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Представлены предварительные результаты уточнения математической модели пере-
носа плазмы в спиральной открытой магнитной ловушке СМОЛА. Удержание плазмы
в установке осуществляется за счет передачи импульса магнитного поля с винтовой
симметрией вращающейся плазме. Математическая модель основана на стационарном
уравнении переноса плазмы. Изложена методика учета влияния коэффициентов модели
при использовании дополнительной информации. Получена расчетная зависимость тем-
пературы от координат, качественно согласующаяся с экспериментальными данными.
Получены обыкновенные дифференциальные уравнения, которые следуют из исходной
модели и могут быть использованы для уточнения коэффициентов. Математическая
модель разработана для предсказания параметров удержания плазмы в проектируемых
установках со спиральным магнитным полем.
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Введение. При проектировании установок для удержания плазмы основным источ-
ником информации о динамике вещества является вычислительный эксперимент. Разнооб-
разие и сложность параметров течения плазмы определяют необходимость создания спе-
циализированных моделей различных процессов. В настоящее время существует большое
разнообразие кодов, моделирующих различные особенности процесса удержания плазмы
в токамаках. Количество математических моделей и программ для расчета процессов в от-
крытых ловушках любого типа существенно меньше. Значительный вклад в исследование
удержания плазмы в открытых магнитных ловушках внесло математическое моделирова-
ние установок, основанных на принципе многопробочного удержания. В качестве способа
многопробочного удержания было предложено удержание плазмы магнитным полем с вин-
товой симметрией [1]. Для экспериментальной проверки этой идеи в Институте ядерной
физики СО РАН (г. Новосибирск) разработана и построена установка СМОЛА (спираль-
ная магнитная открытая ловушка). Область, в которой удерживается плазма в установ-
ке СМОЛА, с одной стороны ограничена классическим генератором, с другой — много-
пробочной секцией с винтовым магнитным полем. Установка СМОЛА предназначена для
моделирования процесса винтового удержания при низкой температуре плазмы. Для мас-
штабирования винтового удержания на системы термоядерного класса необходимо прове-
сти детальное сравнение экспериментально наблюдаемых потоков вещества с модельными
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и выполнить расчет эффективности системы большего масштаба на основе математиче-
ской модели. В основу такой модели положено уравнение [2], которое является следствием
системы уравнений магнитной гидродинамики. Концепция винтового удержания основа-
на на создании продольной силы, действующей на плазму в области удержания за счет
периодических возмущений магнитного поля в системе отсчета плазмы. Магнитные воз-
мущения создаются токонесущими элементами спиральной формы и, следовательно, име-
ют геликоидальную (винтовую) симметрию. Вращение плазмы задается дрейфом в полях
E ×B и может быть обусловлено как наличием внешних источников момента импульса,
так и вращением плазмы за счет естественного амбиполярного потенциала. Импульс пе-
редается от магнитного поля к частицам, запертым в периодических “ямах” потенциала
Юшманова, а от них за счет столкновений — к пролетающим частицам. Столкновения
могут быть как парными кулоновскими (в случае сравнительно холодной плазмы), так
и связанными с процессами аномального рассеяния частиц на волнах (в случае горячей
плазмы). В обозначениях уравнений магнитной гидродинамики (МГД) продольный гради-
ент давления уравновешивается силой Ампера, зависящей от радиального потока ионов и
азимутальной компоненты магнитных возмущений. Система уравнений МГД для данной
задачи, включающая поперечные переносы за счет диффузии, приведена в безразмерном
виде в [2].

В настоящее время показано соответствие наблюдаемых результатов приближенным

теоретическим оценкам. Основным препятствием для более точного сравнения экспери-
ментальных и теоретических данных является полноценный учет диффузионных перено-
сов. В то же время точного аналитического решения уравнений теории винтового удер-
жания не построено, поэтому используются результаты численного решения уравнения

переноса плазмы. В работе [3] проведено обобщение решения Стеклова задачи о неста-
ционарных винтовых течениях ньютоновской жидкости на случай жидкости второго по-
рядка. В [4] показаны известные примеры винтовых течений, представлены плоские и

вращательно-симметричные аналоги винтовых течений, а также выполнено обобщение
этих результатов на случай движения жидкости второго порядка. В работах [5, 6] исследо-
валась устойчивость к малым возмущениям течения вязкой электропроводящей жидкости

в трубе кольцевого сечения при наличии спирального магнитного поля в приближении ма-
лых магнитных чисел Рейнольдса. Наличие симметрии в задаче приводит к зависимости
параметров течения от радиуса и комбинации угла наклона и шага винта. В представ-
ленной в [5, 6] модели параметр ζ является отношением скорости звука к продольной

скорости движения магнитных возмущений при вращении плазмы в собственном амбипо-
лярном электрическом поле и описывает геометрию магнитного поля. В работах [7–9] на
основе кинетической модели проведено исследование взаимодействия пучка ионов, инжек-
тированного в осесимметричную магнитную ловушку под некоторым углом к централь-
ной оси, с фоновой плазмой ловушки в двумерной постановке. Проведено моделирование
истечения плазмы с максвелловским распределением по скоростям ионов из диамагнитной

ловушки. Наблюдалось раскручивание плазмы вокруг оси ловушки в направлении, совпа-
дающем с направлением циклотронного вращения в вакуумном магнитном поле. Разрабо-
тан эффективный алгоритм расчета конфигурации магнитного поля, которая определяется
заданным распределением внешнего азимутального тока в катушках. Предложенный ал-
горитм обобщается для решения уравнения Пуассона с граничными условиями Неймана,
что позволяет применить разработанный метод для расчета потенциала в нестационарных

задачах. Гибридная численная модель адекватно описывает нелинейную нестационарную
эволюцию плазмы и магнитного поля. Параллельная реализация позволяет проследить
эту эволюцию при больших временах моделирования в широком диапазоне значений па-
раметров начального магнитного поля и плазмы. Параметры магнитного поля и плазмы
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Рис. 1. Расчетная область в поперечном сечении центральной части ловушки

соответствуют условиям лабораторных экспериментов, проводимых в Институте ядерной
физики СО РАН. В работах [10, 11] представлена кинетическая модель истечения плазмы
из открытой ловушки, описывающая переход к газодинамическому режиму с учетом вли-
яния амбиполярного потенциала. Результаты моделирования показали, что в полустолк-
новительном режиме осевые потери определяются узким пучком холодных ионов, поэтому
существенное уменьшение аксиальных потерь возможно даже при величине амбиполярно-
го барьера порядка ионной температуры. В результате расчетов обнаружен переходный
режим истечения плазмы, в котором продольные потери происходят с образованием струи
холодных ионов, и получено самосогласованное аналитическое решение задачи о струе
в ловушке с “плоским дном”. Математическое моделирование в магнитогидродинамиче-
ском приближении проводилось в работе [12], в которой получена оценка влияния внешнего
магнитного поля на динамику разлета плазменного облака.Математические модели равно-
весных плазменных конфигураций в ловушках можно рассматривать для распрямленных

в цилиндр аналогов этих ловушек [13]. Математическим аппаратом таких моделей явля-
ются двумерные краевые задачи с дифференциальным уравнением Грэда — Шафранова

для функции магнитного потока. В работе [14] представлена модель для изучения ин-
жекции потока плотной плазмы в многопробочную ловушку, совмещенную с плазменным
ускорителем. Численные исследования двумерных осесимметричных течений проводятся
на основе модифицированных МГД-уравнений в приближении локального термодинамиче-
ского равновесия с учетом электропроводности, теплопроводности и переноса излучения.

Основной задачей физики открытых ловушек является уменьшение потерь частиц и

энергии вдоль силовых линий магнитного поля в зонах, где они покидают область удержа-
ния. В настоящей работе предложена принципиально новая математическая модель про-
цесса переноса плазмы в спиральном магнитном поле в случае открытой ловушки реак-
торного типа. Данная математическая модель содержит меньшее число неизвестных па-
раметров для определения распределения плазмы, чем более общая МГД-модель. Таким
образом, определив с помощью не требующей больших вычислительных ресурсов модели
диапазон допустимых значений, в первую очередь коэффициента диффузии, можно ис-
пользовать пространственные модели для исследования новых магнитных конфигураций

многопробочных секций на основе уравнений МГД, например, комбинаций однородного,
спирального и гофрированного магнитных полей.

1. Постановка задачи. Исследуется движение плазмы в поперечном сечении

[0, rmax]× [0, zmax] центральной части установки (рис. 1), имеющей форму цилиндра ради-
усом 8 см и длиной 216 см. Вещество входит в область удержания из источника плазмы
через левый торец цилиндра и выходит в расширитель через правую границу. Расчет-
ная область представляет собой поперечное сечение цилиндра в плоскости (r, z). В ра-
боте [2] получены выражения для радиальной и продольной компонент вектора переноса
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частиц в винтовом магнитном поле. Система уравнений описывает динамику плазмы в
МГД-приближении в аксиально-симметричной постановке. Различия движения запертых
и пролетающих ионов учитываются посредством введения эффективной силы трения, за-
висящей от относительной скорости компонент и доли запертых частиц. Продольная сила,
действующая на плазму, возникает в результате взаимовлияния радиальной компоненты
электрического тока захваченных ионов и азимутальной компоненты винтового магнит-
ного поля. Учитывается диффузия плазмы поперек магнитного поля. После исключения
зависимых переменных система уравнений сводится к уравнению неразрывности потока

для концентрации плазмы
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где u — концентрация вещества; T = Ti + Te; Ti = 4 эВ и Te = 30(1 − (r/r0)
2) — ионная

и электронная температуры; Λ — отношение длины ловушки к длине свободного пробе-
га иона; ℵ(r, Rm) — доля запертых частиц; l = 216 см — длина ловушки вдоль силовой

линии; Z — среднее зарядовое число одного иона; D — коэффициент диффузии в по-
перечном поле; E — напряженность электрического поля. Доля запертых частиц равна
ℵ(r, Rm) = 1− 1/R(r, Rm), где R(r, Rm) = 2(Rm − 1)(r/a)2 + 1; Rm = 1,52 — глубина гоф-

рировки. Параметр ζ = c/Vz представляет собой отношение скорости звука cs = (Te/M)1/2

(M — масса электрона) к продольной скорости Vz движения магнитных возмущений при

вращении плазмы в собственном амбиполярном электрическом поле. В уравнении (1) фи-
зические величины r0, z0, ϕ0, u0, T0 обезразмерены на величины a, l, Te/e, umax, Te соот-
ветственно (a = 8 см — длина границы камеры, в которой может существовать плазма).

В моделируемом эксперименте в течение 40 мс происходит установление параметров
плазмы и электромагнитного поля, а затем процесс является стационарным в течение
120 мс, после чего разряд отключается. В безразмерных переменных область является

единичным квадратом. С учетом экспериментальных данных будем считать, что вещество
не достигает стенок ловушки, на оси z ставится условие симметрии. На входе в ловушку и
выходе из нее (рис. 2) задано граничное условие Дирихле u(r, 0) = uL(r), u(r, zmax) = uR(r).

Измеряемый с помощью зондов потенциал плазмы в экспериментах, выполненных на
установке СМОЛА, зависит от параметров эксперимента. Максимальное значение без-
размерного потенциала для установок следующего поколения определяет возможность ис-
пользования принципа винтового удержания. Экспериментально наблюдаемое распреде-
ление потенциала в центральной области плазмы (при безразмерных значениях радиуса,
меньших 0,6) близко к квадратичному, в периферийной области плазмы производная по-
тенциала по радиусу уменьшается. Погрешность измерения потенциала в эксперименте
составляет приблизительно 5 %. Степень и коэффициенты аппроксимирующего полинома
подобраны таким образом, чтобы отклонение значений, вычисленных с его использовани-
ем, от экспериментально полученных значений было сопоставимым с экспериментальной
погрешностью. В модели учтено уменьшение величины потенциала с увеличением z за
счет наличия поперечной проводимости плазмы. Распределение в пространстве напря-
женности электрического поля задается в виде убывающей вдоль оси производной модуля

потенциала (рис. 3):

E(r, z) =
(
1− 0,002z

h

) ∂ |ϕ(r)|
∂r

.
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Рис. 2. Экспериментальное распределение концентрации плазмы по радиусу на
торцах установки (точки) и интерполяция значений концентрации полинома-
ми (линии):
1 — на входе в ловушку, 2 — на выходе из ловушки

Рис. 3. Зависимости модуля потенциала электрического поля |ϕ| (1) и его про-
изводной ∂ |ϕ(r)|/∂r (2) от радиуса установки

2. Метод решения. Задача (1) была решена с использованием метода установления,
метода Зейделя [15] и аппроксимации смешанной производной на шаблоне [16]. Следует
отметить, что задача (1) содержит параметр ζ(r) = 1/(Ar), полученный путем аппрок-
симации экспериментальных данных. В настоящей работе A = 20. При r = 0 параметр ζ
ограничен значением при r = ρB, где ρB = VTi

mc/(eB) — ларморовский радиус. Для уста-
новки СМОЛА ρB ≈ 0,3÷0,4 см. Это обусловлено тем, что ион движется по ларморовской
орбите (вращается в равномерном магнитном поле, имеющем бо́льшую напряженность по
сравнению со спиральным), поэтому его радиальная координата осциллирует. В рассмат-
риваемой модели все воздействия осредняются, иону присваивается координата центра
окружности, по которой он движется в магнитном поле. Иными словами, координата цен-
тра окружности равна нулю для ионов, облетающих ось на расстоянии от нее, равном
ларморовскому радиусу. Поэтому для исключения особенностей решения при расчетах в
окрестности оси симметрии безразмерный параметр ζ задается следующим образом:

ζ(r) =

{
1/(Ar), r > ρB,

1/(AρB), ρB > r > 0.

Одним из преимуществ метода Зейделя является удобство его использования в цилин-
дрических координатах. Принцип выражения искомого элемента через соседние элемен-
ты по схеме типа “крест” универсален и не зависит от выбранной системы координат.
Выбранное граничное условие Дирихле, описывающее выход плазмы в расширитель че-
рез правую границу, позволяет контролировать изменение интегральной характеристики
плотности вещества при изменении глубины гофрировки магнитного поля, диффузии и
потенциала плазмы. Такой контроль постоянно осуществлялся при изменении коэффици-
ентов уравнения.
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Рис. 4. Решение тестовой задачи (a) и относительная погрешность его сходи-
мости к решению uex(r, z) в зависимости от шага сетки (б)

Для верификации метода была рассмотрена тестовая краевая задача

∂2u

∂z2
+

∂2u

∂r2
+

∂u

∂z ∂r
− ∂u

∂r ∂z
= 0,

∂u

∂r

∣∣∣
r=0

= sin z,
∂u

∂r

∣∣∣
r=π

= sin 5z, u
∣∣
z=0

= cos r, u|z=π = cos 3r.

(2)

Задача (2) имеет аналитическое решение (рис. 4,а):

uex(r, z) =
sh (π − z)

sh π
cos r +

sh 3z

sh 3π
cos 3r − ch (π − r)

sh π
sin z +

ch 5r

5 sh 5π
sin 5z.

На рис. 4,б представлена относительная погрешность ε = ‖un+1 − uex‖/‖uex‖. В ка-
честве критерия сходимости итерационного процесса выбрана величина εn = 10−9, при
которой достигается второй порядок точности метода.

3. Результаты моделирования. В расчетах наблюдается эффект пинчевания

(уменьшения среднего радиуса) плазменной струи, проявляющийся в эксперименте. Рас-
четы показали, что при уменьшении коэффициента диффузии в поперечном поле и уве-
личении производной модуля потенциала электрического поля и глубины гофрировки на-
блюдается сжатие плазменного шнура [17–19].

На первом этапе усовершенствования модели модифицировались ее параметры с ис-
пользованием данных эксперимента (рис. 5). Уменьшение плотности плазмы в централь-
ной части ловушки при параметрах экспериментов имеет экспоненциальный характер.
Фактически эта особенность распределения плотности плазмы свидетельствует об удер-
жании плазмы и очень важна при использовании граничного условия Неймана на пра-
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Рис. 5. Распределение концентрации плазмы в ловушке
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Рис. 6. Распределения концентрации плазмы вдоль оси симметрии u(0, z) (а) и
в радиальном сечении u(r, 0,4) (б):
1 — экспериментальные данные (точки) и интерполяция полиномом (линия), 2 — рас-
чет при T (z) = T0, 3, 4 — расчет при T (z) = T0 e−z/z0 (3 — z0 = 2/3, 4 — z0 = 1/2),
5, 6 — расчет при T (r, z) = (1− 5r2/6)T0 e−3z/2 (5 — T (z) = T0, 6 — Λ = 10Λ0)

вой границе. Более того, в случае если расчет достаточно точно описывает закон убы-
вания плотности, можно выполнить априорную оценку размера расчетной области для

корректного задания граничного условия равенства нулю концентрации плазмы на беско-
нечности. Экспериментальные данные на оси симметрии интерполированы функцией вида
u(0, z) = z1 + A e−z/z0 , z1 = 0,16, A = 0,84, z0 = 0,37.

Следует отметить, что во всех экспериментах характер убывания по z остается прак-
тически неизменным. Для сечений вдоль оси z при r = 0 и для сечений при значениях ра-
диуса, соответствующих максимальному значению радиального распределения плотности,
наблюдается экспоненциальный характер убывания вдоль оси. Следовательно, характер
функции u(0, z) дает дополнительную информацию о рассматриваемом процессе.

При сравнении результатов расчетов и экспериментальных данных определен коэф-
фициент уравнения, влияющий на характер убывания концентрации плазмы вдоль оси

симметрии. В результате получена зависимость температуры от z. Для функции темпе-
ратуры вида T (z) = T0 e−z/z0 , z0 = 2/3 получен профиль концентрации плазмы вдоль оси
симметрии, близкий к экспериментальному (рис. 6,а). Рассмотрим результаты расчетов
в сечении z = 0,4 (рис. 6,б), для которого известно распределение, полученное в экспери-
ментах. Расчет при постоянном значении температуры дает качественно неверное распре-
деление плотности плазмы. С учетом результатов первого этапа моделирования получено
распределение плотности по радиусу, имеющее тот же характер, что и при постоянной
температуре. Расчет без учета зависимости от радиуса в выражениях для коэффициентов
уравнения (1) дает неверные решения. На втором этапе корректировалась зависимость
температуры от радиуса. При увеличении в 10 раз слагаемого со второй производной по z
в уравнении (1), т. е. при увеличении отношения Λ длины системы к длине свободно-
го пробега иона, характер решения изменяется. Наилучшие результаты достигаются при
T (r, z) = (1− 5r2/6)T0 e−3z/2.

После достижения качественного соответствия результатов расчетов эксперименталь-
ным данным в широком диапазоне необходимо улучшить количественное соответствие.
Для этого нужно провести анализ модели с использованием обыкновенного дифференци-
ального уравнения, описывающего радиальное распределение концентрации плазмы в за-
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Рис. 7. Распределения концентрации плазмы при T (z) = T0 (а) и T (r, z) =
(1− 5r2/6)T0 e−3z/2 (б) в радиальном сечении u(r, 0,4):
1 — экспериментальные данные, 2 — решение ОДУ (3), 3 — решение ОДУ (4), 4 —
решение исходной задачи

данном сечении. Предположим, что решение уравнения (1) можно представить в виде
u(r, z) = f(r)g(z). Тогда можно рассмотреть линейную интерполяцию g(z) = Aconstz + B
для полученных в эксперименте точек на оси симметрии и записать уравнение (1) в виде
обыкновенного дифференциального уравнения (ОДУ)

(1 + ℵ(R))ζqAconstf(r) + ζTAconst
df(r)

dr
+

1

r
(Aconstz0 + B)

d

dr
rD

df(r)

dr
= 0. (3)

С учетом данных экспериментов следует использовать экспоненциальное распреде-
ление концентрации плазмы на оси симметрии: g(z) = z1 + A e−z/B. Известно, что
u(r, z)|z=∞ = 0. Следовательно, z1 = 0. В этом случае ОДУ имеет более сложный вид:

rT

Λ

Ac

t21
e−z0/t1 f(r)− rℵ(R)(1 + ℵ(R))ζq

Ac

t1
e−z0/t1 f(r)− rℵ(R)ζT

Ac

t1
e−z0/t1

∂f(r)

∂r
+

+ ℵ(R)Ac e−z0/t1
∂

∂r
rD

∂f(r)

∂r
= 0. (4)

Для граничного условия Неймана или граничного условия на бесконечности можно исполь-
зовать данные на выходе в расширитель в качестве еще одного решения ОДУ. Граничные
условия для ОДУ (3), (4) соответствуют граничным условиям краевой задачи (1):

df

dr

∣∣∣
r=0

= 0, u(1) = 0.

На рис. 7 приведены экспериментальные и расчетные распределения плотности плаз-
мы в сечении при z = 0,4. Видно, что при g(z) = u(0, z) ОДУ (4) и краевая задача (1)
имеют близкие решения. Это означает, что для дальнейшего уточнения модели можно ис-
пользовать уравнение (1) в упрощенном виде. Для каждого эксперимента имеются данные
для 2–5 сечений. Данные диагностики плазмы можно рассматривать как точное решение
ОДУ. Минимизируя функционал невязки, можно уточнить коэффициенты модели. Прежде
всего необходимо уточнить оценки значений диффузии. Определение коэффициента диф-
фузии необходимо для прогноза результатов работы планируемых установок. Для этого
нужно провести расчеты при малых значениях потенциала плазмы с использованием гра-
ничного условия на бесконечности. Решение такой задачи для уравнений эллиптического
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типа вызывает затруднения при нахождении минимума. Минимум значений функционала
невязки для этой задачи допустимо определить в виде интервала. В настоящее время без-
размерный коэффициент диффузии определяется как величина, находящаяся в диапазоне
от нуля до единицы.

Заключение. Представлены предварительные результаты уточнения математиче-
ской модели переноса плазмы в спиральной открытой магнитной ловушке СМОЛА. Изло-
жена методика учета влияния коэффициентов модели при использовании дополнительной

информации. Получена расчетная зависимость температуры от координат, качественно
согласующаяся с экспериментальными данными. Приведены ОДУ, полученные как след-
ствие исходной задачи. Эти уравнения могут быть использованы для уточнения коэффи-
циентов, зависящих от температуры, диффузии, доли запертых частиц, отношения длины
ловушки к длине свободного пробега иона. Результаты исследования показали, что уточ-
нение коэффициентов позволяет достичь более точного соответствия экспериментальным

данным.
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