2015. Том 56, № 5

Сентябрь – октябрь

C. 985 – 992

УДК 546(776:742):548.73

ГЕТЕРОПОЛИГЕКСАМОЛИБДОНИКЕЛАТ(II) НАТРИЯ Na₄[Ni(OH)₆Mo₆O₁₈]·16H₂O С АНИОНОМ СО СТРУКТУРОЙ АНДЕРСОНА: СИНТЕЗ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА

Н.И. Гумерова¹, Н.А. Мельник¹, Г.М. Розанцев¹, В.Н. Баумер^{2,3}, С.В. Радио¹

1Донецкий национальный университет, Украина

E-mail: radio@donnu.edu.ua

²ГНУ НТК "Институт монокристаллов" НАН, Харьков, Украины

³Харьковский национальный университет им. В.Н. Каразина, Украина

Статья поступила 22 мая 2014 г.

Определены условия образования гетерополигексамолибдоникелата (II) натрия Na₄[Ni(OH)₆Mo₆O₁₈]·16H₂O (I) в подкисленном до $Z = v(H^+)/v(MoO_4^{2-}) = 1,00$ растворе системы Ni(NO₃)₂—Na₂MoO₄—HNO₃—H₂O. Синтезированная соль I исследована методами химического анализа, PCA, PФA, термического анализа и ИК спектроскопии. Показана принадлежность структуры гетерополианиона к типу Андерсона. Проведено рентгеноструктурное исследование I ($M_r = 1404,61$, триклинный, пр. гр. $P \bar{1}$, a = 8,0586(4), b = 10,5445(6), c = 12,1374(5) Å, $\alpha = 69,557(5)$, $\beta = 70,604(4)$, $\gamma = 84,123(4)^\circ$, V = 911,45(8) Å³) и установлена его изоструктурность с Na₄[Ni(OH)₆W₆O₁₈]·16H₂O. В структуре I все атомы металлов находятся в октаэдрическом окружении: координационная сфера гетерополианионом через терминальные атомы O полианиона и окружены молекулами воды. При упаковке в кристалл анионы [Ni(OH)₆Mo₆O₁₈]⁴⁻ располагаются в плоскостях, параллельных (110, и слои полианионов чередуются со слоями сдвоенных октаэдров [Na₂(µ-H₂O)₂(H₂O)₆(O)₂] в направлении оси *y*.

DOI: 10.15372/JSC20150515

Ключевые слова: гетерополисоединение, молибдат, структура Андерсона, кристаллическая структура, рентгеноструктурный анализ.

Анион со структурой Андерсона $[H_x XM_6O_{24}]^{n-}$ состоит из шести, связанных ребрами искаженных октаэдров MO₆ (M = Mo, W), расположенных вокруг центрального октаэдра, содержащего гетероатом. Известны два типа структур полианионов, построенных из семи связанных ребрами октаэдров MO₆. Считалось, что планарную структуру могут иметь гептамолибдатанионы $[Mo_7O_{24}]^{6-}$ и гексамолибдоиодат-анионы $[IMo_6O_{24}]^{5-}$, однако позже было установлено, что $[Mo_7O_{24}]^{6-}$ имеет изогнутую структуру [1]. Впервые планарная структура была установлена методом PCA для $[TeMo_6O_{24}]^{6-}$ [2].

В [3] была предложена классификация анионов $[H_x XM_6O_{24}]^{n-}$ по числу протонов (x), которые соединены с центральным октаэдром XO₆, включающая три группы: класс A (x = 0), В (x = 6) и С (x = 0—5). Класс A $[XO_6M_6O_{18}]^{m-}$ характерен для гетереполимолибдотеллуратов $[TeO_6Mo_6O_{18}]^{6-}$ и гетерополимолибдоиодатов $[IO_6Mo_6O_{18}]^{5-}$, а также для вольфраматов с гетероатомами Sb^V и Mn^{IV}. Соединения с анионом класса В $[X(OH)_6M_6O_{18}]^{m-}$ (X = Mn^{II}, Fe^{II}, Co^{II},

[©] Гумерова Н.И., Мельник Н.А., Розанцев Г.М., Баумер В.Н., Радио С.В., 2015

Ni^{II}, Cu^{II}, Zn^{II}, Al^{III}, Ga^{III}, Cr^{III}, Fe^{III}, Co^{III}, Rh^{III}) наиболее многочисленны и структурно охарактеризованы. Представителями класса С являются $[Pt^{IV}O_6H_{6-n}M_6O_{18}]^{(8-n)-}$ (n = 0—5), которые имеют либо планарную структуру Андерсона α -XM₆O₂₄, либо непланарную структуру Линдквиста β -XM₆O₂₄.

Описан ряд соединений с анионом Андерсона класса B, в которых гетероатомом выступает ион Ni^{2+} : $(NH_4)_4[H_6NiMo_6O_{24}]\cdot 4H_2O$ [4], $[{Ni(H_2O)_4}_2{Ni(OH)_6Mo_6O_{18}}]\cdot 4H_2O$ [5], $Ni_2[Ni(OH)_6W_6O_{18}]\cdot 8H_2O$ [6], $[Himi]_2[Ni(imi)_3(H_2O){Ni(OH)_6Mo_6O_{18}}]\cdot 2H_2O$ (imi — имидазол) [7] и $Na_4[Ni(OH)_6W_6O_{18}]\cdot 16H_2O$ [8].

В данной работе представлены итоги синтеза гетерополисоединения Na₄[Ni(OH)₆Mo₆O₁₈]· \cdot 16H₂O с анионом со структурой Андерсона в результате самосборки из MoO₄²⁻ и Ni²⁺ в подкисленном водном растворе. Полученное гетерополисоединение изучено методами рентгеноструктурного, ИК спектроскопического, термического и рентгенофазового анализа. Установлена его изоструктурность с ранее описанным [8] гетерополигексавольфрамоникелатом(II) натрия Na₄[Ni(OH)₆W₆O₁₈]·16H₂O.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходные вещества. При проведении исследований использованы HNO₃ (XЧ), Ni(NO₃)₂· \cdot 6H₂O (ЧДА) и Na₂MoO₄·2H₂O (ЧДА). Установление точных концентраций растворов проводили по стандартным методикам: HNO₃ — кислотно-основным титрованием точных навесок Na₂B₄O₇·10H₂O ($\delta = 0,5$ %) [9]; Ni(NO₃)₂ — гравиметрически (в форме Ni(C₄H₇N₂O₂)₂, $\delta = 0,5$ %) [10]. Раствор диметилглиоксима ($\omega = 1$ %) для осаждения никеля готовили растворением C₄H₈N₂O₂ (ЧДА) в 96%-ом этаноле.

Методика синтеза и анализа Na₄[Ni(OH)₆Mo₆O₁₈]·16H₂O (I). Для синтеза I навеску Na₂MoO₄·2H₂O (2,4195 г, 0,01 моль) растворяли в 70,67 мл H₂O, затем по каплям при перемешивании добавляли раствор HNO₃ (C = 0,4411 моль/л, V = 22,67 мл) до значения кислотности $Z = v(H^+)/v(WO_4^{2-}) = 1,00$. К полученному раствору при интенсивном перемешивании по каплям добавляли раствор Ni(NO₃)₂ (C = 0,2504 моль/л, V = 6,66 мл). Раствор зеленого цвета термостатировали при T = 65 °C и перемешивали 30 мин, в результате чего он приобретал голубую окраску. Далее раствор оставляли при комнатной температуре плотно закрытым и через 2 недели наблюдали образование белого ватоподобного осадка и голубого порошка, которые в течение 15 дней полностью превращались в ярко-голубые кристаллы. Кристаллы отделяли фильтрованием, промывали дистиллированной водой, высушивали на воздухе до постоянной массы и подвергали химическому анализу. Содержание молибдена определяли гравиметрически в виде PbMoO₄ ($\delta = 0,5$ %) [10], содержание Ni(II) и Na(I) устанавливали аналогично [8]. Содержание H₂O в I определяли прокаливанием точных навесок при 500 °C.

Инструментальные методы исследования. ИК спектр записывали для воздушно-сухого образца I, таблетированного в монокристаллическом KBr, на ИК спектрометре FTIR Spectrum BXII (Perkin—Elmer) в области 400—4000 см⁻¹ (мас.% образца в матрице составлял 0,5 %). Термический анализ I проводили на дериватографе Q 1500 в режиме линейного повышении температуры в диапазоне 20—525 °C (скорость повышения температуры 5 °/мин; тигель керамический без крышки).

Рентгеноструктурное исследование I выполняли на монокристальном дифрактометре Xcalibur-3 (Oxford Diffraction) (Мо K_{α} -излучение, $\lambda = 0,71073$ Å, графитовый монохроматор, CCD-детектор Sapphire-3, ω/θ -сканирование в интервале 3,41 $\leq \theta \leq 31,82^{\circ}$, 14726 измеренных отражений, из которых 5418 независимых ($R_{int} = 0,036$) и 4262 наблюдаемых с $I_{hkl} > 2\sigma(I)$. Расшифровку и уточнение структуры выполняли по программе SHELX-97 [11]. Для анализа структуры и изготовления рисунков использованы программы WinGX [12] и Ball&Stick [13].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Общее уравнение образования изополианионов (ИПА) в подкисленных водных растворах индивидуальных оксоанионов MO_4^{2-} (M = Mo, W) имеет вид:

$$n \operatorname{MO}_{4}^{2-} + m \operatorname{H}^{+} \leftrightarrows [\operatorname{H}_{m-2k} \operatorname{M}_{n} \operatorname{O}_{4n-k}]^{(2n-m)-} + k \operatorname{H}_{2} \operatorname{O}.$$

Следует отметить, что состав образующихся в растворе изополичастиц для молибдена и вольфрама при одинаковом мольном отношении v(H⁺) : v(MO₄²⁻) различен [14—17]. Однако, как показано в [8, 18, 19], добавление Ni²⁺ к подкисленным до Z = 1,00 водным растворам ортомолибдат- и ортовольфрамат-анионов приводит к его взаимодействию как с тетраоксо-анионами, так и с образующимися в растворе ИПА, и формированию планарных гетерополи-анионов [Ni(OH)₆M₆O₁₈]⁴⁻ со структурой Андерсона, отличающихся по строению от индивидуальных ИПА:

$$Ni^{2+} + 6 MO_4^{2-} + 6 H^+ \hookrightarrow [Ni(OH)_6 M_6 O_{18}]^{4-}.$$

Для синтеза Na₄[Ni(OH)₆Mo₆O₁₈]·16H₂O I использовали подход, реализованный в [8]. Однако оказалось, что в случае с Na₂MoO₄, в отличие от Na₂WO₄, раствор исходных реагентов,

Таблица 1

Координаты атомов (×10⁴, Å) и эквивалентные тепловые поправки (×10³, Å²) в структуре $Na_4[Ni(OH)_6Mo_6O_{18}] \cdot 16H_2O$ (I)

Атом	x	у	Z	$U_{\rm eq}$ *	Атом	x	у	Z	$U_{\rm eq}$ *
Mo(1)	1518(1)	7335(1)	7227(1)	25(1)	O(18)	2640(1)	11393(1)	10270(1)	40(1)
Mo(2)	2963(1)	7259(1)	9499(1)	23(1)	O(19)	6950(1)	11201(1)	8124(1)	42(1)
Mo(3)	1307(1)	5003(1)	12315(1)	24(1)	O(20)	4065(1)	13695(1)	7361(1)	44(1)
Ni(1)	0	5000	10000	19(1)	H(1)	1873(1)	4579(1)	7962(2)	28
Na(1)	2203(1)	11378(1)	5879(1)	39(1)	H(2)	-462(1)	7576(1)	9391(4)	28
Na(2)	3927(1)	11292(1)	8216(1)	37(1)	H(3)	3072(1)	4485(1)	10175(3)	28
O(1)	1078(1)	5105(1)	8207(1)	24(1)	H(13A)	2509(1)	11942(2)	3428(1)	46
O(2)	396(1)	7056(1)	9236(1)	24(1)	H(13B)	4142(1)	12207(1)	3377(2)	46
O(3)	2298(1)	5057(1)	10349(1)	23(1)	H(14A)	-1365(1)	12826(1)	5413(1)	55
O(4)	3452(1)	7071(1)	7911(1)	29(1)	H(14B)	-1154(2)	11925(1)	6463(1)	55
O(5)	1508(1)	6887(1)	11247(1)	26(1)	H(15A)	70(1)	11087(1)	8156(2)	46
O(6)	810(1)	3103(1)	12683(1)	28(1)	H(15B)	978(2)	12234(1)	7849(2)	46
O(7)	2767(2)	7076(1)	5863(1)	38(1)	H(16A)	5638(2)	11509(1)	5585(1)	51
O(8)	1282(2)	9050(1)	6825(1)	40(1)	H(16B)	5604(2)	10206(1)	6205(4)	51
O(9)	2808(2)	8979(1)	9143(1)	37(1)	H(17A)	3501(2)	13954(2)	4452(1)	70
O(10)	5015(1)	6900(1)	9664(1)	34(1)	H(17B)	2316(1)	14073(1)	5499(1)	70
O(11)	3360(1)	4788(1)	12482(1)	36(1)	H(18A)	3256(1)	11973(1)	10311(1)	48
O(12)	-12(2)	5285(1)	13646(1)	35(1)	H(18B)	3133(2)	10640(1)	10507(2)	48
O(13)	3346(1)	11595(1)	3712(1)	38(1)	H(19A)	7341(1)	11707(1)	8398(1)	50
O(14)	-585(1)	12445(1)	5745(1)	46(1)	H(19B)	7558(1)	10488(1)	8241(1)	50
O(15)	1102(1)	11391(1)	7965(1)	38(1)	H(20A)	4782(1)	14225(1)	7372(1)	53
O(16)	5018(1)	10917(1)	6237(1)	42(1)	H(20B)	4133(1)	13916(1)	6604(1)	53
O(17)	3317(1)	13749(1)	5225(1)	58(1)					

^{*} U_{eq} определены как 1/3 следа ортогонализованного тензора U_{ij} .

Таблица 2

Длины связей d, Å и углы ю, град. в структуре I

Связь	d	Связь	d	Связь	d
Mo(1)—O(8)	1,7087(12)	Mo(3)—O(11)	1,7155(12)	Na(1)—O(13)	2,4155(11)
Mo(1)—O(7)	1,7260(11)	Mo(3)—O(12)	1,7199(11)	Na(1)—O(16)	2,4188(11)
Mo(1)—O(6)#1	1,9370(11)	Mo(3)—O(5)	1,9441(9)	Na(1)—O(14)	2,4371(9)
Mo(1)—O(4)	1,9503(11)	Mo(3)—O(6)	1,9478(11)	Na(1)—O(17)	2,5076(12)
Mo(1)—O(2)	2,2230(9)	Mo(3)—O(3)	2,2326(9)	Na(1)—Na(2)	3,5202(11)
Mo(1)—O(1)	2,2382(6)	Mo(3)—O(1)#1	2,2388(9)	Na(2)—O(16)	2,4265(11)
Mo(2)—O(9)	1,7127(11)	Ni(1)—O(1)	2,0247(8)	Na(2)—O(9)	2,4272(13)
Mo(2)—O(10)	1,7196(11)	Ni(1)—O(3)	2,0429(8)	Na(2)—O(20)	2,3776(9)
Mo(2)—O(4)	1,9115(11)	Ni(1)—O(2)	2,0503(7)	Na(2)—O(15)	2,3825(10)
Mo(2)—O(5)	1,9724(9)	Na(1)—O(15)	2,3933(13)	Na(2)—O(19)	2,3949(9)
Mo(2)—O(3)	2,2257(6)	Na(1)—O(8)	2,3940(13)	Na(2)—O(18)	2,3981(11)
Mo(2)—O(2)	2,2364(8)				
Угол	ω	Угол	ω	Угол	ω
O(8)—Mo(1)—O(7)	104,62(6)	O(3)—Mo(2)—O(2)	74,77(3)	O(11)—Mo(3)—O(12)	104,00(6)
O(8)—Mo(1)—O(6)#1	97,40(5)	O(8)—Na(1)—O(13)	101,64(5)	O(11)—Mo(3)—O(5)	99,85(5)
O(7)—Mo(1)—O(6)#1	100,57(5)	O(15)—Na(1)—O(16)	85,26(3)	O(12)—Mo(3)—O(5)	96,14(5)
O(8)—Mo(1)—O(4)	101,13(6)	O(8)—Na(1)—O(16)	93,30(4)	O(11)—Mo(3)—O(6)	97,01(5)
O(7)—Mo(1)—O(4)	95,12(5)	O(13)—Na(1)—O(16)	95,17(3)	O(12)—Mo(3)—O(6)	102,03(5)
O(6)#1—Mo(1)—O(4)	151,80(4)	O(15)—Na(1)—O(14)	83,63(3)	O(5)—Mo(3)—O(6)	151,37(5)
O(8)—Mo(1)—O(2)	91,93(5)	O(8)—Na(1)—O(14)	100,14(4)	O(11)—Mo(3)—O(3)	93,73(4)
O(7)—Mo(1)—O(2)	160,71(4)	O(13)—Na(1)—O(14)	94,52(3)	O(12)—Mo(3)—O(3)	160,24(4)
O(6)#1—Mo(1)—O(2)	86,78(4)	O(16)—Na(1)—O(14)	161,49(5)	O(5)—Mo(3)—O(3)	71,92(4)
O(4)—Mo(1)—O(2)	71,61(3)	O(15)—Na(1)—O(17)	88,10(3)	O(6)—Mo(3)—O(3)	84,09(4)
O(8)—Mo(1)—O(1)	162,72(4)	O(8)—Na(1)—O(17)	169,84(5)	O(11)—Mo(3)—O(1)#1	164,02(5)
O(7)—Mo(1)—O(1)	91,14(4)	O(13)—Na(1)—O(17)	86,64(3)	O(12)—Mo(3)—O(1)#1	89,98(5)
O(6)#1—Mo(1)—O(1)	72,33(4)	O(16)—Na(1)—O(17)	79,96(3)	O(5)—Mo(3)—O(1)#1	86,08(4)
O(4)—Mo(1)—O(1)	84,15(4)	O(14)—Na(1)—O(17)	84,90(3)	O(6)—Mo(3)—O(1)#1	72,13(4)
O(2)—Mo(1)—O(1)	73,98(3)	O(20)—Na(2)—O(15)	87,95(3)	O(3)—Mo(3)—O(1)#1	73,88(3)
O(9)—Mo(2)—O(10)	104,33(6)	O(20)—Na(2)—O(19)	91,32(3)	O(1)—Ni(1)—O(3)#1	82,69(3)
O(9)—Mo(2)—O(4)	101,75(5)	O(15)—Na(2)—O(19)	170,64(5)	O(1)—Ni(1)—O(3)	97,31(3)
O(10)—Mo(2)—O(4)	98,76(5)	O(20)—Na(2)—O(18)	90,84(3)	O(1)#1—Ni(1)—O(3)	82,69(3)
O(9)—Mo(2)—O(5)	93,58(5)	O(15)—Na(2)—O(18)	91,23(4)	O(1)—Ni(1)—O(2)	82,40(3)
O(10)—Mo(2)—O(5)	100,30(5)	O(19)—Na(2)—O(18)	98,11(4)	O(1)#1—Ni(1)—O(2)	97,60(3)
O(4)—Mo(2)—O(5)	151,70(5)	O(20)—Na(2)—O(16)	95,63(3)	O(3)#1—Ni(1)—O(2)	97,11(3)
O(9)—Mo(2)—O(3)	161,75(4)	O(15)—Na(2)—O(16)	85,33(4)	O(3)—Ni(1)—O(2)	82,89(3)
O(10)—Mo(2)—O(3)	89,12(4)	O(19)—Na(2)—O(16)	85,46(3)	O(1)—Ni(1)—O(2)#1	97,60(3)
O(4)—Mo(2)—O(3)	88,04(4)	O(18)—Na(2)—O(16)	172,55(4)	O(1)#1—Ni(1)—O(2)#	82,40(3)
O(5)—Mo(2)—O(3)	71,58(4)	O(20)—Na(2)—O(9)	161,71(5)	O(3)#1—Ni(1)—O(2)#	82,89(3)
O(9)—Mo(2)—O(2)	93,47(5)	O(15)—Na(2)—O(9)	74,39(4)	O(3)—Ni(1)—O(2)#1	97,11(3)
O(10)—Mo(2)—O(2)	161,43(5)	O(19)—Na(2)—O(9)	106,87(4)	O(15)—Na(1)—O(8)	83,73(4)
O(4)—Mo(2)—O(2)	71,98(4)	O(18)—Na(2)—O(9)	84,92(4)	O(15)—Na(1)—O(13)	174,57(4)
O(5)—Mo(2)—O(2)	83,58(4)	O(16)—Na(2)—O(9)	87,79(4)		

Примечание. Операции симметрии для получения эквивалентных атомов: #1 -*x*, -*y*+1, -*z*+2*.

Таблица З

ларактеристики вооорооных связей в структуре 1					
D—HA	<i>d</i> (D—H), Å	<i>d</i> (HA), Å	<i>d</i> (DA), Å	∠(DHA), град.	
O(1)—H(1)O(20)#2	0,85	1,9501(11)	2,7840(9)	166,62(16)	
O(2)—H(2)O(18)#3	0,85	1,9710(13)	2,8126(8)	172,3(3)	
O(3)—H(3)O(10)#4	0,85	2,0219(15)	2,8346(13)	159,8(3)	
O(13)—H(13A)O(6)#5	0,85	1,9740(13)	2,8114(12)	168,23(15)	
O(13)—H(13B)O(4)#6	0,85	2,0593(12)	2,8199(10)	148,61(15)	
O(13)—H(13B)O(11)#5	0,85	2,6501(14)	3,1709(13)	120,83(7)	
O(14)—H(14A)O(7)#7	0,85	2,1702(16)	2,9265(15)	148,11(15)	
O(14)—H(14B)O(19)#8	0,85	2,0202(17)	2,8423(8)	161,21(13)	
O(15)—H(15B)O(5)#3	0,85	2,2246(17)	2,7802(12)	122,97(11)	
O(16)—H(16A)O(7)#6	0,85	2,0071(14)	2,8546(12)	174,8(2)	
O(16)—H(16B)O(13)#6	0,85	1,9809(11)	2,8248(9)	171,81(14)	
O(17)—H(17A)O(11)#5	0,85	2,2788(14)	3,1096(13)	165,78(12)	
O(17)—H(17B)O(12)#3	0,85	1,9847(13)	2,8297(13)	172,59(11)	
O(18)—H(18A)O(10)#9	0,85	1,9361(15)	2,7779(14)	170,41(10)	
O(18)—H(18B)O(19)#9	0,85	2,0579(12)	2,8123(7)	147,53(16)	
O(19)—H(19A)O(5)#9	0,85	2,0592(14)	2,9006(14)	170,30(8)	
O(19)—H(19B)O(18)#9	0,85	2,1431(10)	2,8123(7)	135,39(11)	
O(20)—H(20A)O(11)#9	0,85	1,9943(14)	2,8374(14)	171,25(9)	
O(20)—H(20B)O(17)	0,85	2,0547(11)	2,8315(9)	151,62(10)	

Характеристики водородных связей в структуре I

Примечание. Операции симметрии для получения эквивалентных атомов: #1 – x, –y+1, –z+2, #2 x, y–1, z, #3 – x, –y+2, –z+2, #4 – x+1, –y+1, –z+2, #5 x, y+1, z–1, #6 – x+1, –y+2, –z+1, #7 – x, –y+2, –z+1, #8 х–1, y, z, #9 – x+1, –y+2, –z+2.

взятых в стехиометрическом отношении, необходимо нагревать при T = 65 °C, что способствует более быстрому образованию I. В растворе без начального термостатирования кристаллический осадок I образуется только через 3 месяца после сливания исходных компонентов.

Результаты химического анализа I, найдено (вычислено), мас.%: Na₂O — 8,8 (8,8), NiO — 5,2 (5,3), MoO₃ — 61,9 (61,5), H₂O — 24,7 (24,4).

Основные кристаллографические данные, полученные методом PCA, для I: $H_{38}Mo_6Na_4O_{40}Ni$, $M_r = 1404,61$, триклинный, пр. гр. $P\bar{1}$, a = 8,0586(4), b = 10,5445(6), c = 12,1374(5) Å, $\alpha = 69,557(5)$, $\beta = 70,604(4)$, $\gamma = 84,123(4)^\circ$, V = 911,45(8) Å³ при T = 293 K, Z = 1, $d_{BbIY} = 2,559$ г/см³, $F_{000} = 682$, $\mu = 2,672$ мм⁻¹, $-11 \le h \le 11$, $-15 \le k \le 14$, $-17 \le l \le 17$; окончательные показатели недостоверности по наблюдаемым отражениям $R_F = 0,0366$, $wR^2 = 0,0899$ ($R_F = 0,0533$, $wR^2 = 0,0991$ по всем независимым отражениям), S = 0,993. Структура решена прямым методом. Анализ полученного решения и сравнение его с описанной нами ранее структурой $Na_4[Ni(OH)_6W_6O_{18}] \cdot 16H_2O$ [8] показали, что эти два соединения являются изоструктурными, поэтому для уточнения структуры I по методу наименьших квадратов была использована ранее полученная модель вольфрамового аналога, включая координаты атомов водорода. Уточненные координаты атомов и основные геометрические характеристики структуры I приведены в табл. 1 и 2. Характеристики водородных связей в кристалле приведены в табл. 3. На рис. 1 показана схема нумерации и эллипсоиды тепловых колебаний в I. Кристаллическая упаковка показана на рис. 2.

CIF-файл, содержащий полную информацию по исследованной структуре I, депонирован в ICSD Database под номером CSD-427508, откуда может быть получен по запросу на интернетсайте: http://www.fiz-karlsruhe.de/obtaining_crystal_structure_data.html.

В структуре I все атомы металлов находятся в октаэдрическом окружении. При этом координационная сфера Ni состоит только из OH-групп, атомов Mo — из атомов O и тех же OHгрупп; атомы Na соединены с гетерополианионом через терминальные атомы O полианиона (O8, O9) и окружены молекулами H₂O, так что октаэдры NaO₆ соединяются в пары посредством общего ребра. При упаковке в кристалл гетерополианионы [Ni(OH)₆Mo₆O₁₈]^{4–} располагаются в плоскостях, параллельных (110), и слои полианионов чередуются со слоями из сдвоенных октаэдров [Na₂(μ -H₂O)₂(H₂O)₆(O)₂] в направлении оси *y*. Все атомы O, за исключением O8 и O9, входящих в координационную сферу атомов Mo и Na, участвуют в образовании трехмерной системы водородных связей в структуре (см. табл. 3).

Сопоставление некоторых структурных параметров для изоструктурных гетерополисоединений Na₄[Ni(OH)₆M₆O₁₈]·16H₂O (M = Mo (I) и W [8]) приведено в табл. 4. Анализ показывает, что "теоретически прямые" углы в октаэдрах MO₆ лежат в пределах 71,58—104,62° (M = Mo) и 71,13—104,04° (M = W), что свидетельствует о значительном искажении этих октаэдров в планарном гетерополианионе со структурой Андерсона.

В ИК спектре I (рис. 3) фиксируются характеристичные колебания при 467, 583, 635, 706, 882, 914 и 931 см⁻¹, относящиеся к валентным колебаниям Мо—О в каркасе гетерополианиона со структурой Андерсона. Колебания в области 1620—1650 см⁻¹ относятся к деформационным колебаниями Н—О—H, а 3300—3600 см⁻¹ — к валентным колебаниям связей О—H в молекулах H_2O и в октаэдре Ni(OH)₆.

В процессе термолиза Na₄[Ni(OH)₆Mo₆O₁₈]·16H₂O на термограмме (рис. 4) фиксируется несколько областей потери массы, обусловленных процессом дегидратации соединения: 35—65 (3 моля H₂O), 65—115 (10 молей H₂O), 115—150 (2 моля H₂O), 150—250 °C (4 моля). На кривой DTA наблюдаются эндо-эффекты при T = 55, 80, 135, 200, 470 °C и экзо-эффект при T = 270 °C.

Рис. 3. ИК спектр Na₄[Ni(OH)₆Mo₆O₁₈] · 16H₂O

Таблица 4

Параметр	M = Mo(I)	M = W [8]				
Связь						
$M - O_c (O_c = O1 - O3)$	2,2230—2,2388	2,2297—2,2432				
$M - O_b (O_b = O4 - O6)$	1,9115—1,9724	1,9152—1,9587				
$M - O_t (O_t = O7 - O12)$	1,7087—1,7260	1,7236—1,7443				
Валентный угол						
<i>цис-</i> О—М—О (средн.)	71,58—104,62 (89,25)	71,13—104,04 (89,25)				
транс-О-М-О (средн.)	151,37—164,02 (158,42)	150,48—164,43 (158,25)				
<i>цис</i> -О—Na—O (средн.)	74,39—106,87 (89,87)	74,84—105,64 (89,84)				
<i>транс-</i> О—Nа—O (средн.)	161,49—174,57 (168,47)	160,12—174,71 (168,39)				
О—Nі—О (средн.)	82,40—97,60 (89,34)	82,40—97,60 (90,0)				

Длины связей (Å) и валентные углы (град.) в структурах Na₄[Ni(OH)₆M₆O₁₈]·16H₂O

Из кривых TG и DTG (см. рис. 4) можно видеть, что потеря массы наблюдается до температуры 250 °C, дальнейшее нагревание приводит к появлению экзо-эффекта на кривой DTA (270 °C), который соответствует кристаллизации фаз ортомолибдата никеля NiMoO₄, димолибдата натрия Na₂Mo₂O₇ и тетрамолибдата натрия Na₂Mo₄O₁₃ [20], рефлексы которых фиксируются на рентгенограмме продуктов термолиза (рис. 5). Дальнейшее нагревание приводит к появлению

Рис. 4. Дериватограмма I. (Кривые: Т — температуры, TG — термогравиметрическая, DTG — дифференциальная термогравиметрическая, DTA — дифференциальнотермического анализа)

Рис. 5. Рентгенограмма продуктов термолиза I

эндо-эффекта на кривой DTA при 470 °C, не сопровождающегося потерей массы и обусловленного плавлением продуктов термолиза.

ЗАКЛЮЧЕНИЕ

Таким образом, установлена возможность выделения гетерополигексамолибдоникела- $Na_{4}[Ni(OH)_{6}Mo_{6}O_{18}] \cdot 16H_{2}O$ та (II) натрия с анионом со структурой Андерсона из раство-Ni(NO₃)₂—Na₂MoO₄—HNO₃—H₂O pa при Z = 1,00. Выделенная соль охарактеризована методами химического анализа, ИК спектроскопии, термического, рентгенофазового и рентгеноструктурного анализа. Установлена изоструктурность синтезированной соли с ранее описанным вольфрамовым аналогом $Na_4[Ni(OH)_6W_6O_{18}] \cdot 16H_2O.$

Работа выполнена в рамках проекта № 0113U001530 программы фундаментальных исследований Министерства образования и науки Украины.

NiMoO₄

60

СПИСОК ЛИТЕРАТУРЫ

- 1. Pope M.T. Heteropoly and Isopoly Oxometallates. Berlin: Springer-Verlag, 1983.
- 2. Evans H.T. Jr. // Acta Crystallogr. 1974. B30. P. 2095.

40

20, град.

- 3. Wery A.S.J., Gutierrez-Zorrilla J.M., Luque A., Ugalde M., Roman P., Lezama L., Rojo T. // Acta Chem. Scand. 1998. 52. P. 1194.
- 4. Lee U., Joo H.-C., Kwon J.-S. // Acta Cryst. Sec. E. 2002. E58. P. i6.

50

- 5. Liu F.-X., Marchal-Roch C., Dambournet D., Acker A., Marrot J., Secheresse F. // Eur. J. Inorg. Chem. 2008. N 13. P. 2191.
- 6. *Polyakov E.V., Denisova T.A., Maksimova L.G., Gyrdasova O.I., Manakova L.I. //* Inorg. Materials. 2002. **38**, N 9. P. 956. (Неорган. материалы. 2002. **38**, N 9. C. 1133).
- 7. Li J., Zhang L.-C., Sun Z.-G., Tian C.-H., Zhu Z.-M., Zhao Y., Zhu Y.-Y., Zhang J., Zhang N., Liu L., Lu X. // Z. Anorg. Allg. Chem. – 2008. – **634**, N 6-7. – P. 1173.
- 8. *Rozantsev G.M., Radio S.V., Gumerova N.I., Baumer V.N., Shishkin O.V. //* J. Struct. Chem. 2009. **50**, N 2. P. 296. (Журн. структур. химии. 2009. **50**, N 2. C. 311).
- 9. Коростелев П.П. Приготовление растворов для химико-аналитических работ. М.: Наука, 1964.
- 10. Гиллебранд В.Ф., Лендель Г.Э., Брайт Г.А., Гофман Д.И. Практическое руководство по неорганическому анализу. – М.: Химия, 1966.
- 11. Sheldrick G.M. // Acta Cryst. Sect. A. 2008. 64. P. 112.
- 12. Farrugia L.J. // J. Appl. Crystallogr. 1999. **32**, N 4. P. 837.
- 13. Ozawa T.C., Kang S.J. // J. Appl. Crystallogr. 2004. 37, N 4. P. 679.
- 14. Hastings J.J., Howarth O.W. // J. Chem. Soc. Dalton Trans. 1992. P. 209.
- 15. Rozantsev G.M., Radio S.V., Gumerova N.I. // Pol. J. Chem. 2008. 82, N 11. P. 2067.
- 16. Krishnan C.V., Garnett M., Hsiao B., Chu B. // Int. J. Electrochem. Sci. 2007. 2. P. 29.
- 17. Walanda D.K., Burns R.C., Lawrance G.A., von Nagy-Felsobuki E.I. // J. Chem. Soc. Dalton Trans. 1999. P. 311.
- 18. Matijevic E., Kerker M., Beyer H., Theubert F. // Inorg. Chem. 1963. 2, N 3. P. 581.
- 19. Gumerova N.I., Semenova K.A., Rozantsev G.M., Radio S.V. // J. Siberian Federal University Chemistry. 2012. 5, N 1. P. 73.
- Powder Diffraction File, Joint Committee on Powder Diffraction Standards, International Centre for Diffraction Data. Newtown Square. PA. 2005.

 I/I_0

6 10

20

30