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Описан простой способ прогнозной оценки выхода детонационных наноалмазов, учитывающий
массовое содержание элементов в углеродсодержащем взрывчатом веществе общей формулы

CaHbNcOd. Установлена эмпирическая зависимость содержания детонационных наноалмазов в
полупродукте синтеза наноалмазов — алмазной шихте в зависимости от содержания углерода

в молекулах взрывчатых веществ. Приведены зависимости выхода детонационных наноалмазов
от содержания химических элементов в исходной системе, позволяющие давать количественные
прогнозные оценки выхода детонационных наноалмазов.
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ВВЕДЕНИЕ

Детонационные наноалмазы, открытые

российскими учеными в 1963 г. [1], и в насто-
ящее время не только представляют большой

интерес как компоненты различных компози-
ций: полимерных [2, 3], масляных [4], металл-
алмазных покрытий [5], биоактивных [6], ла-
кокрасочных [5], топливных [7], но и сами по
себе являются объектом исследований, так как
детонационное превращение углеродсодержа-
щих взрывчатых веществ (ВВ), в результа-
те которого и получают наноалмазы, являет-
ся очень сложным процессом, механизм кото-
рого полностью не определен. В процессе де-
тонационного превращения ВВ общей форму-
лы CaHbNcOd одномоментно протекает мно-
жество окислительно-восстановительных реак-
ций, предположительно радикального типа.
При этом температура в зоне химических ре-
акций может достигать 3 500 ÷ 4 000 К, а дав-
ление 25 ÷ 30 ГПа. Зона химических реакций
ограничивается плоскостью Чепмена — Жу-
ге. Установлено, что оптимальная ширина зо-
ны химических реакций, обеспечивающая вы-
сокий выход наноалмазов (более 5 % от мас-
сы исходного ВВ), составляет ≈0.6 мм, а вре-
мя процесса — около 0.3 мкс [5, 8]. Окислитель
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(кислород молекул ВВ) во фронте детонацион-
ной волны и до плоскости Чепмена — Жуге

взаимодействует с горючим (углерод и водород
в молекулах ВВ), создавая необходимые P ,T -
условия для коагуляции нанокапель «свободно-
го» углерода в зоне химических реакций [8, 9].
Кислородный баланс исходного ВВ должен на-
ходиться в пределах от –35 до –55 %. Таким
образом, значительная часть углерода в моле-
кулах ВВ не претерпевает дальнейшего окисле-
ния и выделяется в виде «свободного» углеро-
да. Этот «свободный» углерод содержит в себе
в среднем 40÷ 60 % наноалмазов. Согласно ра-
ботам [8, 9] можно предположить, что в зоне
химической реакции «свободный» углерод на-
ходится в виде нанокапель. Выходя вместе с га-
зообразными продуктами детонации за преде-
лы плоскости Чепмена — Жуге, нанокапли уг-
лерода коагулируют в более крупные агрегаты

нанометрового размера. В зависимости от гра-
диентов температуры и давления при остыва-
нии эти агрегаты либо кристаллизуются в кри-
сталлиты наноалмаза, либо аморфизируются в
неалмазные углеродные образования. Проведе-
ние экспериментов с ВВ является дорогосто-
ящим и опасным процессом, поэтому прогно-
зирование выхода наноалмазов без проведения

экспериментов крайне востребовано.
Ранее были описаны зависимости выхода
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Рис. 1. Зависимости выхода детонационных наноалмазов от содержа-
ния углерода, водорода, азота и кислорода в молекулах ВВ

наноалмазов от удельной мощности ВВ, скоро-
сти их детонации и давления в плоскости Чеп-
мена — Жуге [5, 8], кислородного баланса [10],
содержания азота в молекулах [11].

Цель работы — оценка возможности про-
гнозирования выхода наноалмазов по массово-
му содержанию элементов, входящих в молеку-
лы ВВ — углерода, водорода, азота и кислоро-
да.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для осуществления подрыва зарядов ВВ

использовали стальную взрывную камеру

сохранения «Альфа-2М» (Россия) емко-
стью 2.14 м3. Подрыв зарядов осуществляли
в водной оболочке, массовое соотношение

ВВ : вода — 1 : 10. Среда подрыва — газо-
образные продукты предыдущих подрывов.
Масса каждого заряда — 0.5 кг, в каждом
эксперименте подрывали пять зарядов, заряды
изготавливали из пентаэритриттетранит-
рата, 2,4,6-тринитротолуола, циклотриме-
тилентринитрамина, 2,4,6-тринитрофенола,
2,4,6-тринитро-N-метил-N-нитроанилина и их
смесей в различном соотношении.

Полученную в результате взрыва алмаз-
ную шихту сушили, затем обрабатывали раз-
бавленной (ГОСТ 4461-77) азотной кислотой
в концентрации 40 ÷ 50 % при температуре

220 ÷ 230 ◦C и давлении 80 ÷ 100 атм на опыт-
ной установке. Далее выделенные наноалмазы
промывали дистиллированной водой в каскаде

противоточных колонн. После достижения по-
казателем pH водной среды значений 6÷7 очи-
щенные наноалмазы сушили при температуре

115 ÷ 120 ◦C, температуру в сушильной каме-
ре поддерживали подачей перегретого водяного

пара.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ
И ИХ АНАЛИЗ

В таблице представлено соотношение ВВ

в смесевых составах, важная технологическая
величина — содержание наноалмазов в алмаз-
ной шихте, выход наноалмазов и шихты, содер-
жание элементов в ВВ.

Поскольку табличные данные трудно вос-
принимаются и интерпретируются, на их ос-
нове построены зависимости в виде, представ-
ленном на рис. 1, где уже четко прослеживается
сложная связь выхода детонационных наноал-
мазов от содержания в ВВ всех четырех эле-
ментов.

Выраженная куполообразная зависимость

выхода детонационных наноалмазов от мас-
сового содержания углерода в молекуле ВВ

(рис. 1, верх зависимостей отсечен прямой, па-
раллельной оси абсцисс, от 5 %) определяет
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Выход детонационных наноалмазов
и массовое содержание элементов во взрывчатых веществах
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1 Пентаэритриттетранитрат −20.3 19.0 2.5 17.7 60.8 1.1 0.14 0.15

2 Тротил мелкодисперсный
(из ацетона)

−74.0 37.0 2.2 18.5 42.3 19.74 3.4 0.71

3 Гексоген −21.6 16.22 2.7 37.84 43.24 4.1 21.5 0.88

4 Тротил, спрессованный из гранул −74.0 37.0 2.2 18.5 42.3 19.0 4.7 0.94

5 Тринитрофенол −45.4 31.44 1.31 18.34 48.91 11.4 9.1 1.2

6 Бензотрифуроксан [12] −38.1 28.6 Нет
данных

33.3 38.1 Нет
данных

Нет
данных

1.5

7 Тринитротриаминобензол [13] −55.8 27.9 2.3 32.6 37.2 15.9 13.1 2.08

8 Тетрил — 30 %, гексоген — 70 % −29.3 20.9 2.4 33.0 43.7 5.78 31.3 3.05

9
2,4,8,10-тетранитро-
5Н-бензотриазоло-

(2,1-4)-бензотриазоли-6-ум [14]

−74.2 37.1 1.0 28.9 33.0 Нет
данных

Нет
данных

3.34

10 Тринитробензол [12] −56.3 33.8 1.4 19.7 45.1 Нет
данных

Нет
данных

4.8

11 Тетрил — 70 %,
тринитрофенол — 30 %

−46.5 29.8 1.6 22.9 45.7 9.90 44.1 5.20

12 Тротил — 40 %, гексоген — 60 % −42.6 24.6 2.5 30.0 42.9 15.0 40.0 6.0

13 Тротил — 50 %, гексоген — 50 %∗ −47.8 26.7 2.4 28.1 42.8 9.1 65.9 6.1

14 Тетрил — 70 %, гексоген — 30 % −39.4 26.0 2.0 27.7 44.3 12.53 47.2 6.40

15 Тетрил — 70 %, тротил — 30 % −55.1 31.2 1.9 22.9 44.0 14.1 45.5 6.61

16 Гексанитроазобензол [14] −49.6 31.86 0.88 24.78 42.48 Нет
данных

Нет
данных

6.63

17 Тетрил −47.4 29.3 1.7 24.4 44.6 11.6 61.25 7.36

18 Тетрил — 50 %, тротил — 25 %,
гексоген — 25 %

−47.6 27.96 2.07 26.29 43.68 12.8 60.14 7.46

19 Тротил — 60 %, гексоген — 40 %∗ −53.0 28.8 2.4 26.1 42.7 12.8 71.0 8.5

Прим е ч а н и е. ∗Промышленная наработка детонационных наноалмазов.
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необходимое количество углерода для получе-
ния наноалмазов с технологически приемле-
мым выходом. Содержание водорода, необхо-
димое и достаточное для получения выхода

наноалмазов не менее 5 %, составляет 1.5 ÷
3.0 %. Азот считается инертным элементом

для взрывных процессов, однако отчетливо вы-
раженная куполообразная зависимость выхода

наноалмазов от массового содержания азота в

молекуле ВВ (23 ÷ 31 %) опровергает такое
утверждение. Количество кислорода в молеку-
ле ВВ, необходимое для обеспечения нужного
количества энергии процесса взрыва, но недо-
статочное для полного окисления углерода до

газообразных продуктов, составляет 42÷46 %.
Таким образом, для достижения техно-

логически приемлемого выхода наноалмазов

необходимо, чтобы одновременно были соблю-
дены следующие условия: массовое содержание
водорода в молекуле ВВ 1.5÷ 3.0 %, углерода—
23 ÷ 34 %, азота — 23 ÷ 31 % и кислорода —
42 ÷ 46 %.

Для упрощения процесса оценки влияния

содержания (x) каждого из четырех компонен-
тов на выход наноалмазов (y) была проведена
аппроксимация зависимостей, представленных
на рис. 1, аналитическими функциями. Для
кривых, соответствующих влиянию содержа-
ния N и C, удобными функциями оказались па-
раболы, функция вида y = ax2 + bx + c. При
построении соответствующих функций пред-
полагалось, что у изображенных на рис. 1 кри-
вых и у аппроксимационных парабол совпада-
ют вершины. То есть значения вершин соот-
ветствуют максимальному выходу детонацион-
ных наноалмазов 8.55 % и во всех случаях (H,
N и C) одинаковы.Кроме того, предполагалось,
что у всех этих кривых совпадают точки пере-
сечения каждой кривой с осью абсцисс.

В результате аппроксимации получено

следующее.
1. Линия, соответствующая азоту.

Линия аппроксимируется параболой, соответ-
ствующей выходу наноалмазов (%) y(N) =
−0.18(xN)2 + 9.5xN − 110. При массовом содер-
жании азота от xN1 = 18 % до xN = 25 %
выход наноалмазов растет от нуля до макси-
мального значения ymax(N) = 8.55 %, а затем
уменьшается от ymax(N) = 8.55 % до нуля при

xN2 = 35.0 %. Рост и уменьшение происходят
симметрично, что подтверждает правильность
выбора аппроксимационной кривой.

2. Линия, соответствующая углероду.

Линия аппроксимируется параболой, соответ-
ствующей выходу наноалмаза (%) y(C) =
−0.10(xC)2 + 5.4xC − 64. При массовом содер-
жании углерода от xC1 = 18 % до xCmax =
27 % выход наноалмаза растет от нуля до мак-
симального значения ymax(C) = 8.55 %, а затем
уменьшается от ymax(C) = 8.55 % до нуля при

xC2 = 35.4 %. По аппроксимационной параболе
рост и уменьшение происходят симметрично.
При этом рост идет быстрее, а уменьшение —
медленнее, чем по приведенной на рис. 1 кри-
вой — аппроксимационной линии, т. е. рост и
уменьшение происходят несимметрично.

Для функций, отражающих влияние на

выход наноалмаза содержаний водорода и кис-
лорода, расстояние между корнями аппрокси-
мационных линий оказалось меньше ошибки

измерений.
3. Линия, соответствующая водороду.

Линия аппроксимируется функцией xH = 1.3±
0.1 % при 0 < y(H) < ymax(H) = 8.55 % — мак-
симальное значение выхода наноалмаза. Гра-
фически такая функция соответствует отрез-
ку вертикальной прямой между осью абсцисс

y(H) = 0 и значением ymax(H) = 8.55 %.
4. Линия, соответствующая кислороду.

Линия аппроксимируется функцией xO =
42.7 ± 0.1 % при yO от ymin(O) = 5 % до

ymax(O) = 8.55 %. Графически это соответ-
ствует отрезку вертикальной прямой 5±8.55 %.

Оптимальное содержание наноалмазов в

алмазной шихте — от 45 до 71 % — достигает-
ся при наличии в молекулах ВВ от 26 до 31 %
углерода (рис. 2).

Рис. 2. Зависимость содержания детонацион-
ных наноалмазов в алмазной шихте от содер-
жания углерода в молекулах ВВ
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ВЫВОДЫ

Установлены оптимальные диапазоны со-
держания в молекулах взрывчатого вещества

углерода (23 ÷ 34 %), водорода (1.5 ÷ 3.0 %),
азота (23 ÷ 31 %) и кислорода (42 ÷ 46 %), что
в совокупности с высокой вероятностью может

обеспечить выход наноалмазов более 5 %.
Приведены простые зависимости, позволя-

ющие давать прогнозные оценки выхода дето-
национных наноалмазов.
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Marchukov V. A., Almazova N. S., Litov-
ka Yu. V., Dyakov I. A. The study of ob-
taining composite nickel electroplatings with det-
onation nanodiamonds and diamond charge //
J. Adv. Mater. Technol. — 2020. — N 4 (20). —
P. 3–11. — DOI: 10.17277/amt.2020.04.pp.003-
011.

13. Петров Е. А., Барабошкин К. С., Бы-
чин Н. В., Ларионов Б. В., Байра-
мян И. В. Исследование ТАТБ для детонаци-
онного синтеза наноалмазов // Ультрадисперс-
ные порошки, наноструктуры, материалы: по-
лучение, свойства, применение / IV Ставеров-
ские чтения: сб. тр. всерос. науч.-техн. конф.
с междунар. участием. — Красноярск: Сиб. фе-
дер. ун-т, 2012. — С. 14–15.

14. Dolmatov V. Yu. Principles of current industri-
al production technology of detonation nanodia-
monds (ND) with a new elemental composition
and application thereof // Abstr. of Joint Int.
Conf. «Nanocarbon & Nanodiamond 2006», 11–15
Sept. 2006, St. Petersburg, Russia, Ioffe Phys.-
Techn. Inst. RAS. — St. Petersburg, 2006. —
P. 10.

Поступила в редакцию 01.09.2023.
Принята к публикации 11.10.2023.


