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1. Введение

Для описания детерминированных динамических систем в непрерывном времени при-
меняются обыкновенные дифференциальные уравнения (ОДУ) (в этой работе рассмат-
риваются только динамические системы с сосредоточенными параметрами), однако для
учета случайных возмущений их, как правило, недостаточно. Довольно широкий класс
стохастических динамических систем в непрерывном времени можно описать стохасти-
ческими дифференциальными уравнениями (СДУ). Наиболее часто в приложениях до-
статочно использовать СДУ с винеровской составляющей или СДУ с гауссовским белым
шумом. Укажем некоторые недавние публикации за последние несколько лет, которые
дают представление о возможных областях применения СДУ.

Традиционно СДУ включают в математические модели физических явлений. В [1]
предложена модифицированная модель Лоренца, учитывающая случайные возмущения,
для описания термодинамических процессов в жидкостях, варианты этой модели мо-
гут использоваться для моделирования климатических изменений. СДУ применяются
в стохастической теории гравитации [2] (авторы используют модель на основе типового
гауссовского процесса — процесса Орнштейна–Уленбека). Приложение к сейсмологии с
помощью моделирования процесса Бесселя изучается в [3]. Применение СДУ при описа-
нии динамики бозонов, связи СДУ с открытыми квантовыми системами и возможности
использования последних для решения СДУ обсуждаются в [4].

СДУ находят применение в космологии и астрофизике. В [5] рассматривается модель
осциллирующего аккреционного диска для определения спектрального индекса мощно-
сти и изменчивости наблюдаемого объекта. Стохастическая модель расширения вселен-
ной предлагается в [6]. В [7] проведены исследования переноса и модуляции частиц кос-
мических лучей в турбулентной астросфере. Стохастические уравнения Ньютона для
описания движения тел с приложениями к анализу динамики спиральных галактик со-
ставляют основу работы [8].

Естественно, многие инженерные задачи требуют описания изучаемых процессов с
помощью СДУ. В [9] СДУ применяются в задачах аэродинамики в условиях турбулент-
ности, а именно используется формирующий фильтр для моделирования “реального”
шума. Модель литиевой батареи и системы оценивания ее состояния как составная часть
системы управления батареями рассматривается в [10]. Работа [11] описывает задачу ста-
билизации космического аппарата, находящегося под действием случайных возмущений,
движение которого описывается СДУ. СДУ часто составляют основу математических
моделей систем наблюдения в задачах фильтрации, а также сглаживания и прогнозиро-
вания, например задача оценивания ошибки навигационной системы решается в [12].

Среди приложений в биологии отметим работу [13], в которой рассматривается мате-
матическая модель хемостата — аппарата для непрерывного культивирования микроор-
ганизмов, учитывающая случайные факторы. В [14] изучается процесс выживания или
вымирания видов в простой пищевой цепи, состоящей из нескольких звеньев, в кото-
рой каждый вид взаимодействует не более чем с двумя другими видами, находящимися
непосредственно выше или ниже него в пищевой цепи (одно из многих обобщений модели
Лотки–Вольтерра). В обеих работах возникают процессы Орнштейна–Уленбека.

К приложениям в экологии можно отнести статью [15], которая содержит математи-
ческую модель засушливой экосистемы с точки зрения взаимодействия растительности
с поверхностными и грунтовыми водами. А в [16] СДУ описывают параметры деревьев,
например диаметр, высоту и др., и такие модели востребованы при исследованиях в
лесном хозяйстве.
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Следующие работы затрагивают исследования в области медицины. В частности,
в [17] изучается стохастическая модель на основе осциллятора Уилсона–Коуэна, позво-
ляющая оценить эффективность входных воздействий на клетки (пирамидальные ней-
роны и интернейроны), которые связаны с гамма-ритмами, имеющими важное значение
для взаимодействия между областями головного мозга. В [18] рассматриваются динами-
ческие изменения опухолевых и иммунных клеток (иммунный ответ на химиотерапию).
Математическая модель передачи инфекции (ВИЧ) от клетки к клетке составляет осно-
ву исследования [19].

Математические модели передачи инфекции в популяции, а не от клетки к клетке,
как в последней упомянутой работе, с учетом случайных факторов рассматриваются
в [20, 21]. Как и многие подобные работы, они основаны на модификации классической
модели Кермака–Маккендрика. Нужно отметить, что модели распространения эпиде-
мий в последнее время стали довольно популярными. Несомненно, интерес к ним возрос
с появлением вируса COVID-19. Кроме того, такие модели используются для описания
распространения вредоносного программного обеспечения в компьютерных сетях. На-
пример, работа [22] посвящена изучению стохастических моделей атаки на компьютер-
ную сеть и защиты от этой атаки в игровой постановке. В [23] рассматривается модель
распространения компьютерных вирусов на основе упрощенной модели распространения
эпидемий.

Нельзя не отметить применение СДУ в сфере экономики и финансов, так как в этих
областях случайные факторы, как правило, являются неотъемлемой частью постановки
задачи. В [24] анализируется модель динамики криптовалют на основе геометрических
броуновских движений во взаимосвязи с активностью в социальных сетях (в этой ча-
сти основу моделирования составляют геометрические процессы Орнштейна–Уленбека).
Математические модели, описывающие цену базового актива с учетом стохастической
волатильности, в том числе и для российских опционов, изучаются в [25,26].

Можно найти еще много различных приложений, для которых математические мо-
дели включают СДУ. Так, объект исследования [27] — модель распространения слухов
в социальных сетях с учетом противодействия и контроля вредного воздействия, а в [28]
рассматривается стохастическая модель одноязычкового музыкального инструмента, на-
пример кларнета. Кроме того, решение СДУ может быть вспомогательной частью неко-
торого метода или алгоритма. Например, в [29] описан метод стаи синиц (метаэвристиче-
ский метод оптимизации) в приложении к задаче оптимального управления дискретными
детерминированными системами. Решение СДУ в указанной работе моделирует поведе-
ние синиц, находящихся в поисках еды, и это решение лежит в основе стратегии поиска
минимума функции многих переменных.

Анализ перечисленных публикаций [1, 2, 7, 11–13, 20–22, 27] показывает, что в значи-
тельной части работ для моделирования решений СДУ используется простейший чис-
ленный метод — метод Эйлера–Маруямы [30]. Довольно редко [2, 15, 19] применяется
метод Мильштейна [31]. И только в одной из публикаций, а именно [9], авторы восполь-
зовались для расчетов более сложным методом Платена [32]. В некоторых публикаци-
ях [5,8,10,17,18] авторы не указывают название численного метода решения СДУ, либо
ссылаются лишь на задействованное при расчетах программное обеспечение: специали-
зированный модуль DifferentialEquations для программ на языке Julia [3] (по имеющейся
ссылке [33] можно предположить, что автор применил один из вариантов метода типа
Рунге–Кутты) или система Wolfram Mathematica [28].

Конечно, приведенный анализ не претендует на полноту. Однако есть основания по-
лагать, что при анализе большего числа публикаций общая картина если изменится,
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то незначительно. Конечно, список используемых методов расширится, но можно быть
уверенным, что метод Эйлера–Маруямы будет лидировать с большим отрывом, а следу-
ющими после него будут простые варианты метода Мильштейна и методов типа Рунге–
Кутты.

Если проанализировать применение численных методов решения ОДУ, то окажется,
что часто для расчетов выбирают более сложный (и более точный) численный метод,
нежели метод Эйлера, — метод Рунге–Кутты четвертого порядка точности, который
обеспечивает баланс между простотой реализацией и достаточной для многих приложе-
ний точностью. При приближенном решении СДУ достижение такой точности — нетри-
виальная задача.

Для решения СДУ исследователи выбирают самый простой в реализации численный
метод, что неудивительно, и это связано со сложностью реализации численных методов,
обеспечивающих более высокую точность по сравнению с методом Эйлера–Маруямы.
Однако характеристики этого метода таковы, что для увеличения точности потраектор-
ной аппроксимации в l раз требуется уменьшить шаг численного интегрирования в l2 раз,
а при необходимости оценки вероятностных характеристик решения СДУ это повлечет
и увеличение числа моделируемых траекторий при согласованном выборе параметров
статистического алгоритма [34,35].

Невысокая точность метода Эйлера–Маруямы особенно заметна при решении СДУ
с мультипликативным шумом. Например, две трети проанализированных публикаций
включают именно такие СДУ [1, 4, 6, 7, 9, 11, 14–27] и для части из них используется
именно метод Эйлера–Маруямы [1, 7, 11, 20–22, 26, 27]. СДУ с аддитивным шумом рас-
сматриваются в [2, 3, 5, 10, 12,13,28].

Компромиссным вариантом здесь можно считать метод Мильштейна. Для него спра-
ведливо следующее свойство: для увеличения точности потраекторной аппроксимации
в l раз требуется уменьшить шаг численного интегрирования в l раз.

Существуют разные семейства значительно более точных численных методов реше-
ния СДУ, представленные в [32]. Здесь стоит отметить методы, основанные на кратных
обобщенных рядах Фурье [36,37], и метод, связанный с применением спектральной фор-
мы математического описания для моделирования повторных стохастических интегра-
лов (численно-спектральный метод) [38]. Сложность реализации таких методов можно
было бы компенсировать, разработав программное обеспечение и обеспечив к нему сво-
бодный доступ. В частности, такое программное обеспечение реализовано для методов,
основанных на кратных обобщенных рядах Фурье [39]. Пример реализации численно-
спектральных методов содержится в [40].

Классификацию численных методов решения СДУ можно проводить по разным при-
знакам, например выделяя явные и неявные методы, одностадийные и многостадийные
методы. Кроме того, такая классификация всегда связана с определениями сходимости
приближенного решения, т. е. рассматриваются методы, сходящиеся в сильном смыс-
ле (потраекторная сходимость) или в слабом смысле (сходимость функционалов от ре-
шения). Чтобы составить представление о существующих численных методах решения
СДУ, рекомендуется обратиться к монографиям [32,34,36,41].

Данная статья имеет обзорный характер и адресована исследователям, для которых
численные методы решения СДУ являются инструментом решения задач в различных
областях. Ее основная цель состоит в кратком описании методов типа Розенброка для
приближенного решения СДУ. Она показывает, каким образом можно улучшить харак-
теристики численных методов и увеличить точность расчетов, не слишком увеличивая
сложность реализации. Кроме того, статья предлагает новый вариант метода типа Ро-
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зенброка для СДУ с мультипликативным шумом для некоммутативного случая. Его
апробация проведена на примере моделирования вращательной диффузии.

2. Методы типа Розенброка для решения ОДУ

Прежде чем описывать методы типа Розенброка для приближенного решения СДУ,
рассмотрим ОДУ. В 1963 г. Х. Розенброк предложил для приближенного решения систем
ОДУ использовать класс методов, которые отличаются от явных методов Рунге–Кутты
применением регуляризации при каждом вычислении правой части системы ОДУ [42].
Регуляризация аналогична первому приближению по Ньютону в неявном методе Эйле-
ра. Оказалось, что при соответствующем выборе параметров такие методы становятся
А-устойчивыми (см. определение ниже).

Для векторного нелинейного ОДУ

dx(t)

dt
= f

(
t, x(t)

)
, x(t) ∈ Rn, x(t0) = x0, (1)

где f(t, x) — векторная функция, удовлетворяющая условиям существования и един-
ственности решения задачи Коши, запишем метод Эйлера

xk+1 = xk + hf(tk, xk) (2)

и семейство одностадийных методов типа Розенброка

xk+1 = xk +

(
I − ha∂f(tk, xk)

∂x

)−1
hf(tk, xk), (3)

где xk — приближенное решение в точке tk = t0 + kh, h > 0 — заданный шаг числен-
ного интегрирования, I — единичная матрица порядка n, ∂f(t, x)/∂x — матрица Якоби,
a — параметр этого семейства методов. В методах типа Розенброка (3) в сравнении с
формулой для метода Эйлера (2) присутствует регуляризирующий множитель.

Понятие сходимости численного метода определено при h → 0. Однако желательно,
чтобы и при больших размерах шага численное решение в точности сохраняло хотя
бы некоторые свойства точного решения. Анализ поведения численного решения при
больших размерах шага интегрирования проводится для модельного ОДУ

dx(t)

dt
= λx(t), x(t) ∈ C, x(t0) = x0, λ = α+ iω, α < 0. (4)

Говорят, что метод абсолютно устойчив с шагом h, если при его применении к уравне-
нию (4) выполняется равенство limk→+∞ xk = 0, и метод А-устойчив, если он абсолютно
устойчив с любым шагом [43]. При численном решении шаг h должен выбираться из
области абсолютной устойчивости. Нарушение требования устойчивости метода обычно
дает о себе знать катастрофическим ростом модуля численного решения. При a > 1/2
методы (3) являются А-устойчивыми.

Пусть x(t) — это решение задачи Коши для линейного однородного ОДУ первого
порядка (4) и x(t) ∈ R при λ ∈ R. Найти его точное решение не составляет проблемы,
при λ < 0 выполняется равенство limt→+∞ x(t) = 0. Рассмотрим приближенное решение,
полученное с помощью простейшего численного метода — метода Эйлера,

xk+1 = xk + hλxk = (1 + hλ)xk, k = 0, 1, . . . . (5)

Чтобы для решения разностного уравнения (5) выполнялось равенство limk→+∞ xk = 0,
должно быть справедливым условие |1 + hλ| < 1, которое зависит от h при фиксирован-
ном λ.
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Далее рассмотрим применение метода Розенброка из семейства одностадийных мето-
дов типа Розенброка (3) при a = 1/2:

xk+1 = xk +

(
1− hλ

2

)−1
hλxk =

2 + hλ

2− hλ
xk, k = 0, 1, . . . , (6)

где (1− hλ/2)−1 — регуляризующий множитель.
Для устойчивости численного решения (6) должно выполняться условие |(2+hλ)/(2−

hλ)| < 1, и оно, очевидно, выполнено при λ < 0 для любого h. Таким образом, метод Ро-
зенброка является абсолютно устойчивым с любым шагом численного интегрирования,
т. е. является A-устойчивым [43] в отличие от метода Эйлера.

Развитие методов типа Розенброка отражено в недавно опубликованном обзоре [44].
Подчеркнем, что выше приведен самый простой вариант метода типа Розенброка, обоб-
щающий метод Эйлера. В общем случае методы типа Розенброка обобщают явные ме-
тоды Рунге–Кутты и относятся к одношаговым многостадийным численным методам.
Формулы для M -стадийного метода типа Розенброка в монографии [43] записываются
следующим образом:

xk+1 = xk +

M∑
i=1

piKi, Ki =

(
I − ha∂f(tk, xk)

∂x

)−1
hf

(
tk + γih, xk +

i−1∑
l=1

βilKl

)
,

где pi, a, γi и βil — числовые параметры, β10 = 0.
В монографии [45] рассмотрено более общее семейство методов, которые также яв-

ляются обобщением методов типа Розенброка. Их называют методами Розенброка–Ван-
нера. Правило выбора числовых параметров, обеспечивающее согласование с разложе-
нием решения в ряд Тейлора, теоремы о сходимости, описание различных модификаций
методов типа Розенброка читатель может найти в обзоре [44] и монографиях [43,45].

Метод типа Розенброка (3) при a = 1/2 не только обладает свойством A-устойчи-
вости, но и имеет второй порядок сходимости, в то время как метод Эйлера (2) имеет
лишь первый порядок сходимости. Методы типа Розенброка рекомендуются для решения
жестких систем ОДУ [43,45].

3. Методы типа Розенброка для решения СДУ

Перейдем к задаче Коши для СДУ и сначала рассмотрим линейное уравнение

dx(t) = λx(t) dt+ σ dw(t), x(t0) = x0, λ, σ ∈ R, (7)

где x(t) — случайный процесс, w(t) — стандартный винеровский процесс, случайная
величина x0 не зависит от w(t).

Приближенное решение уравнения (7) можно найти с помощью метода Эйлера–Мару-
ямы [30] — самого простого численного метода для СДУ:

xk+1 = xk + hλxk +
√
hσξk, k = 0, 1, . . . , (8)

где в дополнение к ранее введенным обозначениям ξk — независимые случайные вели-
чины, имеющие стандартное нормальное распределение для всех k. При условии λ < 0
точное решение СДУ (7) — процесс Орнштейна–Уленбека — имеет предельное нормаль-
ное распределение с нулевым математическим ожиданием и дисперсией σ2/(2|λ|), т. е.

lim
t→+∞

Ex(t) = 0 и lim
t→+∞

Ex2(t) =
σ2

2|λ|
,
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где E означает математическое ожидание. Но это свойство не выполняется для решения
стохастического разностного уравнения (8) ни для какого h [43].

Для приближенного решения СДУ Стратоновича в 1986 г. Т.А. Авериной и С.С. Арте-
мьевым построено семейство методов типа Розенброка [46]. Эти методы успешно приме-
няются на протяжении многих лет для решения стохастических задач, математические
модели которых заданы СДУ. Так, например, в [47] рассмотрена модель фазового пере-
хода первого рода с образованием дефектов, их накоплением и изменением в кристал-
лической решетке, а работа [48] изучает модель фазового перехода на начальной стадии
формирования капель в объеме пара с фиксированным зарядом на каплях. Моногра-
фия [34] содержит множество примеров применения методов типа Розенброка в самых
разных областях. Эти методы прошли апробацию на задачах фильтрации сигналов в
условиях помех [49,50].

Самый простой численный метод типа Розенброка для СДУ (7) обобщает метод
Эйлера–Маруямы [43]:

xk+1 = xk +

(
1− hλ

2

)−1
(hλxk +

√
hσξk), k = 0, 1, . . . , (9)

и решение стохастического разностного уравнения (9) имеет предельное нормальное рас-
пределение с нулевым математическим ожиданием и дисперсией σ2/(2|λ|) при условии
λ < 0 для любого h. Это свойство метода типа Розенброка называется асимптотической
несмещенностью [43], оно обобщает понятие A-устойчивости.

Отметим, что уравнение (7) не просто является модельным для изучения свойств
численных методов решения СДУ, но и может быть основой для описания реальных
явлений [2,13,14].

Рассмотрим общий случай векторного нелинейного СДУ Ито

dx(t) = f
(
t, x(t)

)
dt+ σ

(
t, x(t)

)
dw(t), x(t0) = x0, (10)

где x(t) — n-мерный случайный процесс, w(t) — s-мерный стандартный винеровский
процесс с независимыми компонентами, случайный вектор x0 не зависит от w(t), f(t, x) и
σ(t, x) — векторная и матричная функции, удовлетворяющие условиям существования и
единственности решения задачи Коши. СДУ Ито (10) соответствует СДУ Стратоновича

dx(t) = g
(
t, x(t)

)
dt+ σ

(
t, x(t)

)
◦ dw(t), x(t0) = x0, (11)

где g(t, x) — векторная функция:

g(t, x) = f(t, x)− 1

2

s∑
l=1

∂σ·l(t, x)

∂x
σ·l(t, x), (12)

а σ·l(t, x) — столбец матричной функции σ(t, x) с номером l.
Метод Эйлера–Маруямы для приближенного решения СДУ Ито (10) имеет вид

xk+1 = xk + hf(tk, xk) +
√
hσ(tk, xk)ξk, k = 0, 1, . . . , (13)

где ξk — случайные векторы, все компоненты ξk = [ξ1k . . . ξsk]
> которых имеют стан-

дартное нормальное распределение и независимы в совокупности для всех k. В 1994 г.
С.С. Артемьевым рассмотрено семейство обобщенных методов типа Розенброка [51]

xk+1 = xk +

(
I − ha∂f(tk, xk)

∂x

)−1(
hf(tk, xk) +

√
hσ(tk, xk)ξk

)
, (14)
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и доказано, что методы являются асимптотически устойчивыми в среднеквадратическом
смысле при a > 1/2. Отличие методов (13) и (14) состоит в регуляризирующем множи-
теле, как и в случае численных методов (2) и (3) для ОДУ, причем формулы (2) и (3),
очевидно, получаются из (13) и (14) при нулевой матрице σ(t, x). Далее применяется
метод из этого семейства при a = 1/2:

xk+1 = xk +

(
I − h

2

∂f(tk, xk)

∂x

)−1(
hf(tk, xk) +

√
hσ(tk, xk)ξk

)
. (15)

Именно метод (13) выбирает большинство авторов для моделирования траекторий
решения СДУ, что следует из приведенного во введении обзора. Этот же обзор показы-
вает, что следующий по частоте применения — метод Мильштейна [31]. Приведем его
для СДУ Стратоновича (11):

xk+1 = xk + hg(tk, xk) +
√
hσ(tk, xk)ξk +

h

2

∂σ(tk, xk)

∂x
σ(tk, xk)ξ

2
k, (16)

где
∂σ(tk, xk)

∂x
σ(tk, xk)ξ

2
k =

s∑
j1,j2=1

∂σ·j1(tk, xk)

∂x
σ·j2(tk, xk)ξj1kξj2k.

В статье [46] рассмотрен метод типа Розенброка для решения СДУ Стратоновича
(11), который обладает высокой точностью и хорошими свойствами устойчивости,

xk+1 = xk+

(
I− h

2

∂g(tk, xk)

∂x

)−1(
hg(tk, xk)+

√
hσ(tk, xk)ξk+

h

2

∂σ(tk, xk)

∂x
σ(tk, xk)ξ

2
k

)
, (17)

где ∂g(t, x)/∂x — матрица Якоби, а все остальные обозначения введены выше.
Метод типа Розенброка (17) входит в семейство двухстадийных методов типа Розен-

брока для решения СДУ Стратоновича [34, 46]. Эти методы, как и численные методы
решения ОДУ, обобщают методы типа Рунге–Кутты:

xk+1 = xk + p1K1 + p2K2 +
√
h(q11G0 + q12G1 + q13G2)ξk,

G0 = σ(tk, xk),

K1 =

(
I − ha∂g(tk, xk)

∂x

)−1(
hg(tk, xk) + q1

√
hG0ξk +

q2h

2
Ξ

)
,

G1 = σ

(
xk + α1K1 + q3

√
hG0ξk +

q4h

2
Ξ

)
,

K2 =

(
I − ha∂g(tk, xk)

∂x

)−1[
hg

(
tk, xk+α2K1+q5

√
hG0ξk+

q6h

2
Ξ

)
+q7
√
hG1ξk+

q8h

2
Ξ

]
,

G2 = σ
(
xk + α3K1 + α4K2 + q9

√
hG1ξk +

q10h

2
Ξ

)
, Ξ =

∂σ(tk, xk)

∂x
σ(tk, xk)ξ

2
k,

где p1, p2, a, α1, . . . , α4 и q1, . . . , q13 — числовые параметры.
Правило выбора числовых параметров для согласования с разложением решения в

ряд, который является аналогом ряда Тейлора для случайных процессов, теоремы о
сходимости, а также различные варианты методов типа Розенброка содержатся в моно-
графиях [34,43].
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4. Модифицированный метод типа Розенброка
для решения СДУ

Метод Мильштейна (16) основан на следующем соотношении, которое представля-
ет собой часть разложения точного решения СДУ Стратоновича (11) в ряд Тейлора в
окрестности точки tk [32]:

xk+1 = xk + hg(tk, xk) +
s∑

j1=1

σ·j1(tk, xk)I
(j1)
[tk,tk+1]

+
s∑

j1,j2=1

∂σ·j1(tk, xk)

∂x
σ·j2(tk, xk)I

∗(j2j1)
[tk,tk+1]

, (18)

где

I
(j1)
[tk,tk+1]

=

∫ tk+1

tk

wj1(τ)dτ, I
∗(j2j1)
[tk,tk+1]

=

∫ tk+1

tk

∫ τ1

tk

dwj2(τ2) ◦ dwj1(τ1).

В этих выражениях I(j1)[tk,tk+1]
— случайная величина (стохастический интеграл), имеющая

нормальное распределение с нулевым математическим ожиданием и дисперсией h =
tk+1 − tk, т. е.

I
(j1)
[tk,tk+1]

=
√
hξj1k. (19)

Для случайной величины I
∗(j2j1)
[tk,tk+1]

(повторный стохастический интеграл Стратоновича
второй кратности) простая моделирующая формула реализуется только при условии
j1 = j2:

I
∗(j1j1)
[tk,tk+1]

=
h

2
ξ2j1k, (20)

если же j1 6= j2, то в методе (16) полагается

I
∗(j2j1)
[tk,tk+1]

≈ h

2
ξj1kξj2k, (21)

но это довольно грубая аппроксимация повторного стохастического интеграла [31]

E
(
I
∗(j2j1)
[tk,tk+1]

)2
=
h2

2
, E

(
h

2
ξj1kξj2k

)2

=
h2

4
.

Более точную аппроксимацию можно получить с помощью различных подходов. Са-
мый очевидный из них — численное интегрирование. Фактически, моделирование слу-
чайной величины I

∗(j2j1)
[tk,tk+1]

эквивалентно решению системы двух СДУ Стратоновича:

dx(t) = dwj2(t), dy(t) = x(t) ◦ dwj1(t), x(tk) = y(tk) = 0, I
∗(j2j1)
[tk,tk+1]

= y(tk+1),

и это решение можно получить приближенно, например методом Эйлера–Маруямы. Та-
кой способ применялся еще в [31], а затем дополнительно исследовался, например, в [52].

Более эффективный подход состоит в применении метода Фурье, он основан на пред-
ставлении винеровского процесса в виде функционального ряда со случайными коэффи-
циентами. Результатом является представление повторного стохастического интеграла
Стратоновича в виде ряда случайных величин. Можно показать [37], что числовые ко-
эффициенты такого ряда — это коэффициенты разложения функции Хевисайда 1(τ2−τ1)
на квадрате [tk, tk+1]

2 в обобщенный ряд Фурье по некоторой полной ортонормированной
системе функций, заданной на отрезке [tk, tk+1]. В частности, подобные ряды случайных
величин получены относительно полиномов Лежандра, тригонометрических функций,
функций Уолша и Хаара [31, 36, 43, 53]. Для аппроксимации I

∗(j2j1)
[tk,tk+1]

достаточно взять
частичную сумму ряда случайных величин, а соотношение (21) — это и есть такая ап-
проксимация со среднеквадратической ошибкой ε = h2/4.

Введение дополнительных слагаемых в частичную сумму позволяет уменьшить ошиб-
ку аппроксимации. Один из таких вариантов наиболее известен, он был предложен в [31]:
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I
∗(j2j1)
[tk,tk+1]

≈ h

2
ξj1kξj2k +

h√
2π

m∑
i=1

µj1kiξj2k − ξj1kµj2ki
i

+

h

2π

m∑
i=1

νj1kiµj2ki − µj1kiνj2ki
i

+ h

{
1

12
− 1

2π2

m∑
i=1

1

i2

} 1
2

(µj1k0ξj2k − ξj1kµj2k0), (22)

где случайные величины ξjk, µjki при i = 0, 1, . . . ,m и νjki при i = 1, . . . ,m имеют стан-
дартное нормальное распределение и независимы в совокупности для всех k и j, а m —
заданное натуральное число, от которого зависит среднеквадратическая ошибка аппрок-
симации случайной величины I

∗(j2j1)
[tk,tk+1]

εm =
h2

12
− h2

2π2

m∑
i=1

1

i2
, lim

m→+∞
εm = 0,

и эта ошибка даже при минимальном m в три раза меньше, чем среднеквадратическая
ошибка аппроксимации, соответствующая формуле (21).

Еще один подход к аппроксимации детально описан в [54,55], там же проведено срав-
нение с другими подходами, в том числе и не описанными в этой статье.

Хотя в работах [2,15,19] методом Мильштейна называют метод (16), правильнее под
методом Мильштейна понимать метод (18) с учетом (19), (21) и (22) [31, 32, 36]. Можно
предложить его обобщение, а именно следующую модификацию метода типа Розенброка:

xk+1 = xk +

(
I − h

2

∂g(tk, xk)

∂x

)−1
× (23)(

hg(tk, xk) +
s∑

j1=1

σ·j1(tk, xk)I
(j1)
[tk,tk+1]

+
s∑

j1,j2=1

∂σ·j1(tk, xk)

∂x
σ·j2(tk, xk)I

∗(j2j1)
[tk,tk+1]

)
, (24)

где также используются формулы (19), (21) и (22).
Более точная аппроксимация случайных величин I∗(j2j1)[tk,tk+1]

для всех j1, j2 обеспечивает
методу Мильштейна (18) более высокий порядок сильной сходимости по сравнению с
методом Эйлера–Маруямы (13), о чем упоминается во введении. Аналогичное свойство
справедливо для метода типа Розенброка (23). Данное свойство далее иллюстрируется
на примере моделирования вращательной диффузии.

Замечание 1. Метод Мильштейна (18) записан для СДУ Стратоновича (11). Соответ-
ствующий метод Мильштейна для СДУ Ито (10) имеет вид

xk+1 = xk +hf(tk, xk)+

s∑
j1=1

σ·j1(tk, xk)I
(j1)
[tk,tk+1]

+

s∑
j1,j2=1

∂σ·j1(tk, xk)

∂x
σ·j2(tk, xk)I

(j2j1)
[tk,tk+1]

, (25)

где вместо случайной величины I
∗(j2j1)
[tk,tk+1]

используется I
(j2j1)
[tk,tk+1]

(повторный стохастиче-
ский интеграл Ито второй кратности):

I
(j2j1)
[tk,tk+1]

=

∫ tk+1

tk

∫ τ1

tk

dwj2(τ2) dwj1(τ1),

связанный с системой двух СДУ Ито:

dx(t) = dwj2(t), dy(t) = x(t) dwj1(t), x(tk) = y(tk) = 0, I
(j2j1)
[tk,tk+1]

= y(tk+1).
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При j1 = j2 указанные случайные величины удовлетворяют соотношению

I
∗(j1j1)
[tk,tk+1]

= I
(j1j1)
[tk,tk+1]

+
h

2
,

а при j1 6= j2 совпадают с вероятностью 1. Фактически имеется два варианта метода
Мильштейна: для решения СДУ Стратоновича — (18) и для решения СДУ Ито — (25),
они порождают эквивалентные приближенные решения.

Для метода типа Розенброка (23) также можно указать эквивалентную форму

xk+1 = xk +

(
I − h

2

∂g(tk, xk)

∂x

)−1
×(

hf(tk, xk) +
s∑

j1=1

σ·j1(tk, xk)I
(j1)
[tk,tk+1]

+
s∑

j1,j2=1

∂σ·j1(tk, xk)

∂x
σ·j2(tk, xk)I

(j2j1)
[tk,tk+1]

)
, (26)

однако в ней, тем не менее, используется матрица Якоби ∂g(t, x)/∂x, соответствующая
СДУ Стратоновича.

Замечание 2. Моделирующие формулы для случайных величин, имеющих нормаль-
ное распределение, используют случайные величины с равномерным распределением на
интервале (0, 1). Для моделирования последних рекомендуется применять методы, опи-
санные в [56,57].

Замечание 3. Применение формулы (22) в методе (23) не столь принципиально. Вместо
нее можно воспользоваться другими соотношениями, описанными, например, в [36, 38,
43,54,55].

Замечание 4. Методы (18) и (23) (или (25) и (26)) имеет смысл применять только
для приближенного решения СДУ с мультипликативным шумом для некоммутативного
случая. Поясним это на примере векторного линейного СДУ Стратоновича:

dx(t) = Ax(t) +
s∑
j=1

Cjx(t) ◦ dwj(t), (27)

где A и Cj — числовые квадратные матрицы порядка n, wj(t) — компоненты s-мерного
векторного винеровского процесса ω(t).

При условии [Cj1 , Cj2 ] = Cj1Cj2 − Cj2Cj1 = 0 для всех j1, j2 = 1, . . . , s (j1 6= j2)
методы (18) и (25) совпадают с (16), а методы (23) и (26) совпадают с (17). Аналогичная
ситуация может возникать для нелинейных СДУ. Тогда говорят, что рассматривается
коммутативный случай (см., например, [15,19]), иначе — некоммутативный случай.

5. Вычислительный эксперимент

Оценим погрешность аппроксимации первого интеграла M(t, x) = e−2(α
2−µ)t|x|2 =

const для векторного линейного СДУ Ито, описывающего вращательную диффузию в R3

[58], при условии t ∈ [0, 1]:
dx(t) = −µx(t) dt+ α

(
C1x(t) dw1(t) + C2x(t) dw2(t) + C3x(t) dw3(t)

)
, (28)

где

x(0) = x0 =

 1
−2
3

 , C1 =

 0 0 0
0 0 −1
0 1 0

 , C2 =

 0 0 1
0 0 0
−1 0 0

 , C3 =

 0 −1 0
1 0 0
0 0 0

 ,
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а w1(t), w2(t), w3(t) — независимые стандартные винеровские процессы, µ и α — числовые
параметры.

Результат сравнения уравнения (28) с уравнением (10) показывает, что n = s = 3 и

x(t) =

 x1(t)x2(t)
x3(t)

, w(t) =

 w1(t)
w2(t)
w3(t)

, f(t, x) = −µ

 x1x2
x3

, σ(t, x) = α

 0 −x2 x1
x2 0 −x0
−x1 x0 0

.
Тогда (

I − h

2

∂f(t, x)

∂x

)−1
=

(
I +

h

2
µI

)−1
=

2

2 + hµ
I.

Для решения x(t) рассматриваемого уравнения справедлива следующая формула [58]:

M
(
t, x(t)

)
= e−2(α

2−µ)t(x21(t) + x22(t) + x23(t)
)

= x21(0) + x22(0) + x23(0), t > 0. (29)

В работе [61] доказано, что сильную сходимость численных методов можно изучать
на СДУ с первым интегралом. Примеры таких СДУ с мультипликативным шумом при-
ведены в [59, 60], однако они относятся к коммутативному случаю и поэтому на них
тестировать методы (18) и (23) нецелесообразно. Рассматриваемый здесь пример соот-
ветствует некоммутативному случаю

[αC1, αC2] = −α2C3, [αC2, αC3] = −α2C1, [αC3, αC1] = −α2C2.

Отметим, что кососимметрическая матрица α−1σ(t, x) определяет оператор вектор-
ного умножения в правом ортонормированном базисе (C1, C2, C3 — базисные матрицы
в пространстве кососимметрических операторов). Это означает, что

σ
(
t, x(t)

)
dw(t) = αx(t)× dw(t),

т. е. dx(t) = −µx(t) dt+ αx(t)× dw(t).
Для применения некоторых из представленных в статье численных методов необхо-

димо привести заданное СДУ Ито к СДУ Стратоновича с помощью соотношения (12):

dx(t) = (α2 − µ)x(t) dt+ α
(
C1x(t) ◦ dw1(t) + C2x(t) ◦ dw2(t) + C3x(t) ◦ dw3(t)

)
,

или dx(t) = (α2 − µ)x(t) dt+ αx(t)× dw(t), т. е.

g(t, x) = (α2 − µ)

 x1x2
x3

 , (I − h

2

∂g(t, x)

∂x

)−1
=

(
I − h

2
(α2 − µ)I

)−1
=

2

2− h(α2 − µ)
I,

где I — единичная матрица третьего порядка.
Далее приведены результаты статистической обработки траекторий решения, полу-

ченных методом Эйлера–Маруямы (13), методом типа Розенброка (15), методом Миль-
штейна (18) и методом типа Розенброка (23).

Выбраны следующие шаги численного интегрирования: h = 0.1; 0.05; 0.025; 0.0125, а
параметр m в формуле (22) равен 8. В таблицах 1–6 указана оценка среднего отклоне-
ния ε от многообразия (29):

ε = E|M(T, xT )− |x0|2|,
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вычисленная как среднее арифметическое по всем траекториям (число таких траекто-
рий 104), где xT — приближенное решение в точке t = T = 1. Отметим, что существуют
специальные численные методы для СДУ, решение которых принадлежит некоторому
многообразию [61–64]. Достаточно, например, модифицировать [61] описанные методы и
получить нулевое отклонение от многообразия даже для метода Эйлера–Маруямы, но
здесь важно оценить именно это отклонение как характеристику точности.

Соответствие таблиц и параметров:

• табл. 1 : α = 1/2 и µ = 1/2 (устойчивое решение);
• табл. 2 : α = 1 и µ = 2 (устойчивое решение);
• табл. 3 : α = 1/2 и µ = 1/4 (g(t, x) ≡ 0);
• табл. 4 : α = 1/4 и µ = 0 (f(t, x) ≡ 0);
• табл. 5 : α = 1/2 и µ = −1/2 (неустойчивое решение);
• табл. 6 : α = 1 и µ = −1 (неустойчивое решение).

Таблица 1. Отклонение приближенного решения от многообразия при α = 1/2 и µ = 1/2

Методы h = 0.1 h = 0.05 h = 0.025 h = 0.0125

Метод (13) 1.814982 1.269783 0.890726 0.627526
Метод (15) 1.727952 1.238847 0.879729 0.623626
Метод (18) 0.389675 0.186659 0.090029 0.044983
Метод (23) 0.373858 0.182869 0.089119 0.044765

Таблица 2. Отклонение приближенного решения от многообразия при α = 1 и µ = 2

Методы h = 0.1 h = 0.05 h = 0.025 h = 0.0125

Метод (13) 8.915621 5.699048 3.782215 2.570750
Метод (15) 7.181850 5.141892 3.596692 2.507324
Метод (18) 8.838162 3.496738 1.556017 0.738822
Метод (23) 7.522905 3.244581 1.501398 0.725925

Таблица 3. Отклонение приближенного решения от многообразия при α = 1/2 и µ = 1/4

Методы h = 0.1 h = 0.05 h = 0.025 h = 0.0125

Метод (13) 1.729984 1.208150 0.883649 0.621233
Метод (15) 1.688589 1.194640 0.877991 0.619220
Методы (18) и (23) 0.285260 0.141264 0.069451 0.035263

Таблица 4. Отклонение приближенного решения от многообразия при α = 1/4 и µ = 0

Методы h = 0.1 h = 0.05 h = 0.025 h = 0.0125

Методы (13) и (15) 0.433893 0.309639 0.218341 0.151870
Метод (18) 0.019270 0.009739 0.004899 0.002470
Метод (23) 0.021221 0.010669 0.005325 0.002700

Таблица 5. Отклонение приближенного решения от многообразия при α = 1/2 и µ = −1/2

Методы h = 0.1 h = 0.05 h = 0.025 h = 0.0125

Метод (13) 1.750907 1.227669 0.888082 0.621353
Метод (15) 1.617880 1.175123 0.866387 0.613415
Метод (18) 0.944424 0.496905 0.255070 0.129796
Метод (23) 0.155028 0.078069 0.038819 0.019807
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Таблица 6. Отклонение приближенного решения от многообразия при α = 1 и µ = −1

Методы h = 0.1 h = 0.05 h = 0.025 h = 0.0125

Метод (13) 6.574993 4.742061 3.441462 2.461077
Метод (15) 5.603613 4.320991 3.279061 2.393793
Метод (18) 4.857543 2.870230 1.579615 0.831410
Метод (23) 1.715920 0.889603 0.434497 0.217555

Для расчетов при условии α = 1/2 и µ = 1/4 характерно то, что результаты для
методов (18) и (23) совпадают, так как(

I − h

2

∂g(t, x)

∂x

)−1
= I (α2 − µ = 0, g(t, x) ≡ 0).

Этот тест соответствует диффузии на сфере [62], остальные тесты более сложные —
им соответствует диффузия на динамическом многообразии (сфере, радиус которой ме-
няется) [58].

При условии α = 1/4 и µ = 0 в отличие от остальных тестов меньшую погрешность
показывает метод Мильштейна (18), это проявляется при условии µ ∈ [0, α2), когда для
произвольного t и каждой точки x ∈ R3 (x 6= 0) векторы f(t, x) и g(t, x) направлены в
противоположные стороны. Результаты для методов (13) и (15) совпадают, поскольку(

I − h

2

∂f(t, x)

∂x

)−1
= I (µ = 0, f(t, x) ≡ 0).

На рисунке показаны многообразия: сфера |x| = |x0| =
√

14 (начальная сфера), соот-
ветствующая значению t = t0 = 0, и сфера |x| = eα

2−µ|x0| =
√

14 eα
2−µ (конечная сфера),

соответствующая значению t = T = 1. Левой части рисунка отвечают параметры α = 1/2
и µ = 1/2 (радиус начальной сферы больше радиуса конечной сферы), а правой части
рисунка — параметры α = 1/2 и µ = −1/2 (радиус начальной сферы меньше радиуса
конечной сферы). Изображенные траектории соответствуют шагу h = 0.025, для них вы-
браны следующие обозначения: × для метода Эйлера–Маруямы (13), + для метода типа
Розенброка (15), � для метода Мильштейна (18) и � для метода типа Розенброка (23).

Рис. Траектории, полученные различными численными методами, начальное и конечное мно-
гообразия
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В большинстве тестов самую высокую точность показывает метод типа Розенбро-
ка (23). Методу Эйлера–Маруямы (13) ожидаемо соответствует самая низкая точность.
Методы типа Розенброка эффективнее при больших шагах численного интегрирования,
причем особенно это заметно для неустойчивых решений.

6. Заключение

В статье сделан обзор публикаций за последние несколько лет, в которых описыва-
ются математические модели, включающие СДУ, с приложениями в различных обла-
стях. Для решения СДУ исследователи выбирают в основном самый простой в реализа-
ции численный метод Эйлера–Маруямы, невысокая точность которого особенно заметна
при решении СДУ с мультипликативным шумом. Эта статья показывает, каким образом
можно улучшить характеристики численного метода и увеличить точность расчетов, не
слишком увеличивая сложность реализации.

Основной результат статьи — новый вариант метода типа Розенброка для СДУ, кото-
рый имеет лучшие свойства устойчивости, чем методы Эйлера–Маруямы и Мильштейна,
а также более высокий порядок сильной сходимости, чем метод Эйлера–Маруямы. Высо-
кая точность этого метода особенно проявляется на СДУ с мультипликативным шумом
для некоммутативного случая.

В качестве примера рассмотрена вращательная диффузия на динамическом многооб-
разии, которая обобщает диффузию на сфере с фиксированным радиусом. Рассмотрены
устойчивый случай (диффузия на сфере с убывающим радиусом), неустойчивый случай
(диффузия на сфере с возрастающим радиусом), граница устойчивости (диффузия на
сфере с постоянным радиусом). На этом примере продемонстрированы преимущества
предложенного метода.

Литература

1. Geurts B.J., Holm D.D., Luesink E. Lyapunov exponents of two stochastic Lorenz 63
systems // J. Stat. Phys.–– 2020.––Vol. 179.–– P. 1343–1365.––DOI: 10.1007/s10955-019-02457-3.

2. Waeber S., Yarom A. Stochastic gravity and turbulence // J. High Energ. Phys. –– 2021. ––
Vol. 2021. –– Article N◦-- 185. –– DOI: 10.1007/JHEP12(2021)185.

3. Hirano S. Source time functions of earthquakes based on a stochastic differential equation //
Sci. Rep.–– 2022.–– Vol. 12. –– Article N◦-- 3936. –– DOI: 10.1038/s41598-022-07873-2.

4. Engel A., Parker S.E. Correspondence between open bosonic systems and stochastic differential
equations // Eur. Phys. J. Plus.–– 2023.––Vol. 138.––Article N◦-- 578.––DOI: 10.1140/epjp/s13360-
023-04205-9.

5. Long G.B., Ou J.W., Zheng Y.G. Power spectrum density of stochastic oscillating accretion
disk//J.Astrophys. Astron.–– 2016.––Vol. 37.––Article N◦-- 10.––DOI: 10.1007/s12036-016-9372-2.

6. Haba Z. Stochastic inflation with quantum and thermal noise // Eur. Phys. J. C. –– 2018. ––
Vol. 78. –– Article N◦-- 596. –– DOI: 10.1140/epjc/s10052-018-6078-4.

7. Moloto K.D., Engelbrecht N.E., Strauss R.D. et al. Numerical integration of
stochastic differential equations: A parallel cosmic ray modulation implementation on
Africa’s fastest computer // Adv. Space Res. –– 2019. –– Vol. 63, iss. 1. –– P. 626–639. ––
DOI: 10.1016/j.asr.2018.08.048.

8. Cresson J., Nottale L., Lehner T. Stochastic modification of Newtonian dynamics and induced
potential — Application to spiral galaxies and the dark potential // J. Math. Phys. –– 2021. ––
Vol. 62, iss. 7. –– Article N◦-- 072702.–– DOI: 10.1063/5.0037265.



138 СИБИРСКИЙ ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ. 2024. Т. 27, N◦-- 2

9. Singh P., Yeong H.C., Zhang H. et al. Stochastic stability and dynamics of a two-dimensional
structurally nonlinear airfoil in turbulent flow // Meccanica.–– 2016.–– Vol. 51.–– P. 2665–2688.––
DOI: 10.1007/s11012-016-0445-8.

10. Gao S., Kang M., Li L., Liu X. Estimation of state-of-charge based on unscented
Kalman particle filter for storage lithium-ion battery // J. Eng. –– 2019. –– Vol. 2019, iss. 16. ––
P. 1858–1863.–– DOI: 10.1049/joe.2018.8895.

11. Tasaka N., Satoh S., Hatanaka T., Yamada K. Stochastic stabilization of rigid body
motion of a spacecraft on SE(3) // Int. J. Control. –– 2021. –– Vol. 94, N◦-- 5. –– P. 1166–1173. ––
DOI: 10.1080/00207179.2019.1637544.

12. Кудрявцева И.А., Рыбаков К.А. Сравнительный анализ фильтров частиц для стохасти-
ческих систем с непрерывным и дискретным временем // Известия РАН. Теория и системы
управления.–– 2022.––N◦-- 5.––С. 29–39. Перевод: Kudryavtseva I.A., Rybakov K.A. Comparative
analysis of particle filters for stochastic systems with continuous and discrete time // J. Comput.
Syst. Sci. Int. –– 2022.–– Vol. 61. –– P. 741–750. –– DOI: 10.1134/S1064230722050112.

13. Zhang X., Yuan R. A stochastic chemostat model with mean-reverting Ornstein–Uhlenbeck
process and Monod–Haldane response function // Appl. Math. Comput. –– 2021. –– Vol. 394. ––
Article N◦-- 125833.–– DOI: 10.1016/j.amc.2020.125833.

14. Hening A., Nguyen D.H. Stochastic Lotka–Volterra food chains // J. Math. Biol. –– 2018. ––
Vol. 77. –– P. 135–163.–– DOI: 10.1007/s00285-017-1192-8.

15. Zhou B., Han B., Jiang D. et al. Stationary distribution, extinction and probability density
function of a stochastic vegetation–water model in arid ecosystems // J. Nonlinear Sci. –– 2022.––
Vol. 32. –– Article N◦-- 30. –– DOI: 10.1007/s00332-022-09789-7.
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33. Rößler A. Runge–Kutta methods for the strong approximation of solutions of stochastic
differential equations // SIAM J. Numer. Anal. –– 2010. –– Vol. 48. –– P. 922–952. ––
DOI: 10.1137/09076636X.

34. Аверина Т.А. Статистическое моделирование решений стохастических дифференциальных
уравнений и систем со случайной структурой.–– Новосибирск: Изд-во СО РАН, 2019.

35. Averina T. Conditional optimization of algorithms for estimating distributions of solutions to
stochastic differential equations // Mathematics. –– 2024. –– Vol. 12, N◦-- 4. –– Article N◦-- 586. ––
DOI: 10.3390/math12040586.

36. Кузнецов Д.Ф. Стохастические дифференциальные уравнения: теория и практика числен-
ного решения. С программами в среде MATLAB // Дифф. уравн. и проц. управл.–– 2018.––
N◦-- 4. –– С. А.1–А.1073.

37. Kuznetsov D.F. Strong approximation of iterated Ito and Stratonovich stochastic integrals:
Method of generalized multiple Fourier series. Application to numerical integration of Ito
SDEs and semilinear SPDEs (third Edition) // Differ. Uravn. Protsesy Upr. –– 2023. –– N◦-- 1. ––
С. A.1–A.947. –– DOI: 10.21638/11701/spbu35.2023.110.

38. Rybakov K.A. Spectral representations of iterated stochastic integrals and their application
for modeling nonlinear stochastic dynamics // Mathematics. –– 2023. –– Vol. 11, N◦-- 19. ––
Article N◦-- 4047. –– DOI: 10.3390/math11194047.

39. Kuznetsov M.D., Kuznetsov D.F. SDE-MATH: A software package for the implementation
of strong high-order numerical methods for Itô SDEs with multidimensional non-commutative
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16. Krikštolaitis R., Mozgeris G., Petrauskas E., Rupšys P. A statistical dependence
framework based on a multivariate normal copula function and stochastic differential equations
for multivariate data in forestry // Axioms. –– 2023. –– Vol. 12, N◦-- 5. –– Article N◦-- 457. ––
DOI: 10.3390/axioms12050457.

17. Dumont G., Northoff G., Longtin A. A stochastic model of input effectiveness
during irregular gamma rhythms // J. Comput. Neurosci. –– 2016. –– Vol. 40. –– P. 85–101. ––
DOI: 10.1007/s10827-015-0583-3.

18. Liu X., Li Q., Pan J. A deterministic and stochastic model for the system dynamics of
tumor-immune responses to chemotherapy // Physica A Stat. Mech. Appl. –– 2018. –– Vol. 500. ––
P. 162–176.–– DOI: 10.1016/j.physa.2018.02.118.

19. Wang Y., Qi K., Jiang D. An HIV latent infection model with cell-to-cell transmission
and stochastic perturbation // Chaos Solit. Fractals. –– 2021. –– Vol. 151. –– Article N◦-- 111215. ––
DOI: 10.1016/j.chaos.2021.111215.

20. Cai S., Cai Y., Mao X. A stochastic differential equation SIS epidemic model with
two correlated Brownian motions // Nonlinear Dyn. –– 2019. –– Vol. 97. –– P. 2175–2187. ––
DOI: 10.1007/s11071-019-05114-2.

21. Zhang W., Meng X., Dong Y. Periodic solution and ergodic stationary distribution of
stochastic SIRI epidemic systems with nonlinear perturbations // J. Syst. Sci. Complex.–– 2019.––
Vol. 32. –– P. 1104–1124.–– DOI: 10.1007/s11424-018-7348-9.

22. Xu X., Wang G., Hu J., Lu Y. Study on stochastic differential game model in network
attack and defense // Secur. Commun. Netw. –– 2020. –– Vol. 2020. –– Article N◦-- 3417039. ––
DOI: 10.1155/2020/3417039.



Т.А. Аверина, К.А. Рыбаков 143

23. Lefebvre M. Computer virus propagation modelled as a stochastic differential game //
Atti della Accademia Peloritana dei Pericolanti. –– 2020. –– Vol. 98, N◦-- 1. –– Article N◦-- A3. ––
DOI: 10.1478/AAPP.981A3.

24. Dipple S., Choudhary A., Flamino J. et al. Using correlated stochastic differential equations
to forecast cryptocurrency rates and social media activities // Appl. Netw. Sci.–– 2020.––Vol. 5.––
Article N◦-- 17. –– DOI: 10.1007/s41109-020-00259-1.

25. Lee M.-K., Kim J.-H. Closed-form approximate solutions for stop-loss and Russian options
with multiscale stochastic volatility // AIMS Math.–– 2023.–– Vol. 8, N◦-- 10. –– P. 25164–25194.––
DOI: 10.3934/math.20231284.

26. Hata H., Liu N.-L., Yasuda K. Expressions of forward starting option price in Hull–
White stochastic volatility model // Decisions Econ. Finan. –– 2022. –– Vol. 45. –– P. 101–135. ––
DOI: 10.1007/s10203-021-00343-w.

27. Ghosh M., Das P., Das P. A comparative study of deterministic and stochastic dynamics of
rumor propagation model with counter-rumor spreader // Nonlinear Dyn. –– 2023. –– Vol. 111. ––
P. 16875–16894.–– DOI: 10.1007/s11071-023-08768-1.

28. Bergeot B., Vergez C. Analytical prediction of delayed Hopf bifurcations in a simplified
stochastic model of reed musical instruments // Nonlinear Dyn. –– 2022. –– Vol. 107. ––
P. 3291–3312.–– DOI: 10.1007/s11071-021-07104-9.

29. Panteleev A.V., Kolessa A.A. Application of the tomtit flock metaheuristic optimization
algorithm to the optimal discrete time deterministic dynamical control problem // Algorithms.––
2022.–– Vol. 15, N◦-- 9. –– Article N◦-- 301. –– DOI: 10.3390/a15090301.

30. Maruyama G. Continuous Markov processes and stochastic equations // Rend. Circolo Math.
Palermo.–– 1955. –– Vol. 2, N◦-- 4. –– P. 48–90.

31. Mil’shtein G.N. Chislennoe integrirovanie stokhasticheskikh differencial’nykh uravnenii. ––
Sverdlovsk: Izd-vo Ural’skogo un-ta, 1988.

32. Kloeden P.E., Platen E. Numerical Solution of Stochastic Differential Equations. –– Springer,
1992.
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