tmod > 0 задает длительность промежутка моделирования,

X(t) =
(
XA1(t), XB1(t), XA2(t), XB2(t), XD(t)

)
, (2.2)

Y (t) =
(
YB1(t), YB2(t)

)
, (2.3)

Ω(t) =
(
ΩB1(t),ΩB2(t)

)
. (2.4)

Зафиксируем t ∈ [0, Tmod] и определим компоненты X(t), Y (t), Ω(t), используемые в
(2.1)–(2.4). При t > 0 под X(t) в (2.2) понимается случайный вектор с неотрицательными
целочисленными компонентами. Компоненты XA1(t), XB1(t), XA2(t), XB2(t) означают
численность индивидуумов A1, B1, A2, B2, находящихся в момент времени t соответ-
ственно в вершине V1, на ребре R12, в вершине V2 и на ребре R21. Компонента XD(t)
является вспомогательной и задает количество всех индивидуумов A1, B1, A2, B2, пре-
вратившихся в индивидуумов D за промежуток времени [0, t]. Учитывая предположения
модели, полагаем, что X(0) = (0, 0, 0, 0, 0) — неслучайный вектор.

Обратимся к (2.3), (2.4) и рассмотрим компоненты Y (t), Ω(t). Пусть j = 1, 2 — фик-
сировано, i = 1, 2, i 6= j. Полагаем, что при t > 0 целочисленная случайная переменная
YBj (t) означает количество индивидуумов Aj , поступивших из вершины Vj на ребро Rji
и превратившихся в индивидуумов Bj за промежуток времени [0, t]. Учитывая предпо-
ложения модели, принимаем, что YBj (0) = 0 — константа, и Y (0) = (0, 0) — неслучайный
вектор. При t > 0 под ΩBj (t) понимается семейство уникальных типов индивидуумов Bj ,
которое имеет следующий вид:

ΩBj (t) = ∅, если YBj (t) = 0, (2.5)

ΩBj (t) =
{(
tBj (k), ϕBj (k), ηBj (k)

)
: tBj (k) 6 t, 1 6 k 6 YBj (t)

}
, если YBj (t) > 1. (2.6)

В формуле (2.6) индекс k означает порядковый номер очередного поступившего на ребро
Rji индивидуума Bj = Bj(k). Тройка(

tBj (k), ϕBj (k), ηBj (k)
)

(2.7)

задает уникальный тип индивидуума Bj(k), 1 6 k 6 YBj (t). Здесь tBj (k) 6 t — момент
появления индивидуума Bj(k) на ребре Rji, ϕBj (k) — длительность пребывания инди-
видуума Bj(k) на ребре Rji до превращения этого индивидуума в индивидуума D или
индивидуума Ai, ηBj (k) — индикатор “судьбы” индивидуума Bj(k). Полагаем, что

ϕBj (k) = min{ξBj (k), ωj}, (2.8)

ηBj (k) = 0, если ξBj (k) 6 ωj , ηBj (k) = 1, если ξBj (k) > ωj , (2.9)

где ξBj (k) — экспоненциально распределенная случайная величина с параметром λj . Для
любых фиксированных k1, k2 все случайные величины ξB1(k1), ξB2(k2), используемые в
(2.8), (2.9), взаимно независимы и не зависят от моментов времени tB1(k1), tB2(k2).
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2.2. Обоснование структуры переменных

В (1.1)–(1.3) отсутствует размножение индивидуумов, а превращения индивидуумов
приводят только к перераспределению значений компонент X(t). Так, из (1.2) следу-
ет, что изменение XA1(t) → XA1(t) − 1 приводит к изменению XB1(t) → XB1(t) + ∆1

или XD(t) → XD(t) + 1 −∆1, где ∆1 = 0; 1 — случайная величина, принимающая ука-
занные значения с вероятностями µ1/(γ1 + µ1), γ1/(γ1 + µ1). Тогда численность тройки
(XA1(t), XB1(t), XD(t)) подвержена изменению, но суммарная численность сохраняется
неизменной (вероятность выполнения равенства равна 1):

XA1(t)− 1 +XB1(t) + ∆1 +XD(t) + 1−∆1 = XA1(t) +XB1(t) +XD(t).

Из (1.1) следует, что динамика X(t) в первую очередь определяется пуассоновским по-
током с интенсивностью r1 + r2. Для каждого фиксированного t > 0 “расширенная” чис-
ленность популяции Xsum(t) = XA1(t) + XB1(t) + XA2(t) + XB2(t) + XD(t) представляет
собой случайную величину, имеющую распределение Пуассона с параметром (r1 + r2)t.

В (1.3) используются константы ω1, ω2, отражающие длительности переходов инди-
видуумов между V1 и V2. Указанные длительности отличны от случайных величин с
экспоненциальным или геометрическим распределениями, не имеющих “памяти”. Поэто-
му необходимо учитывать предысторию развития популяции, обусловленную моментами
поступления индивидуумов B1, B2 на ребра R12, R21 и длительностями их пребывания
на ребрах с учетом возможного превращения в индивидуумов D.

Опираясь на (1.2), устанавливаем, что индивидуумы Bj(k) появляются на ребре Rji
по одному, и продолжительность времени до появления очередного индивидуума Bj(k)
имеет экспоненциальное распределение, параметрически зависящее от X(t). В частно-
сти, интенсивность перехода индивидуума Aj из вершины Vj на ребро Rji равна γjXAj (t).
Учитывая абсолютную непрерывность экспоненциального распределения, получаем, что
индивидуумы Bj(k) различимы между собой в том смысле, что вероятность совпаде-
ния tBj (k) + ϕBj (k) для различных троек (2.7) равна нулю. Более того, для любых
фиксированных k1, k2 в указанном смысле различимы между собой и индивидуумы
B1(k1), B2(k2).

Зафиксируем t ∈ [0, Tmod] и выразим XBj (t) через YBj (t) и ΩBj (t). Если YBj (t) = 0,
то следуя (2.5), полагаем, что XBj (t) = 0. Если YBj (t) > 1, то следуя (2.6), полагаем, что
XBj (t) = |Ω̂Bj (t)| — мощность семейства

Ω̂Bj (t) =
{(
tBj (k), ϕBj (k), ηBj (k)

)
∈ ΩBj (t) : tBj (k) + ϕBj (k) > t

}
. (2.10)

Семейство Ω̂Bj (t), приведенное в (2.10), учитывает всех индивидуумовBj , существующих
в момент времени t, а именно: индивидуумов, появившихся на ребре Rji до момента t
(включительно), и завершающих свое пребывание на этом ребре в моменты времени,
следующие за t.

2.3. Рекуррентные соотношения

Выборочные функции процесса H(t) на промежутке времени [0, Tmod] зададим с по-
мощью последовательности пар

(tm, H(tm)), m = 0, 1, 2, . . . , tm 6 Tmod, (2.11)

где t0 = 0 — начальный момент времени, компоненты H(t0) таковы, что
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X(t0) = (0, 0, 0, 0, 0), Y (t0) = (0, 0), Ω(t0) =
(
ΩB1(t0),ΩB2(t0)

)
= (∅, ∅). (2.12)

Во всех последующих выкладках используем два выражения: exp(β) — экспоненци-
альное распределение с параметром β > 0, P2,n — вероятность выполнения соотношений,
указанных в формуле с номером (2, n).

Пусть m = 0, τ0 ∼ exp(ρ0), ρ0 = r1 + r2. Положим

t1 = min
{
Tmod, t0 + τ0

}
. (2.13)

Примем предварительно, что

H(t) = H(t0), t ∈ [t0, t1]. (2.14)

Если в (2.13) t1 = Tmod, то (2.14) завершает описание процесса H(t).
Если в (2.13) t1 = t0 + τ0, то

XA1(t1) = XA1(t0) + 1 = 1, P2,15 = r1ρ
−1
0 , (2.15)

XA2(t1) = XA2(t0) + 1 = 1, P2,16 = r2ρ
−1
0 . (2.16)

Заметим, что P2,15 + P2,16 = 1.
Зафиксируем m = 1, 2, . . . и компоненты H(tm) в форме неслучайных векторов с

целочисленными неотрицательными компонентами

X(tm) =
(
XA1(tm), XB1(tm), XA2(tm), XB2(tm), XD(tm)

)
, (2.17)

Y (tm) =
(
YB1(tm), YB2(tm)

)
(2.18)

и неслучайных семейств уникальных типов индивидуумов B1, B2:

Ω(tm) =
(
ΩB1(tm),ΩB2(tm)

)
, (2.19)

ΩBj (tm) =
{(
tBj (k), ϕBj (k), ηBj (k)

)
: tBj (k) 6 tm, 1 6 k 6 YBj (tm)

}
,

если YBj (tm) > 1, j = 1, 2, (2.20)

ΩBj (tm) = ∅, если YBj (tm) = 0, j = 1, 2. (2.21)

Опираясь на (1.1), (1.2), (1.4), (2.10), (2.17)–(2.21), введем ряд величин:

τm ∼ exp(ρm), ρm = r1 + r2 + (µ1 + γ1)XA1(tm) + (µ2 + γ2)XA2(tm), (2.22)

ψ
(m)
Bj

= min
16k6YBj

(tm)

{
tBj (k)+ϕBj (k) : tBj (k)+ϕBj (k)>tm

}
, если XBj (tm)>1, j=1, 2, (2.23)

ψ
(m)
Bj

= +∞, если XBj (tm) = 0, j = 1, 2. (2.24)

Обозначим через
(
tBj (∗), ϕBj (∗), ηBj (∗)

)
единственную тройку элементов из ΩBj (tm), на

которой в (2.23) достигается равенство ψ(m)
Bj

= tBj (∗) + ϕBj (∗), j = 1, 2.
Положим

tm+1 = min
{
Tmod, ψ

(m)
B1

, ψ
(m)
B2

, tm + τm

}
. (2.25)

Примем предварительно, что
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H(t) = H(tm), t ∈ [tm, tm+1]. (2.26)

Если в (2.25) tm+1 = Tmod, то (2.26) завершает описание процесса H(t).
Пусть в (2.25) tm+1 = ψ

(m)
B1

. Тогда

XB1(tm+1) = XB1(tm)− 1,

XA2(tm+1) = XA2(tm) + ηB1(∗), XD(tm+1) = XD(tm) + 1− ηB1(∗). (2.27)

Пусть в (2.25) tm+1 = ψ
(m)
B2

. Тогда

XB2(tm+1) = XB2(tm)− 1,

XA1(tm+1) = XA1(tm) + ηB2(∗), XD(tm+1) = XD(tm) + 1− ηB2(∗). (2.28)

Пусть в (2.25) tm+1 = tm + τm. Тогда имеет место одно из перечисленных ниже соот-
ношений (группы соотношений) в соответствии с указанными вероятностями:

XA1(tm+1) = XA1(tm) + 1, P2,29 = r1ρ
−1
m ; (2.29)

XA2(tm+1) = XA2(tm) + 1, P2,30 = r2ρ
−1
m ; (2.30)

XA1(tm+1) = XA1(tm)− 1, XD(tm+1) = XD(tm) + 1, P2,31 = µ1XA1(tm)ρ−1m ; (2.31)

XA2(tm+1) = XA2(tm)− 1, XD(tm+1) = XD(tm) + 1, P2,32 = µ2XA2(tm)ρ−1m ; (2.32)

XA1(tm+1) = XA1(tm)− 1, XB1(tm+1) = XB1(tm) + 1, YB1(tm+1) = YB1(tm) + 1,

ΩB1(tm+1) = ΩB1(tm)
⋃(

tB1(k), ϕB1(k), ηB1(k)
)
, P2,33 = γ1XA1(tm)ρ−1m , (2.33)

где k = YB1(tm+1), tB1(k) = tm+1, ξB1(k) ∼ exp(λ1), ϕB1(k) = min{ξB1(k), ω1}, ηB1(k) = 0
при ϕB1(k) = ξB1(k), ηB1(k) = 1 при ϕB1(k) = ω1;

XA2(tm+1) = XA2(tm)− 1, XB2(tm+1) = XB2(tm) + 1, YB2(tm+1) = YB2(tm) + 1,

ΩB2(tm+1) = ΩB2(tm)
⋃(

tB2(k), ϕB2(k), ηB2(k)
)
, P2,34 = γ2XA2(tm)ρ−1m , (2.34)

где k = YB2(tm+1), tB2(k) = tm+1, ξB2(k) ∼ exp(λ2), ϕB2(k) = min{ξB2(k), ω2}, ηB2(k) = 0
при ϕB2(k) = ξB2(k), ηB2(k) = 1 при ϕB2(k) = ω2.

Отметим, что P2,29 + · · ·+ P2,34 = 1.
Заменяем m на m+ 1 и возвращаемся к соотношениям (2.17)–(2.34).

3. Алгоритм численного моделирования

Для получения реализаций случайного процесса H(t) применяется метод Монте-
Карло. В начале вычислений задаются параметры модели и фиксируется промежуток
моделирования [0, Tmod]. Задается константа ψ∞ > Tmod, используемая для величин ψ(m)

B1
,

ψ
(m)
B2

в формуле (2.24) вместо символа “+∞”. Далее моделируется последовательность
(2.11), опирающаяся на соотношения (2.12)–(2.34). Моделирование конкретной реализа-
ции останавливается, когда tm+1 > Tmod. Моделирование процесса H(t) завершается при
получении заданного количества реализаций. Для генерации возникающих случайных
величин используются формулы и датчики псевдослучайных чисел, описанные в [12–15].
Алгоритм моделирования имеет два варианта.
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Первый (упрощенный) вариант предполагает изучение динамики переменных XA1(t),
XA2(t) и переменных X̃B1(t), X̃B2(t), учитывающих только тех индивидуумов B1, B2,
которые не превращаются в индивидуумов D в процессе перемещения по ребрам R12 и
R21. Зафиксируем j = 1, 2, i = 1, 2, i 6= j. После осуществления превращения Aj → Bj
новая тройка (2.7) включается в ΩBj (t) с вероятностью e−λjωj и не включается в ΩBj (t)

с вероятностью 1− e−λjωj . Следуя (2.9), семейство ΩBj (t) заменим на семейство Ω̃
(`)
Bj

(t),
содержащее тройки (

tBj (k), ϕBj (k), ηBj (k)
)

=
(
tBj (k), ωj , 1

)
. (3.1)

Для троек (3.1) при фиксированном t ∈ (0, Tmod] будут выполнены соотношения

tBj (1) + ωj < tBj (2) + ωj < · · · < tBj (k) + ωj < · · · < tBj (YB̃j
(t)) + ωj . (3.2)

Соотношения (3.2) существенно снижают вычислительные затраты на поиск величин
ψ
(m)
B1

, ψ(m)
B2

, указанных в (2.23). Здесь фактически реализуется принцип “первым пришел –
первым ушел”. В этом варианте алгоритма динамика переменных XB1(t), XB2(t), XD(t)
не имеет содержательного значения.

Второй (основной) вариант алгоритма учитывает индивидуумов B1, B2 за счет введе-
ния вспомогательных семейств уникальных типов индивидуумов. Зафиксируем j = 1, 2.
Опираясь на (2.9), семейство ΩBj (t) представим в виде двух подсемейств: Ω̃

(`)
Bj

(t), содер-

жащего тройки (3.1), и Ω̃
(d)
Bj

(t), содержащего тройки(
tBj (k), ϕBj (k), ηBj (k)

)
=
(
tBj (k), ξBj (k), 0

)
. (3.3)

Для очередного индивидуума Bj(k) генерируем случайную величину ξBj (k) ∼ exp(λj).
Если ξBj (k) > ωj , то индивидуума Bj(k) “зачисляем” в подсемейство Ω̃

(`)
Bj

(t), в против-

ном случае — в подсемейство Ω̃
(d)
Bj

(t). Если принять, что λ−1j существенно больше ωj , то

вероятность “зачисления” индивидуума Bj(k) в подсемейство Ω̃
(d)
Bj

(t) будет очень мала. В
этом случае поиск элементов, указанных в (2.23), и пополнение ΩBj (t) новыми элемен-
тами сводится к относительно простой и нетрудоемкой вычислительной процедуре.

Для экономии памяти тройку (3.1) можно заменить на (tBj (k)), а тройку (3.3) — на
пару (tBj (k), ξBj (k)). Кроме того, элементы подсемейств Ω̃

(`)
Bj

(t), Ω̃
(d)
Bj

(t), не используемые
в (2.23), можно исключать как “отработавшие” к моменту времени t.

4. Аналитические результаты

Опишем общий подход к аналитическому исследованию динамики популяции инди-
видуумов на больших графах и приведем результаты исследования для графа с двумя
вершинами. Введем предположения модели, обобщающие (1.1)–(1.3).

Предположение H1 — структура графа. Граф включает некоторое количество вер-
шин и соединяющих их однонаправленных ребер, по которым могут перемещаться ин-
дивидуумы. Переходя с вершин по исходящим из них ребрам на другие вершины, инди-
видуум может попасть за несколько шагов с любого элемента графа на любой другой.

Предположение H2 — источники индивидуумов. В каждую из вершин входит неза-
висимый от поведения процесса пуассоновский поток индивидуумов с произвольными
фиксированными интенсивностями.
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Предположение H3 — эволюция индивидуумов. Все индивидуумы имеют общий гло-
бальный тип, но превращения индивидуумов зависят от их положения на графе. Если
индивидуум попал в некоторую вершину графа, то время его пребывания в этой вершине
является минимумом двух независимых случайных величин — допустимого времени пре-
бывания в этой вершине и продолжительности жизни индивидуума, обусловленной его
превращением в индивидуумаD (гибель или превращение в индивидуума другой, не рас-
сматриваемой в модели популяции). При наличии нескольких ребер, выходящих из вер-
шины, переход индивидуума на эти ребра задается набором вероятностей. На каждом из
ребер графа индивидуумы могут проводить фиксированное время, зависящее от ребра.
Если продолжительность жизни индивидуума на ребре превосходит его время пребыва-
ния на ребре, то индивидуум переходит в соответствующую вершину, иначе индивидуум
исключается из популяции. Характеристики эволюции отдельно взятого индивидуума
определяются положением в конкретной вершине или на конкретном ребре графа. Все
индивидуумы эволюционируют независимо от поведения других индивидуумов.

Пусть далее сокращение ППИ означает пуассоновский поток индивидуумов. Обозна-
чим через g(t)−ППИ поток, интенсивность которого g(t) > 0 может зависеть от времени
t > 0. Положим, что выражение m(t)−Пуас означает случайный процесс с распределени-
ем Пуассона в любой момент времени t > 0 со средним m(t) > 0, которое может зависеть
от времени.

Представленную в рамках предположений H1, H2, H3 модель можно интерпретиро-
вать, как многотипный ветвящийся процесс [7]. Тип индивидуума определяется элемен-
том графа, на который попал индивидуум (вершина или ребро), с иммиграционными
ППИ в вершины графа. В данной модели индивидуумы либо гибнут (исключаются из
популяции), либо порождают одного индивидуума другого типа. Это означает, что вве-
денный ветвящийся процесс является докритическим с иммиграцией и, как следствие,
обычно имеет стационарное распределение на бесконечности. Вычисление этого распре-
деления на основе ветвящихся процессов стандартно, но довольно трудоемко. Ниже пред-
ложен упрощенный подход, основанный на специфике модели.

Изучаемый в модели процесс можно описать в терминах многокомпонентных систем
массового обслуживания. Входящие в вершины ППИ постоянной интенсивности при лю-
бом распределении времени пребывания с конечным средним по приведенной ниже тео-
реме 1 порождают неубывающие асимптотически такие же исходящие ППИ, которые
делятся на две части: покидающие систему и переходящие на некоторое ребро. Они бу-
дут ППИ, и их интенсивности пропорциональны вероятностям гибели индивидуумов и
перехода на другой элемент графа. Вероятности переходов на ребра определены зара-
нее заданной стохастической матрицей Q = {qij}. На ребрах входящие асимптотически
ППИ делятся снова на два ППИ (покидающих систему и переходящих на выбранную
вершину) пропорционально соответствующим вероятностям. Индивидуумы могут неод-
нократно посещать элементы графа. В итоге все входящие потоки на элементы графа
будут асимптотически постоянными ППИ. Их явные выражения описываются системой
линейных уравнений, зависящей от вероятностей сохранения частиц в системе и сто-
хастической матрицы вероятностей переходов на ребра. Система легко решается. При
известных входящих ППИ численность индивидуумов на всех элементах графа будет
иметь распределение Пуассона со средним, определенным в теореме 1.

Перейдем к детальному описанию свойств модели с двумя вершинами. Все процессы
будем рассматривать на полуоси t ∈ [0,∞). Если аргумент некоторой функции, завися-
щей от t, отрицателен, то полагаем ее равной нулю. Запись f ∗W (t) для функции f(t) и
распределения W (t) обозначает их свертку f ∗W (t) =

∫ t
0 f(t− u) dW (u).
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Обозначим черезM общую модель эволюции индивидуумов в вершине:
а) в вершину входит ρ(t)−ППИ неубывающей интенсивности;
б) времена пребывания индивидуумов в вершине независимы и одинаково распреде-

лены с абсолютно непрерывным распределением Uζ(t) = P(ζ < t) и конечным средним
m0 = Eζ;

в) Z(t) — численность индивидуумов в вершине в момент времени t, среднее этой
численности — m(t) = EZ(t).

Приведем естественное обобщение теоремы Мирасола [16] для явного вида численно-
сти индивидуумов в произвольный момент времени в вершине с произвольным распре-
делением длительности пребывания.

Теорема 1. В моделиM случайная величина Z(t) будет m(t)−Пуас, где

m(t) =

∫ t

0
ρ(t− u)(1− Uζ(u)) du.

Если ρ(t)→ ρ > 0 при t→∞, то распределение Z(t)
∣∣
t→∞ будет ρm0−Пуас, а исходящий

поток — асимптотически ρ−ППИ.

Отметим, что в [16] описан случай ρ(t) ≡ ρ > 0. Приведем явные значения параметров
входящих и выходящих потоков, условия их пуассоновости и распределения численности
индивидуумов в любой момент времени в вершине графа в случае Uζ(t) = exp(ν).

Следствие. Если в теореме 1 Uζ(t) = Wν(t) = 1 − e−νt и m(t) = ν−1ρ ∗ Wν(t), то
распределение Z(t) будет m(t)−Пуас, а исходящий поток будет ρ ∗Wν(t)−ППИ.

Применим следствие 1 к модели, определенной (1.1)–(1.3). Пусть далее индексы
i, j, связанные с вершинами и ребрами графа, принимают значения i, j = 1, 2, при-
чем i 6= j при одновременном рассмотрении вершины Vi и ребра Rij . Матрица Q = {qij}
переходных вероятностей из вершин на ребра имеет вид: q11 = q22 = 0, q12 = q21 = 1.

Если в вершину Vi входит ρ(t)−ППИ, то исходит ρ∗Wγi+µi(t)−ППИ, но определенное
соотношением (1.2) прореживание процесса (превращение в индивидуума D) переводит
последний ППИ в ρ1(t)−ППИ на входе в Rij , где ρ1(t) = γi(γi +µi)

−1ρ ∗Wγi+µi(t). Далее
этот ППИ с учетом соотношения (1.3) в момент времени t при выходе из Rij и входе
в вершину Vj превращается в ρ1(t − ωi)e−λiωi−ППИ. В итоге входящий в вершину Vi
ρ(t)−ППИ после первого прохождения через ребро Rij порождает входящий в вершину
Vj ρ2−ППИ:

ρ2 = Kiρ ∗Wγi+µi(t− ωi), где Ki = γi(γi + µi)
−1e−λiωi . (4.1)

Внешний ri−ППИ, входящий в вершину Vi, назовем потоком нулевого уровня и обо-
значим его интенсивность r0i (t) ≡ ri. После прохождения им ребра Rij на входе в Vj он
превращаются в r1i (t)−ППИ 1-го уровня. Далее, возвращаясь в вершину Vi после про-
хождения ребра Rji, получаем r2i (t)−ППИ 2-го уровня и так далее. Явные значения rki (t)
интенсивностей ППИ k-го уровня определяются соотношениями (4.1) при подстановке
ρ(t) = rk−1i (t) с поочередным использованием одношаговых переходов в вершины Vj и Vi.

По индукции при W ∗0· (t) = 1 легко получить явные формулы для интенсивностей:

r2ki (t) = riK
k
i K

k
jW

∗k
γi+µi ∗W

∗k
γj+µj (t− kωi − kωj), (4.2)

r2k+1
i (t) = riK

k+1
i Kk

jW
∗(k+1)
γi+µi

∗W ∗kγj+µj (t− (k + 1)ωi − kωj). (4.3)
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Остановимся на задаче вычисления сверток W ∗k1a1 ∗ W
∗k2
a2 (t). В случае W ∗kiai (t) мы

имеем гамма-распределение с параметрами (ki, ai) и плотностью

fki,ai(x) =
akii

(ki − 1)!
xki−1e−ait при t > 0.

Если ai 6= aj , то свертка Wai(t) и Waj (t) является их линейной комбинацией:

Wai ∗Waj (t) = Waj (t)ai(ai − aj)−1 −Wai(t)aj(ai − aj)−1.

Это позволяет выразить W ∗k1a1 ∗W
∗k2
a2 (t) через линейную комбинацию гамма-распределе-

ний порядка, не старше k1 + k2.
Потоки k-го уровня rki (t) при четных k повторно входят в Vi, а при нечетных k — в Vj .

При слиянии ППИ их интенсивности складываются. Поэтому с учетом представлений
(4.2) и (4.3) суммарная по всем источникам и уровням интенсивность на входе в Vi в
момент времени t — rinVi(t) будет равна

rinVi(t) = ri

∞∑
k=0

r2ki (t) + rj

∞∑
k=0

r2k+1
j (t). (4.4)

Отметим, что r2ki (t)
∣∣
t→∞ = riK

k
i K

k
j , r

2k+1
i (t)

∣∣
t→∞ = riK

k+1
i Kk

j . Поэтому слагаемые в
(4.4) оцениваются сверху через убывающую геометрическую прогрессию. С другой сто-
роны, функции, определенные в (4.2) и (4.3), при любом фиксированном t отличны от
нуля только для конечного числа уровней. Суммируя геометрические прогрессии из (4.4)
при t → ∞ и обозначая ∆ = (µ1 + γ1)(µ2 + γ2) − γ1γ2e−λ1ω1e−λ2ω2 > 0, получаем пред-
ставление

rinVi(∞) = rinVi(t)
∣∣
t→∞ =

ri(µi + γi)(µj + γj) + rjγje
−λjωj (µi + γi)

∆
, i 6= j. (4.5)

Вернемся к обозначениям (2.2). Опираясь на следствие 1 и приведенные затем вы-
кладки, устанавливаем, что XAi(t) будет (µi + γi)

−1rinVi ∗Wγi+µi(t)−Пуас, а на ребро Rij
входит суммарный rinRij

(t)−ППИ, где rinRij
(t) = γi(γi + µi)

−1rinVi(t). Последний поток мож-
но разбить на две части: гибнущих на этом ребре (1 − e−λiωi)rinRij

(t)−ППИ с функцией
распределения продолжительности жизни Uζ(t) = (1 − e−λit)(1 − e−λiωi)−1, t ∈ [0, ωi], и
переходящих в вершину Vj e−λiωirinRij

(t)−ППИ.
По теореме 1 численность индивидуумов на Rij , порождаемых этими потоками, будет

Пуассоновской, что сохранится для их суммы XBi(t). Среднее для суммы совпадает с
суммой средних, которая после приведения подобных равна

EXBi(t) =

∫ min{t,ωi}

0
rinRij

(t− u)e−λiu du.

Теорема 2. Для модели, определенной (1.1)–(1.3), при t → ∞ суммарные входящие в
Vi ППИ имеют интенсивность (4.5), а входящие на Rij — интенсивность

rinRij
(∞) = rinRij

(t)
∣∣
t→∞ = γi(γi + µi)

−1rinVi(∞).

Численность индивидуумов на элементах графа имеет пуассоновское распределение со
средними, сходящимися при t→∞ к

EXAi(∞) = (γi + µi)
−1rinVi(∞) = (ri(µj + γj) + rjγje

−λjωj )∆−1, (4.6)

EXBi(∞) = λ−1i (1− e−λiωi)γi(γi + µi)
−1rinVi(∞) = λ−1i (1− e−λiωi)γiEXAi(∞). (4.7)
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5. Результаты вычислительных экспериментов

Целью вычислительных экспериментов является изучение динамики типичных реа-
лизаций и математических ожиданий переменных XA1(t), XB1(t), XA2(t), XB2(t).
Эксперимент 1. В первом эксперименте индивидуумы поступают из G только в вер-
шину V1, приток индивидуумов в вершину V2 из G отсутствует. Параметры таковы (в
скобках указана размерность каждого из параметров в соответствующей строке):

r1 = 9.5, r2 = 0, µ1 = 0.1, µ2 = 0.05 (сутки−1),

λ1 = λ2 = 0.1, γ1 = 1.8, γ2 = 1.5 (сутки−1),

ω1 = 2, ω2 = 1 (сутки).

На рисунке 1 приведены десять типичных реализаций переменныхXA1(t),XB1(t),XA2(t),
XB2(t) для эксперимента 1.

Рис. 1. Типичные реализации в эксперименте 1: (а) XA1
(t); (б) XB1

(t); (в) XA2
(t); (г) XB2

(t)

Из рис. 1 наглядно видно, как изменяется численность популяции в вершине V2 (пере-
менная XA2(t)) и на ребре R21 (переменная XB2(t)) в условиях отсутствия поступления
индивидуумов в вершину V2 из внешнего источника. В течение промежутка времени
t ∈ [0, 2] суток в вершине V2 и на ребре R21 индивидуумы отсутствуют, а потом начи-
нают появляться за счет индивидуумов вершины V1, перемещающихся по ребру R12 и
поступающих в вершину V2.
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Эксперимент 2. Во втором эксперименте приток индивидуумов осуществляется в обе
вершины V1, V2; по сравнению с экспериментом 1 значительно увеличены интенсивности
γ1, γ2 перехода индивидуумов из вершин на ребра, а также значительно уменьшены
параметры λ1, λ2 и ω1, ω2 (в скобках указана размерность каждого из параметров в
соответствующей строке):

r1 = 9, r2 = 8, µ1 = 0.1, µ2 = 0.05 (сутки−1),

λ1 = λ2 = 0.01, γ1 = 5, γ2 = 7 (сутки−1),

ω1 = 0.249, ω2 = 0.332 (сутки).

На рис. 2 представлено по десять типичных реализаций переменных XA1(t), XB1(t),
XA2(t), XB2(t) для эксперимента 2 (пунктирные линии — значения EXA1(∞) = 103.01,
EXB1(∞) = 128.09, EXA2(∞) = 74.01, EXB2(∞) = 171.72, см. (4.6), (4.7)).

Рис. 2. Типичные реализации в эксперименте 2: (а) XA1
(t); (б) XB1

(t); (в) XA2
(t); (г) XB2

(t)

В таблице представлены интервальные оценки математических ожиданий EXA1(t),
EXB1(t), EXA2(t), EXB2(t) для эксперимента 2 при различных t, полученные по выборке
из 1000 реализаций случайного процесса H(t) на уровне доверия P = 0.99 [17].

Рис. 2 и таблица показывают рост численности популяции в вершинах и на ребрах
графа в течение переходного периода t ∈ [0, 150] суток. При t ∈ [150, 200] суток динами-
ка численности популяции носит колебательный характер относительно стационарных
уровней EXA1(∞), EXB1(∞), EXA2(∞), EXB2(∞), заданных выражениями (4.6), (4.7).
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Таблица. Интервальные оценки математических ожиданийEXA1
(t),EXB1

(t),EXA2
(t),EXB2

(t)
на уровне доверия P = 0.99 для эксперимента 2

t, сутки EXA1
(t) EXB1

(t) EXA2
(t) EXB2

(t)

0 0 0 0 0
10 31.116 ± 0.442 38.105 ± 0.500 22.358 ± 0.369 50.885 ± 0.595
50 85.965 ± 0.771 106.286 ± 0.840 61.506 ± 0.646 142.765 ± 0.944
100 99.493 ± 0.818 124.807 ± 0.904 71.971 ± 0.662 167.008 ± 1.058
150 102.771 ± 0.821 127.480 ± 0.924 73.746 ± 0.692 170.926 ± 1.064
200 102.326 ± 0.836 127.861 ± 0.920 73.538 ± 0.690 171.845 ± 1.056

6. Заключение

В работе представлена стохастическая модель эволюции пространственно неоднород-
ной популяции, структура которой задается в терминах графа с двумя вершинами и
двумя однонаправленными ребрами. Модель и ее более общий вариант допускают де-
тальное аналитическое исследование. Установлен пуассоновский закон распределения
численности популяции и дано явное выражение параметров распределения при t→∞
для численности индивидуумов в вершинах и на ребрах графа. Разработаны рекуррент-
ные соотношения для переменных модели, включающих не только численность индиви-
дуумов в вершинах и на ребрах графа, но и семейства уникальных типов индивидуумов,
обеспечивающих учет предыстории развития популяции. Построен алгоритм численного
моделирования, предусматривающий два варианта описания семейств уникальных ти-
пов индивидуумов. Результаты вычислительного эксперимента показывают характерную
динамику популяции в течение переходного периода, начиная с нулевой численности, и
последующую динамику после выхода на стационарный уровень, который соответствует
аналитическим результатам.

Представленная в работе стохастическая модель является естественным развитием
компартментных моделей динамики популяций, задаваемых системами дифференциаль-
ных уравнений с запаздыванием [1, 5]. Применение построенной стохастической модели
целесообразно для описания динамики малочисленных популяций, индивидуумы кото-
рых обладают некоторыми специфическими признаками и образуются с относительно
малой интенсивностью на конкретном промежутке времени. Так, например, если в ор-
ганизм человека проникает небольшое число вирусных частиц ВИЧ-1, то они могут по-
пасть в некоторый лимфатический узел, где способны заразить клетки-мишени (макро-
фаги, дендритные клетки, CD4+Т-лимфоциты). Зараженные клетки-мишени проходят
несколько стадий или этапов своего развития, по завершению которых начинают про-
изводить новые вирусные частицы. Простейший вариант непрерывно-дискретной сто-
хастической модели динамики инфекции ВИЧ-1 в лимфатическом узле приведен в [18].
Некоторые зараженные клетки и вирусные частицы могут покидать лимфатический узел
и перемещаться в другие лимфатические узлы, способствуя распространению инфекции
ВИЧ-1 по организму зараженного человека. Для детального описания процесса распро-
странения инфекции ВИЧ-1 по организму зараженного человека можно использовать
предложенную в настоящей работе модель.

Литература

1. Gyori I., Eller J. Compartmental systems with pipes // Math. Bios. –– 1981. –– Vol. 53. ––
P. 223–247.

2. Nakaoka S., Shingo I., Sato K. Dynamics of HIV infection in lymphoid tissue network // J.
Math. Biol. –– 2016. –– Vol. 72. –– P. 909–938.



Н.В. Перцев, В.А. Топчий, К.К. Логинов 231

3. Mozokhina A.S., Mukhin S.I., Lobov G.I. Pump efficiency of lymphatic vessels: numeric
estimation // Russ. J. Numer. Anal. Math. Modelling. –– 2019. –– Vol. 5, N◦-- 34. –– P. 261–268.

4. Savinkov R., Grebennikov D., Puchkova D., Chereshnev V., Sazonov I.,
Bocharov G. Graph theory for modeling and analysis of the human lymphatic system //
Mathematics. –– 2020. –– Vol. 8, N◦-- 12. –– Article N◦-- 2236. –– DOI: 10.3390/math8122236.

5. Перцев Н.В. Применение дифференциальных уравнений с переменным запаздыванием в
компартментных моделях живых систем // Сиб. журн. индустр. математики.–– 2021.––Т. 24,
N◦-- 3.–– С. 55–73. Перевод: Pertsev N.V. Application of differential equations with variable delay
in the compartmental models of living systems // J. Applied and Industrial Mathematics. ––
2021.–– Vol. 154, N◦-- 3. –– P. 466–482.–– DOI: 10.1134/S1990478921030091.

6. Клейнрок Л. Теория массового обслуживания.––М.: Машиностроение, 1979.

7. Севастьянов Б.А. Ветвящиеся процессы.––М.: Наука, 1971.

8. Jagers P. Branching Processes with Biological Applications. –– London: Wiley & Sons, 1975.

9. Логинов К.К., Перцев Н.В., Топчий В.А. Стохастическое моделирование компартмент-
ных систем с трубками // Матем. биол. и биоинф.–– 2019.–– Т. 14, N◦-- 1. –– С. 188–203.

10. Бочаров Г.А., Логинов К.К., Перцев Н.В., Топчий В.А. Прямое статистическое
моделирование динамики ВИЧ-1 инфекции на основе немарковской стохастической моде-
ли // Журн. вычисл. матем. и мат. физики. –– 2021. –– Т. 61, N◦-- 8. –– С. 1245–1268. Перевод:
Bocharov G.A., Loginov K.K., Pertsev N.V., Topchii V.A. Direct statistical modeling of HIV-1
infection based on a non-Markovian stochastic model // Comp. Mathem. and Math. Physics. ––
2021.–– Vol. 61, N◦-- 8. –– P. 1229–1251.–– DOI: 10.1134/S0965542521060026.

11. Topchii V.A., Pertsev N.V. Critical multitype branching processes on a graph and the model
of the HIV infection development // Сиб. электр. матем. изв.–– 2023.––Т. 20, N◦-- 1.––С. 465–476.

12. Marchenko M.A., Mikhailov G.A. Parallel realization of statistical simulation and random
number generators // Russ. J. Numer. Anal. Math. Modelling. –– 2002. –– Vol. 17, N◦-- 1. ––
P. 113–124.

13. Marchenko M. PARMONC — a Software Library for Massively Parallel Stochastic Simulation.
Parallel Computing Technologies. –– Berlin, Heidelberg: Springer-Verlag, 2011. –– (Lec. Notes in
Comp. Sci.; 6873).

14. Михайлов Г.А., Войтишек А.В. Численное статистическое моделирование. Методы
Монте-Карло.––М.: Изд. центр “Академия”, 2006.

15. Михайлов Г.А. Замечания о практически эффективных алгоритмах численного статисти-
ческого моделирования // Сиб. журн. вычисл. математики / РАН. Сиб. отд-ние. –– Новоси-
бирск, 2014.––Т. 17, N◦-- 2.––С. 177–190. Перевод: Mikhailov G.A. Some remarks on the efficient
algorithms of numerical statistical simulation // Numerical Analysis and Applications. –– 2014.––
Vol. 7, N◦-- 2. –– P. 147–158.–– DOI: 10.1134/S1995423914020086.

16. Mirasol Noel M. Letter to the editor-the output of an M/G/∞ queuing system is Poisson //
Operations Research. –– 1963.–– Vol. 11, iss. 2. –– P. 282–284.–– DOI: 10.1287/opre.11.2.282.

17. Крамер Г. Математические методы статистики.––М.: Мир, 1975.

18. Pertsev N.V., Loginov K.K. Stochastic modeling in immunology based on a stage-dependent
framework with non-Markov constraints for individual cell and pathogen dynamics // Math. Biol.
Bioinf. –– 2023.–– Vol. 18, N◦-- 2. –– P. 543–567.–– DOI: 10.17537/2023.18.543.

Поступила в редакцию 20 декабря 2023 г.
После исправления 9 февраля 2024 г.
Принята к печати 4 марта 2024 г.



232 СИБИРСКИЙ ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ. 2024. Т. 27, N◦-- 2

Литература в транслитерации

1. Gyori I., Eller J. Compartmental systems with pipes // Math. Bios. –– 1981. –– Vol. 53. ––
P. 223–247.

2. Nakaoka S., Shingo I., Sato K. Dynamics of HIV infection in lymphoid tissue network // J.
Math. Biol. –– 2016. –– Vol. 72. –– P. 909–938.

3. Mozokhina A.S., Mukhin S.I., Lobov G.I. Pump efficiency of lymphatic vessels: numeric
estimation // Russ. J. Numer. Anal. Math. Modelling. –– 2019. –– Vol. 5, N◦-- 34. –– P. 261–268.

4. Savinkov R., Grebennikov D., Puchkova D., Chereshnev V., Sazonov I.,
Bocharov G. Graph theory for modeling and analysis of the human lymphatic system //
Mathematics. –– 2020. –– Vol. 8, N◦-- 12. –– Article N◦-- 2236. –– DOI: 10.3390/math8122236.

5. Percev N.V. Primenenie differencial’nykh uravnenii s peremennym zapazdyvaniem v
kompartmentnykh modelyakh zhivykh sistem // Sib. zhurn. industr. matematiki.–– 2021.––T. 24,
N◦-- 3.–– S. 55–73. Perevod: Pertsev N.V. Application of differential equations with variable delay in
the compartmental models of living systems // J. Applied and Industrial Mathematics.–– 2021.––
Vol. 154, N◦-- 3. –– P. 466–482.–– DOI: 10.1134/S1990478921030091.

6. Kleinrok L. Teoriya massovogo obsluzhivaniya. ––M.: Mashinostroenie, 1979.
7. Sevast’yanov B.A. Vetvyashchiesya processy. ––M.: Nauka, 1971.
8. Jagers P. Branching Processes with Biological Applications. –– London: Wiley & Sons, 1975.
9. Loginov K.K., Percev N.V., Topchii V.A. Stokhasticheskoe modelirovanie kompartmentnykh

sistem s trubkami // Matem. biol. i bioinf. –– 2019.–– T. 14, N◦-- 1. –– S. 188–203.
10. Bocharov G.A., Loginov K.K., Percev N.V., Topchii V.A. Pryamoe statisticheskoe

modelirovanie dinamiki VICh-1 infekcii na osnove nemarkovskoi stokhasticheskoi modeli // Zhurn.
vychisl. matem. i mat. fiziki. –– 2021. –– T. 61, N◦-- 8. –– S. 1245–1268. Perevod: Bocharov G.A.,
Loginov K.K., Pertsev N.V., Topchii V.A. Direct statistical modeling of HIV-1 infection based
on a non-Markovian stochastic model // Comp. Mathem. and Math. Physics. –– 2021. –– Vol. 61,
N◦-- 8. –– P. 1229–1251.–– DOI: 10.1134/S0965542521060026.

11. Topchii V.A., Pertsev N.V. Critical multitype branching processes on a graph and the model
of the HIV infection development // Sib. elektr. matem. izv.–– 2023.–– T. 20, N◦-- 1. –– S. 465–476.

12. Marchenko M.A., Mikhailov G.A. Parallel realization of statistical simulation and random
number generators // Russ. J. Numer. Anal. Math. Modelling. –– 2002. –– Vol. 17, N◦-- 1. ––
P. 113–124.

13. Marchenko M. PARMONC — a Software Library for Massively Parallel Stochastic Simulation.
Parallel Computing Technologies. –– Berlin, Heidelberg: Springer-Verlag, 2011. –– (Lec. Notes in
Comp. Sci.; 6873).

14. Mikhailov G.A., Voitishek A.V. Chislennoe statisticheskoe modelirovanie. Metody Monte-
Karlo. ––M.: Izd. centr “Akademiya”, 2006.

15. Mikhailov G.A. Zamechaniya o prakticheski effektivnykh algoritmakh chislennogo
statisticheskogo modelirovaniya // Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. ––
Novosibirsk, 2014. –– T. 17, N◦-- 2. –– S. 177–190. Perevod: Mikhailov G.A. Some remarks on the
efficient algorithms of numerical statistical simulation // Numerical Analysis and Applications.––
2014.–– Vol. 7, N◦-- 2. –– P. 147–158.–– DOI: 10.1134/S1995423914020086.

16. Mirasol Noel M. Letter to the editor-the output of an M/G/∞ queuing system is Poisson //
Operations Research. –– 1963.–– Vol. 11, iss. 2. –– P. 282–284.–– DOI: 10.1287/opre.11.2.282.

17. Kramer G. Matematicheskie metody statistiki. ––M.: Mir, 1975.
18. Pertsev N.V., Loginov K.K. Stochastic modeling in immunology based on a stage-dependent

framework with non-Markov constraints for individual cell and pathogen dynamics // Math. Biol.
Bioinf. –– 2023.–– Vol. 18, N◦-- 2. –– P. 543–567.–– DOI: 10.17537/2023.18.543.


