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Abstract—Lateral logging sounding (LLS) is currently the only widely used Russian method of resistivity measurements, sensitive to 
vertical electrical resistivity in vertical wells. However, interpreting data measured by this method in thin-layered sections is difficult and 
requires the utilization of resource-intensive numerical simulation algorithms. Today, the development of computational methods and an 
increase in computer performance allow us to invert LLS data in the class of two-dimensional axisymmetric models. However, in virtue of 
the large number of difficulties associated with the nonlocal responses of the probes and their asymmetry, this process requires the active 
participation of a log analyst. One of the first issues is the creation of an initial approximation of the geoelectric model. It consists in split-
ting the target interval into layers within which the properties of the medium can be considered constant in the vertical direction, since LLS 
signals have a very complex shape in the intervals of alternation of beds with different resistivities. We propose applying a fully connected 
convolutional artificial neural network to automatically create sectional layering suitable for constructing the initial approximation of the 
geoelectric model for two-dimensional LLS data inversion, including vertical resistivity estimation. The neural network was trained and 
tested on the synthetic and field data measured in West Siberia. Based on the results of the testing, we established the workability of the 
proposed approach.
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INTRODUCTION

Currently, due to the complexity of interpretation in a 
thin-layered section, the lateral logging sounding method 
(LLS) is progressively less used to evaluate electrical resis-
tivities of the reservoirs. However, an increase in computing 
resources of today’s computers and the development of ef-
ficient algorithms for numerical simulation of logging sig-
nals make it possible to perform LLS data inversion in the 
class of two-dimensional axisymmetric models. Such an ap-
proach naturally takes into account the influence of the 
boundaries on the signal shapes and allows the parameters 
of low-thickness formations to be estimated, which is almost 
impossible when using interpretation charts. Moreover, two-
dimensional LLS data inversion enables determining verti-
cal resistivity. It is because the signals substantially depend 
on the resistivity anisotropy of a reservoir near its boundar-
ies or even below its bottom (Sukhorukova et al., 2017). 
LLS is the only method of resistivity measurements widely 
used in Russia, which is sensitive to vertical resistivity and 
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may now be a reasonably good alternative to significantly 
more complex three-component induction logging tools. As 
early as since the 1950s, this method has been included into 
the obligatory Russian logging complex for oil and gas 
wells. Therefore, at present, large datasets of the archive 
materials are available for processing and reinterpretation. 
Thus, the results of LLS data interpretation are a source of 
independent reliable information on the resistivity anisotro-
py of rocks when constructing detailed geoelectric models.

Despite the success in the express-simulation of the sig-
nals, the process of two-dimensional LLS data inversion at 
the moment requires the active participation of a log analyst. 
The inversion automation is associated with a considerable 
number of methodic and algorithmic problems, the first of 
which is the creation of an initial approximation of the geo-
electric model. The numerical simulation algorithms mainly 
employ piecewise-constant partitioning of the medium. 
Consequently, to create the approximation, it is necessary to 
divide the target interval into the layers within which resis-
tivity can be considered constant in the vertical direction.

The selection of horizontal boundaries in a geological 
section with the aim of identifying homogeneous in proper-
ties intervals is a classical subtask of well logging data inter-
pretation. Today, there is a wide range of algorithms for 
automatic bed-boundary resolution, using data from various 
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methods or sets of methods (e.g., (Maiti and Tiwari, 2005; 
Berdov et al., 2012)). Most of them are based on gradient or 
dispersive approaches. However, they are not applicable to 
LLS, as far as all the probes are asymmetric. LLS logs are 
characterized by a complex asymmetric shape, which de-
pends on the formation thickness, resistivity contrast be-
tween the formation and the host rocks, and on the borehole 
parameters. The transition of the gradient sondes through 
the formation boundaries is marked by extremal values on 
the apparent resistivity logs. This fact greatly simplifies their 
selection. Apart from that, in sections with the alternation of 
rocks differentiated by resistivity, a large number of extre-
mums not connected with boundary crossing appear on the 
logs. It does not allow them to be used directly as indicators 
of the boundaries. The discreteness of the depth readings 
and measurements shifts the positions of the extremums and 
decreases their values. The effect of vertical resistivity also 
changes the shape of the logs when approaching anisotropic 
formations. Thus, on the one hand, for the LLS method it is 
difficult to formulate a reliable formal criterion for selecting 
the boundary. On the other hand, omitting a thin but electri-
cally contrasting layer, which is a characteristic error of the 
gradient and dispersion methods, can critically affect the in-
version results.

Currently, artificial neural networks and machine learn-
ing are widely used in geophysical data processing and in-
terpretation. For example, for the joint correlation of log-
ging and seismic data (Haris et al., 2018), selection of 
geological objects in seismic images (Zhang et al., 2018) 
and acceleration of the direct and inverse LLS problems 
(Agbash and Sobolev, 2016).

In this investigation, for detecting boundaries from LLS 
data we apply a fully connected convolutional neural net-
work.

ARTIFICIAL NEURAL NETWORK  
ARCHITECTURE

The choice of a neural network architecture is determined 
by the following key factors: the type of the problem to be 
solved (regression, classification, forecasting); type and size 
of input data (digital signals, images, etc.); functional limita-
tions (accuracy, operating speed). The problem of detecting 
boundaries is reduced to a binary classification of each LLS 
measurement by depth into two classes: boundary and non-
boundary (True/False). It should be noted that in the general 
case positions of the boundaries do not coincide with these 
of the measurement points. That is, when using this ap-
proach, positions of the boundaries are determined with an 
accuracy of half of the discretization step only. Neverthe-
less, this accuracy is sufficient to create a starting model for 
the two-dimensional inversion, since present-day algorithms 
specify the positions of the boundaries in the signal fitting 
process.

The type of problem to be solved mainly affects the form 
of an optimized objective function. The input data are read-
ings of the several probes (usually no more than 6). In this 
work, only signals of the gradient sondes are used, since the 
design of a potential sonde leads to a different form of sig-
nals when crossing the boundaries, and to low resolution. 
This may adversely affect the operation of the algorithm. 
During the inversion process, measuring intervals of differ-
ent lengths along the borehole can be analyzed. Therefore, 
from the point of view of functional limitations, we should 
point out the need to organize the network architecture with-
out reference to a specific record length. Thus, taking into 
account the data type, the most reasonable way is to use con-
volution as the kernel of training operators.

The basic elements of an artificial neural network archi-
tecture are layers and neurons. The number of layers and 
neurons in most cases is responsible for the regularization of 
the problem solution and is established experimentally. A 
separate network layer consists of neurons, each of which is 
responsible for the selection of a certain “abstract” charac-
teristic (Goodfellow et al., 2016). By convolutional neural 
network training is meant the learning or optimization of 
filters for input data, which best distinguish the features re-
quired to solve the classification problem. The learning pro-
cess is the minimization of the cost functional L between the 
initial data markup y and the neural network results p:

( ) ( ) ( ) 1 1= − + − −L y log p y log p ,	 (1)

where [ ]0,1∈p  is the probability of belonging to the class 
True (boundary presence), and y = 0 or 1.

Currently, a lot of research has been done on the use of 
various neural network architectures in computer vision 
tasks. We applied a fully connected convolutional neural 
network (FCCNN) of various configurations. The results of 
their application are compared using the ROC (Receiver 
Operating Characteristic) curve and the pivot table of accu-
racy. The FCCNN architecture implies that each neuron of 
each layer is connected to all neurons on the next and previ-
ous layers.

The neural network training was carried out utilizing the 
Adam (Adaptive Moment Estimation) method (Kingma and 
Ba, 2014), which practically does not require complicated 
adjustment and is widely employed in training neural net-
works.

TRAINING SAMPLE AND TRAINING PROCESS

To solve the problem of automating the selection of the 
boundaries by the means of a convolutional neural network, 
models are needed that contain horizontal boundaries be-
tween layers with all types of radial structure. In earlier 
studies, the signal equivalence from various models was 
evaluated. It was found that the approximation of a radial 
resistivity change by a piecewise-constant profile has almost 
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no effect on the shape of the signals when crossing the 
boundaries, even with a rough partition of the reservoir 
zones into the invasion zone, resistivity annulus and undis-
turbed formation (Petrov et al., 2017). Another important 
parameter is the thickness of the layers: gradient sondes are 
unfocused, and the enclosing rocks strongly influence read-
ings of the long probes. That is, the smaller the characteris-
tic thickness of the layers, the more difficult the task of iden-
tifying horizontal boundaries, so when simulating the signals 
for the training sample, we used small thicknesses. The situ-
ation is further complicated by the well-known influence of 
resistivity anisotropy on the shape of LLS signals when 
crossing the boundaries (Fitch, 1982).

The artificial neural network training was conducted on 
synthetic LLS signals of the SKL-76 complex (Kayurov et 
al., 2015) and field signals of the SKL-76 and K1A-723 

(Scientific and Production Commercial Firm “Geofizika”, 
Ufa) complexes. All the data were presented with a mea-
surement sampling step of 0.2 m by depth. The training was 
conducted in two stages. At the first stage, we utilized syn-
thetic LLS signals of the SKL-76 complex, calculated using 
a finite element algorithm of the AlondraWL software pack-
age (Sukhorukova et al., 2017), taking into account the 
borehole effect and displacement of the conductive mud by 
the tool. Five randomly generated models of the medium 
each contained 500 layers (total thickness from 400 to 
650 m) corresponding to resistivities of Western Siberia ter-
rigenous deposits (Table 1). The parameters of the layers 
within lithotypes are uniformly distributed. The thicknesses 
of the layers are distributed lognormally with a 0.15 m shift. 
The detection of interlayers with a thickness less than the 
discretization step does not seem possible, but they may be 

Fig. 1. Fragment of the model of terrigenous deposits and the corresponding LLS signals.

Table 1. Parameters of synthetic models of Western Siberia terrigenous deposits

No. Lithotype Invasion zone Resistivity annulus Bed

Resistivity, 
Ohm∙m

h, m Resistivity, 
Ohm∙m

h, m Resistivity, Ohm∙m

1 Oil-saturated sandstone 15–30 0.2–0.7 – – 16–30
2 Oil-water-saturated sandstone 15–30 0.2–0.6 3–6 0.1–0.25 7–20
3 Water-saturated sandstone 12–20 0.2–0.7 – – 3–8
4 Carbonatized sandstone – – – – ρh = 20–500/λ = 1–1.2
5 Argillaceous deposits – – – – ρh = 3–8/λ = 1–3.5
6 Anisotropic sandy-argillaceous reservoir * * * * *

*Parameters of anisotropic sandy-argillaceous reservoirs were determined by the formulas for the alternation of sandy (No. 1–3) and argillaceous (No. 5) 
deposits (Hagiwara, 2013).



1322	 G.N. Loginov and A.M. Petrov / Russian Geology and Geophysics 60 (2019) 1319–1325

present in the section during the field measurements. There-
fore, in order to make the sample closer to the data recorded 
in practice, interlayers with a thickness less than the discreti
zation step were added to the synthetic models. Adding such 
thin layers can be considered as additional noise in data.

The models differ in the distribution of layer thicknesses, 
ratio of the number of layers from different lithotypes and 
drilling mud resistivity. The division into lithotypes is con-
ditional: the differentiation of sediments according to LLS 
data is possible only by the resistivity value and type of its 
radial change. For that reason, the models used should be 
regarded as geoelectric: they describe well the most proba-
ble signal shapes near the boundaries between different ter-
rigenous rocks but are not a lithological description of the 
section. A fragment of the model and an example of syn-
thetic LLS signals is shown in Fig. 1.

To create the training sample, segments of LLS logs and 
the corresponding positions of the boundaries were formed 
randomly from the synthetic and field data. The boundary 
resolution for the field LLS measurements was carried out 

according to data from a set of borehole electromagnetics. 
The total number of the field data used was 1 km (5000 
depth readings). The segments formed from one model 
could partially overlap. The training sample comprised 4000 
examples of the registered LLS signals and corresponding 
boundaries, 64 readings each. An example of such a seg-
ment is shown in Fig. 2. The number of readings in the train-
ing samples was chosen experimentally. At the input of the 
neural network, the data were entered on a logarithmic scale; 
no additional processing or scaling was performed. As a re-
sult of applying the neural network to the input data, the 
probability of boundary presence was assigned to each depth 
sample. Since we use the convolutional model of a neural 
network, this allows the trained model to be applied to the 
data of arbitrary length.

To select the optimal parameters of the neural network, a 
series of experiments was carried out. The experiments con-
sisted in the selection of the optimal number of layers, 
length and number of filters. Table 2 presents a comparative 
analysis of the operating quality of the trained neural net-
works on the full available set of the model and field data, 
consisting of 17,000 measurement points by depth. For most 
machine learning methods and neural networks in particular, 
the choice of performance metrics is not obvious, so the ta-
ble shows 3 metrics by which one can evaluate the effective-
ness of the proposed approach: the residual, the area under 
the ROC curve and the minimum accuracy for all the con-
sidered test models. The accuracy is the percentage of cor-
rect answers in relation to the total number of examples. 
This approach to the analysis of the results in Table 2 was 
chosen in order to determine the minimum threshold of the 
working efficiency for different sections.

Based on the results of the experiments, we chose a neu-
ral network of four layers with 16 filters, each 32 readings 
long. It should be noted that in the case of the simulated 
data, the accuracy averaged above 90%, whereas on the field 
data it could be about 60%. This result, among other things, 
is associated with a high degree of ambiguity in the detec-
tion of the boundaries from the field data. In such a way, the 
accuracy metric can be significantly reduced if the neural 
network detects the boundary in the adjacent reading from 
the one specified by the log analyst. Obviously, in practical 
use of the algorithm, this effect will not matter.

Fig. 2. Example of a segment of the field LLS logs measured at the Fedorov field and used for the network training.

Fig. 3. ROC curves of applying the convolutional fully connected neu-
ral network for different synthetic models of the borehole environment 
(model_1–model_5) and the field data. The legend shows the area un-
der the ROC curve.
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The trained neural network was applied to each borehole 
model separately. The main criterion for the success of the 
trained neural network was the area under the ROC curve 
for various borehole environment models (Fig. 3). The ROC 
curve demonstrates the sensitivity of the true positive (True, 
boundary presence) algorithm responses to its false positive 
responses. The true positive response is the case when the 
algorithm correctly indicates the boundary position. The 
false positive response is when the algorithm indicates the 
presence of a boundary where there is none. The vertical 

axis shows the percentage of the true correct answers, while 
on the horizontal one is the percentage of the false correct 
answers. The speed of the true positive responses is the ratio 
of the true positive responses to the total number of the pos-
itive values (True, boundary presence). Similarly, the speed 
of the false positive responses is the ratio of the false posi-
tive responses to the total number of the negative values 
(False, boundary absence).

For the synthetic data (model_1–model_5), the area un-
der the curve is at least 90%, which corresponds to the high 

Table 2. Results of experiments on the choice of the neural network parameters

Number of filters/filter length 3 layers 4 layers 5 layers 6 layers

16/16 89.4/66.4 87.9/60.9 87.9/67.9 89.4/66.1 
16/32 88.9/60.9 91.9/64.2 85.4/60.2 90.0/65.3 
32/16 87.0/60.4 83.1/59.2 77.3/51.2 75.7/51.4 
32/32 87.2/61.4 80.8/58.9 77.9/53.8 75.1/56.5 

Note. The cells indicate the area under the ROC curve and the accuracy.

Fig. 4. Result of employing the algorithm to the field data measured at the Russkin field. The solid gray horizontal lines show the geoelectric 
boundaries detected by the algorithm. The dotted line shows the boundary missed by the algorithm.
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accuracy of the algorithm. For the field data from the Fe-
dorov field (F3_mezozoy), the area is 89% of the maximum 
possible area under the ROC curve, which also demonstrates 
the high reliability of the proposed approach.

RESULTS AND DISCUSSION

The trained neural network was tested on model and field 
data. Fig. 4 shows the results of testing the algorithm on the 
field data measured at the Russkin field. The comparison of 
the detected boundaries with the data of high-frequency iso-
parametric induction logging sounding (HIILL) and lateral 
logging (LL) shows the workability of the proposed ap-
proach.

However, in this example we can distinguish the missing 
boundary (shown by the dotted line) and ambiguous opera-
tion on the interval with a smooth change in electrical resis-
tivity with depth (xx70–xx72 m). Under such conditions, the 
algorithm approximates the smooth change by a fairly fre-
quent piecewise-constant partition. This behavior can be 
either true, since most of the existing LLS inversion algo-
rithms are based on piecewise-constant parameterization of 
the medium or lead to the selection of too thin layers where 
this is not necessary.

In the training sample, an emphasis is placed on the alter-
nating intervals of thin enough interlayers, since it is these 
sections that are most difficult for manual selection of the 
boundaries, and two-dimensional inversion is necessary for 
the correct reconstruction of their parameters. To extend the 
applicability of the algorithm and improve its accuracy, it is 
desirable to increase the representativeness of the training 
sample with examples of the signals measured in different 
geological conditions. The considered neural network archi-
tecture does not require large computational resources for 
training. This allows one to perform training again or to con-
duct additional training to adapt to specific geological con-
ditions or an oilfield.

It ought to be remarked that in relation to field data in the 
sections where the change in electrical resistivity in the ver-
tical direction can differ from piecewise-constant, the very 
concept of a horizontal boundary is not always fully appli-
cable. The result of the work of the developed algorithm is 
the probability of finding the boundary at each depth; its 
conversion into sectional layering is performed using the 
threshold coefficient. Therefore, the question of the correct-
ness of the boundary selection in one or another case will 
always depend on the opinion of a particular log analyst. 
However, even in the most difficult environments with thin 
lamination or gradient resistivity change by depth, manual 
work is reduced to correcting a relatively small number of 
errors made by the algorithm, based on the analysis of prob-
ability values. Compared to the manual boundary selection, 
it significantly speeds up the process and minimizes errors 
in complex sections.

CONCLUSIONS

We developed an algorithm for automatic detection of 
geoelectric boundaries according to LLS data, on the basis 
of a fully connected convolutional neural network. The al-
gorithm was trained on synthetic and field LLS data typical 
of terrigenous deposits of Western Siberia, including those 
corresponding to measurements on anisotropic intervals. 
The algorithm is capable of distinguishing in the section 
both rather thick layers and thin but electrically contrast in-
terlayers. Accordingly, its usage allows generating the laye
ring of a complex section, which is applicable for the two- 
dimensional data inversion with minimal participation of a 
log analyst. It is significant that the calculation of the neural 
network results does not require considerable computational 
resources and time. In addition, the neural network employ-
ment does not require to carry out preliminary data prepara-
tion: the algorithm can work with raw measurements in the 
.las format.

The algorithmic part of the study was carried out with the 
financial support of the Russian Foundation for Basic Re-
search in the framework of the research project No. 18-35-
00412. The methodic part of the study and the training 
sample formation were conducted with the support of the 
Fundamental Scientific Research project No. 0331-2019-
0014 ‘Borehole geophysics in conductive anisotropic dis-
persing media, based on high-performance solutions of 
three-dimensional problems, high-precision logging data 
and laboratory core studies’.
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