УДК 532: 532.135: 536: 541.12: 541.18: 620.22: 621: 621.1: 62-567: 629.027

РЕОЛОГИЯ И ДИНАМИКА РЕПУЛЬСИВНЫХ КЛАТРАТОВ

В. А. Ерошенко, Ю. Ф. Лазарев

Национальный технический университет Украины "Киевский политехнический институт", 03056 Киев, Украина E-mail: eroshenko@kpi.ua

Исследованы физические и термодинамические свойства репульсивного клатрата, применимого в качестве рабочего тела для диссипации, аккумулирования и преобразования энергии в термомеханических системах. В репульсивных клатратах впервые используются молекулярные силы отталкивания, действующие на больших площадях межфазных поверхностей в системе жидкость — капиллярно-пористая матрица, не смачиваемая этой жидкостью. На основе экспериментальных исследований автомобильного амортизатора с репульсивным клатратом разработана реологическая модель процесса диссипации энергии, которая может быть использована при создании компактных высокоэффективных амортизаторов различного назначения и антисейсмических систем нового поколения.

Ключевые слова: суспензия, межфазная поверхность, лиофобное взаимодействие, изотермы сжатия-расширения, гистерезис, амортизатор, эксперимент, моделирование.

1. Физические и термодинамические свойства репульсивного клатрата. В 90-х гг. ХХ в. впервые было предложено использовать в качестве рабочих тел в термомеханических системах межфазные поверхности в гетерогенных лиофобных системах [1–9], позднее названные репульсивными клатратами [10]. В этих системах были использованы межмолекулярные силы отталкивания (репульсивные силы) и эффекты возрастания влияния поверхностных сил по сравнению с влиянием объемных сил по мере уменьшения размера частиц, что позволило расширить область применимости современных нанотехнологий за счет включения в нее технической термодинамики и энергетики [1, 3–5, 11–16].

Известные в химии [17] клатраты AB (A+B → AB, где A — "молекула-хозяин" со свободным внутренним пространством; В — "молекула-гость" с габаритами, соизмеримыми с габаритами этого пространства), возникают в случае, когда молекула В свободно входит в полость молекулы A, образуя химически нейтральную молекулу AB, и не выходит из нее вследствие влияния стерических эффектов.

В отличие от известных клатратов [17] в репульсивных клатратах $A_{RC}B_{RC}$ [10], которые также являются химически нейтральными системами, "молекула-хозяин" A_{RC} представляет собой лиофобную капиллярно-пористую матрицу с большой площадью поверхности и наноразмерными пустотами, а роль "молекулы-гостя" B_{RC} играют молекулы и кластеры жидкости, принудительно внедряемые в поровое пространство матрицы (при этом объем репульсивного клатрата $A_{RC}B_{RC}$ уменьшается на величину, равную объему внедренной жидкости). Если внешнее давление становится меньше капиллярного давления, то молекулы и кластеры жидкости самопроизвольно покидают поровое пространство

Рис. 1. Гетерогенная лиофобная система (репульсивный клатрат)

лиофобной матрицы, в результате чего объем клатрата $A_{RC}B_{RC}$ увеличивается до исходного значения. Процессы сжатия-расширения репульсивного клатрата $A_{RC}B_{RC}$ становятся обратимыми по координате V (объем): $A_{RC}+B_{RC} \leftrightarrow A_{RC}B_{RC}$, репульсивный клатрат (PK) работает как молекулярная пружина [16].

Репульсивные клатраты (рис. 1) представляют собой суспензию жидкость — порошкообразная капиллярно-пористая матрица, не смачиваемая этой жидкостью (контактный угол на границе системы твердое тело — жидкость $\theta > 90^{\circ}$).

Средний диаметр пористых частиц находится в диапазоне 5 ÷ 25 мкм, а размер пор и капилляров в них — в диапазоне 0,5 ÷ 20,0 нм. При размере частиц менее 1 мкм суспензия превращается в коллоид.

В силу лио- и гидрофобности системы жидкость не может самопроизвольно заполнить открытое поровое пространство матрицы. Для принудительной интрузии жидкости в поровое пространство матрицы и создания больших удельных межфазных поверхностей системы жидкость — твердое тело внешнее давление должно достичь порогового значения, равного капиллярному давлению Лапласа [2, 18]

$$P_{\rm L} = 2\sigma |\cos\theta|/r. \tag{1}$$

Здесь σ — поверхностное натяжение жидкости на границе с газом (вакуумом); r — радиус пор и капилляров.

Объем V_p порового пространства матрицы фактически определяет степень сжатия ΔV рассматриваемой гетерогенной системы (при термодинамическом исследовании упругая деформация собственно жидкости и твердой матрицы не учитывается):

$$\Delta V = V_1 - V_2 = V_p = \varphi V_m = -kr\,\Delta\Omega. \tag{2}$$

Здесь V_1 , V_2 — объемы системы соответственно до и после ее сжатия, M^3 ; φ — открытая пористость матрицы с наноразмерными порами и капиллярами; V_m — объем матрицы, M^3 ; 0,33 < k < 0,50 — коэффициент формы пор и капилляров; $\Delta\Omega$ — изменение площади межфазной поверхности системы жидкость — твердое тело в процессах принудительной интрузии (при давлении P_{int}) и самопроизвольной экструзии (при давлении P_{ext}) кластеров жидкости из порового пространства матрицы, M^2 . Экструзия жидкости обусловлена самопроизвольным уменьшением площади межфазной поверхности Ω в лиофобной системе (уменьшение потенциала Гиббса соответствует уменьшению свободной поверхностной энергии системы).

Знак "минус" в уравнении (2) означает, что в процессе сжатия системы ($\Delta V < 0$) площадь межфазной поверхности увеличивается ($\Delta \Omega > 0$), а в процессе самопроизвольного расширения системы она уменьшается. Из рис. 1 следует, что объем жидкости V_l в суспензии должен быть больше объема порового пространства матрицы V_p как минимум на величину, равную межчастичному объему суспензии (порозности). Поскольку PK, являющийся замкнутой системой, подвергается лишь сжатию-расширению, в данной работе не рассматриваются такие явления, как агрегатная устойчивость лиофобной суспензии или ее структурирование, не оказывающие влияния на характер (P–V)-изотерм сжатиярасширения указанной гетерогенной системы.

При синтезе РК в качестве пористых матриц применяются силикагели, алюмосиликаты, пористые стекла, цеолиты, силикалиты и другие материалы с очень большими удельными площадями поверхностей (от 100 до 1000 м²/г) [3–5, 9, 10, 13]. Возможность ультратонкого диспергирования жидкости (вплоть до молекулярных или наноразмеров) с помощью таких матриц свидетельствует о том, что в большинстве случаев поведение гетерогенных наносистем определяется в основном их поверхностными свойствами и процессами и в меньшей степени зависит от объемных свойств компонентов этих систем жидкости и твердого тела (матрицы) [2, 3–5, 19]. В качестве жидкости используются вода и водные растворы, соли, расплавы, низкотемпературные сплавы, эвтектики и другие простые жидкости [3–5, 9, 10, 13].

Важнейшей характеристикой указанных гетерогенных систем является их ярко выраженная лиофобность ($120^{\circ} < \theta \leq 180^{\circ}$). Если система изначально лиофильна (жидкость самопроизвольно входит в поровое пространство матрицы), то она не является работоспособной. Однако система может стать функционально пригодной, если осуществить химическое модифицирование поверхности матрицы, а именно сделать ее гидрофобной (несмачиваемой) [20].

В случае простых жидкостей связь между поверхностным натяжением σ и температурой T можно считать линейной [2, 14]:

$$\sigma = \sigma_0 (1 - T/T_*) \tag{3}$$

 $(T_* -$ критическая температура, при которой $\sigma = 0$; $d\sigma/dT = -\sigma_0/T_* -$ температурный коэффициент поверхностного натяжения жидкости).

В отличие от традиционных рабочих тел (газ, пар), свойства которых определяются единственным уравнением состояния для идеального газа PV = nRT или уравнением Ван-дер-Ваальса для реальных газов, свойства РК определяются двумя независимыми уравнениями

$$dV = -kr \, d\Omega, \qquad dP = \frac{2|\cos\theta|}{r} \frac{d\sigma}{dT} \, dT.$$
 (4)

Таким образом, впервые удалось разорвать связь между сопряженными параметрами P и V [2, 6]. Эта особенность РК позволила создать на их основе более совершенные энергетические устройства и системы (экологически чистые с минимальными расходами энергии и материалов) и даже реализовать ранее невозможные режимы их работы [1, 3–5, 9, 13]. Например, вопреки традиционным представлениям повышение температуры в системе (4) вызывает понижение давления, поскольку $d\sigma/dT < 0$ [18, 21].

На рис. 2 представлена (P-V)-изотерма для РК на основе унипористой матрицы (например, цеолита с r = const) [15, 16]. Видно, что на участке AB повышение давления не вызывает существенного уменьшения объема квазиконденсированной суспензии, но после

Рис. 2. (*P–V*)-изотерма сжатия РК на основе унипористой матрицы: *AB* — начальная упругая деформация без интрузии; *BC* — интрузия жидкости в поровое пространство матрицы; *CD* — упругая деформация после окончательного заполнения жидкостью порового пространства матрицы

Рис. 3. Цикл изотермического сжатия-расширения РК на основе разнопористой матрицы:

AB— начальное упругое сжатие без интрузии; BC— интрузия жидкости в поровое пространство; CD— самопроизвольное упругое расширение PK; DA— самопроизвольная экструзия

достижения величины, равной капиллярному давлению Лапласа (1), на участке BC происходит интрузия жидкости в поровое пространство матрицы и как следствие существенное уменьшение объема системы в целом (на величину, равную объему пор V_p). Площадь межфазной поверхности Ω становится максимальной в конце процесса сжатия (точка Cна рис. 2) (см. (2), (4)). Повышение давления на участке CD после окончательного заполнения пор и капилляров не приводит к существенному уменьшению объема системы (она вновь становится практически несжимаемой).

Цикл изотермического процесса сжатия-расширения РК на основе разнопористой матрицы (r — переменная величина) представлен на рис. 3 (система гидрофобизированный силикагель — вода [22, 23]). Видно, что после достижения величины, равной капиллярному давлению Лапласа (точка B), происходит процесс принудительного заполнения (интрузии) сначала больших пор и капилляров, а затем малых при переменном давлении P_{int} (участок BC, на котором происходит незначительное упругое сжатие РК после заполнения порового пространства). На участке CD наблюдаются незначительное упругое расширение объемных составляющих системы и понижение давления, а на участке DA — самопроизвольная экструзия кластеров жидкости из порового пространства при переменном давлении P_{ext} ; при этом жидкость вытесняется сначала из малых пор, а затем из больших. Из рис. 3 следует, что при циклическом нагружении РК незначительная на участках AB и CD деформация суспензии становится существенной на участках интрузии (участок BC) и экструзии (участок DA) жидкости: объем порового пространства матрицы V_p определяет бо́льшую часть деформации системы.

Рассматриваемый цикл может характеризоваться большим гистерезисом $H = P_{int} - P_{ext}$. Клатраты с таким гистерезисом применяются для эффективного рассеивания механической энергии (бамперы, амортизаторы и т. д.) [13, 22, 23]. Репульсивные клатраты

с малым гистерезисом *H* используются для аккумулирования механической энергии [9, 15, 16].

Репульсивные клатраты обладают уникальным свойством: их динамические характеристики в координатах давление — объем в широком диапазоне частот могут практически совпадать с их (P-V)-изотермой, являющейся, по сути, статической характеристикой гетерогенной системы (квазистатическая характеристика одного из реальных клатратов приведена на рис. 3).

Запишем выражение для внутренней поверхностной энергии U_{Ω} репульсивного клатрата (без учета его объемной составляющей и соответственно внутренней объемной энергии системы) [2, 6]

$$dU_{\Omega} = dW_{\Omega} + dQ_{\Omega},\tag{5}$$

где dW_{Ω} — работа, затрачиваемая на изотермическое образование межфазной поверхности Ω ; dQ_{Ω} — теплота, расходуемая на изотермическое образование поверхности Ω .

Следует учитывать, что

$$dW_{\Omega} = \sigma |\cos \theta| \, d\Omega, \qquad dQ = -T \, \frac{d\sigma}{dT} |\cos \theta| \, d\Omega$$
(6)

(см. [8, 12, 24]).

Из равенств (5), (6) следует, что процесс изотермического сжатия РК (увеличение площади поверхности: $d\Omega > 0$) является эндотермическим [18]: к системе требуется подводить не только работу, но и теплоту, необходимую для образования поверхности, так как $d\sigma/dT < 0$. Изотермическое расширение гетерогенной системы (самопроизвольное уменьшение площади поверхности: $d\Omega < 0$) сопровождается выделением теплоты (экзотермический процесс) [14, 18, 19, 24]. Такие явления в традиционной технической термодинамике не встречаются.

2. Амортизатор на основе РК. Схема реального амортизатора нового класса [13, 22, 23] и принцип его действия показаны на рис. 4. В цилиндре 1, заполненном небольшим количеством технической жидкости 2 (например, маслом), имеется поршень 3 со штоком 4 (диаметр штока не учитывается). Поршень разделяет цилиндр на две рабочие камеры 5 и 6, каждая из которых содержит репульсивные клатраты 7 и 8, помещенные в гибкие капсулы, исключающие контакт суспензии с технической жидкостью. Таким образом, клатраты 7 и 8 расположены оппозитно по отношению к поршню. Компенсационная камера 9 с гибкой оболочкой, на которую действует атмосферное давление P_a , соединена с рабочими камерами 5 и 6 через байпасы на базе дросселей 10, 11 и обратных клапанов 12, 13. Внешнее возмущение F_A (например, гармоническое деформирование $x = x_m \sin \omega t$) приложено к штоку.

Гидравлическое сопротивление дросселей 10, 11 возрастает при увеличении степени дросселирования α и скорости течения технической жидкости, пропорциональной скорости движения поршня \dot{x} : $P_{res} = P_{res}(\alpha, \dot{x})$. На рис. 5 показано, что заданный уровень давления (например, $P = P_{\rm L}$) достигается при тем меньшей скорости \dot{x} , чем больше степень дросселирования потока α ($\dot{x}_{*1} < \dot{x}_{*2} < \dot{x}_{*3}$ при $\alpha_1 > \alpha_2 > \alpha_3$).

В амортизаторе применяются клатраты с большим гистерезисом H по параметру P в цикле сжатия-расширения гетерогенной системы (см. рис. 3). Подбирая соответствующие капиллярно-пористые матрицы с различным распределением пор по размеру, а также изменяя поверхностное натяжение рабочей жидкости, можно изменять угол наклона характеристик $P_{int} - V$ и $P_{ext} - V$.

Амортизатор работает следующим образом. Например, поршень (см. рис. 4) перемещается вправо, при этом клапан 13 закрывается. Если скорость перемещения поршня $0 < \dot{x} < \dot{x}_*$, т. е. не превышает установленного значения, то гидравлическое давление

Рис. 4. Схема автомобильного амортизатора с РК в качестве диссипирующей среды: 1 — цилиндр; 2 — техническая жидкость; 3 — поршень; 4 — шток; 5, 6 — рабочие камеры; 7, 8 — репульсивные клатраты; 9 — компенсационная камера; 10, 11 — дроссели; 12, 13 обратные клапаны; 14 — защищаемый объект

Рис. 5. Зависимость гидравлического сопротивления Pдросселя от скорости перемещения \dot{x} штока амортизатора при различных значениях α :

 $1-\alpha=\alpha_1;\,2-\alpha=\alpha_2;\,3-\alpha=\alpha_3$

 $P = P_{res} < P_{\rm L}$ в камере 6 не может обеспечить внедрение жидкости в поровое пространство матрицы, но дроссель 11 при этом не препятствует перетоку технической жидкости (вытесняемой из камеры 6) в компенсационную камеру 9 и далее через обратный клапан 12 в камеру 5. Для автомобильного амортизатора, как правило, принимается значение $\dot{x}_* \approx 0.1 \dot{x}_{\rm max}$, где $\dot{x}_{\rm max} = 1$ м/с для туристических автомобилей. При этом в области малых скоростей \dot{x} происходит рассеивание энергии, обусловленное наличием сил вязкого трения технической жидкости.

Если $\dot{x} \ge \dot{x}_*$, то гидравлическое сопротивление P_{res} дросселя 11 (при неизменной степени дросселирования α) увеличивается и давление в камере 6 возрастает до значения $P_{res} = P_{\rm L}$ (1), что обусловливает интрузию рабочей жидкости в матрицу репульсивного клатрата 8, объем которого при этом существенно уменьшается. Если репульсивный клатрат 7 ранее был сжат, то при движении поршня вправо он будет расширяться, покрывая дефицит объема жидкости в камере 5. При необходимости в камеру 5 через клапан 12 будет поступать жидкость из компенсационной камеры 9 (под действием перепада между давлением P_a и декомпрессией в камере 5).

Аналогичные явления происходят при движении поршня влево: при скоростях $\dot{x} \ge \dot{x}_*$ принудительная интрузия рабочей жидкости в поровое пространство матрицы и существенное уменьшение объема будут иметь место в клатрате 7, а самопроизвольная экструзия кластеров жидкости из порового пространства будет происходить в клатрате 8. При этом открытие клапана 13 обеспечит поступление необходимого количества технической жидкости в камеру 6 и исключит появление разрежения в запоршневом пространстве (нарушение сплошности флюида).

Таким образом, при любом перемещении поршня гарантируется неразрывность жидкости в камерах 5, 6. При использовании оппозитной схемы расположения репульсивных клатратов 7, 8 относительно поршня даже одностороннее перемещение последнего в любом направлении сопровождается полным замыканием цикла сжатия-расширения PK. Рассеиваемая при этом энергия пропорциональна площади, заключенной между кривыми интрузии и экструзии на (*P*–*V*)-диаграмме (см. рис. 3).

Рассматриваемый амортизатор можно классифицировать как устройство, в котором реализован симбиоз двух видов рассеивания механической энергии [13, 22, 23]. С одной стороны, применяется традиционная прокачка вязкой жидкости через дроссели 10, 11 (см. рис. 4) в случае малых скоростей движения рабочего органа амортизатора ($0 < \dot{x} < \dot{x}_*$), обусловливающих малые усилия F_A на штоке. С другой стороны, используется принципиально новый способ рассеивания энергии при значительных скоростях движения штока ($\dot{x} \ge \dot{x}_*$) [13, 22, 23], основанный на том факте, что в процессах увеличения и уменьшения площади межфазных поверхностей (сжатия-расширения PK) имеет место большой гистерезис H по давлению. При этом большие усилия F_A непосредственно не связаны с величиной скорости, а определяются большим перепадом давления на поршне ($H = P_{int} - P_{ext}$) при реализации процессов интрузии-экструзии в гетерогенной системе. Указанная особенность позволяет существенно уменьшить эффективную площадь рабочих органов (поршней) в реальных гидромеханических устройствах [3–5, 9, 13, 22, 23].

Из рис. 2, 3 следует, что влияние изменения площади межфазных поверхностей Ω системы рабочая жидкость — матрица на диссипацию энергии является более существенной по сравнению с влиянием вязкости технической жидкости в традиционных устройствах. Объединение двух видов рассеивания энергии в одном амортизаторе позволяет говорить об обобщенной диссипативной среде и, следовательно, о ее обобщенной реологической модели (см. п. **3**).

На рис. 6 представлена рабочая характеристика сила — перемещение реального амортизатора [13, 23] (при частоте его нагружения, равной 1 Гц), являющаяся следствием индивидуальных характеристик (см. рис. 3) репульсивных клатратов 7, 8 на рис. 4. Подробное описание методики экспериментального определения динамических свойств нового амортизатора приведено в [22, 23].

Рис. 6. Характеристика сила — перемещение при циклическом нагружении реального амортизатора:

ABCD — аппроксимация реальной характеристики циклического нагружения (*AB*, *CD* — упругое расширение одного из двух PK и начальное упругое сжатие другого PK, включенных оппозитно; *BC*, *DA* — экструзия жидкости в одном из двух PK и интрузия в другом PK)

Репульсивные клатраты 7, 8 (см. рис. 4) включены гидравлически оппозитно по отношению к поршню, поэтому если в одной из рабочих камер (5, 7 или 6, 8) происходит сжатие гетерогенного рабочего тела (dV < 0, $d\Omega > 0$), то в другой имеет место его расширение (dV > 0, $d\Omega < 0$). Поскольку в качестве номинального положения поршня (начала отсчета по координате x) принято его положение в середине цилиндрической части 1 амортизатора (см. рис. 4), усилия F_A на штоке меняют знак в зависимости от знака перемещения x(см. рис. 6).

3. Обобщенная реологическая модель диссипативной среды на основе PK. В случае лиофобной суспензии можно использовать законы механики сплошных сред. Несмотря на большое разнообразие существующих реологических моделей [25, 26], ни одна из них непригодна для корректного описания реологических свойств PK.

На рис. 7,*а* представлены схема и элементная база предлагаемой обобщенной реологической модели рабочей среды с использованием РК, на рис. 7,*б* — рабочая характеристика модели усилие F_A — перемещение штока x.

Обобщенная модель состоит из последовательно соединенных дросселя и РК. Дросселю, в котором имеет место вязкое трение жидкости, соответствует элемент R_1 с деформацией x_1 . Собственно РК моделируется последовательно соединенными упругим элементом C_2 с деформацией x_2 и блоком параллельно соединенных звеньев с перемещением x_3 . Этот блок моделирует процесс интрузии-экструзии жидкости в поровое пространство матрицы (см. рис. 3) и состоит из следующих звеньев: элемента сухого трения с силой

Рис. 7. Обобщенная реологическая модель РК:

a — схема и элементная база модели; b — зависимость усилия F_A от перемещения штока x (AB — при упругой деформации PK; BC — при интрузии жидкости для PK на основе унипористой матрицы; BD — при интрузии жидкости для PK на основе разнопористой матрицы; BE — при интрузии жидкости с учетом вязких сил в диапазоне сверхвысоких скоростей перемещения штока) $F_{fr} = F_{int}^0$, упругого элемента с жесткостью C_3 и "звена-фантома" с силой F_f (последнее звено работает лишь в области высоких частот (подробнее об этом см. ниже)). Заметим, что на рис. 7 $R = dF/d\dot{x}$ и C = dF/dx — коэффициент демпфирования и коэффициент упругости соответственно.

Предполагается, что смещение x(t) начала первого звена относительно неподвижного конца трехзвенного блока является заданной функцией времени. Связь между деформациями и скоростями их изменения определяется равенствами

$$x(t) = x_1 + x_2 + x_3, \qquad v(t) = \dot{x}(t) = \dot{x}_1 + \dot{x}_2 + \dot{x}_3.$$
 (7)

Из обобщенной реологической модели рабочей среды на основе РК (см. рис. 7,*a*) следует, что выражение для усилия F_A может быть записано тремя способами ($F_A = F_1 = F_2 = F_3$):

$$F_A = R_1 \dot{x}_1 = C_2 x_2 = F_{fr} + C_3 x_3 + F_f.$$
(8)

Как отмечено выше, специфика нового рабочего тела обусловливает необычное графическое представление реологической модели на основе РК (см. рис. 7, δ): в широком диапазоне амплитуд скоростей $v_{3m} = \omega x_{3m}$ (x_{3m} — амплитуда перемещения x_3 ; $\omega = 2\pi f$ круговая частота как функция частоты f) усилие F_A практически не зависит от скорости \dot{x}_3 , поэтому характеристика сила — перемещение x_3 остается неизменной (линия ABDна рис. 7, δ). Это явление обнаружено экспериментально и, по-видимому, обусловлено тем, что вследствие несмачиваемости скорость жидкости в порах и капиллярах на границе с твердой поверхностью матрицы имеет конечное значение (отсутствует неподвижный слой Прандтля). При этом в балансе сил, определяющих эпюру скоростей жидкости, вязкие силы имеют второстепенное значение, т. е. в меньшей степени влияют на закон движения рабочей жидкости в лиофобных порах и капиллярах [18].

Лишь при $\dot{x} \ge \dot{x}_{mf} \approx 3 \div 4$ м/с изменение усилия F_A в зависимости от перемещения x(т. е. от объема внедренной в матрицу жидкости) начинает определяться отрезком BEна рис. 7,6 (это явление также обнаружено экспериментально). Прежде чем объяснить суть этого необычного явления, вернемся к интерпретации базовой характеристики ABDобобщенной реологической модели (см. рис. 7,6) и ее связи с элементной базой (см. рис. 7,a).

На участке упругого деформирования (отрезок AB) деформация x_2 пружины C_2 пропорциональна усилию F_A , зависящему от скорости перемещения \dot{x}_1 : $F_A = R_1 \dot{x}_1$. В свою очередь усилие в пружине C_2 может возрасти до значения $F_A = F_{int}^0$ (точка B на рис. 7, δ) и обеспечить гидравлическое давление, равное капиллярному давлению Лапласа (1), при котором возможно внедрение жидкости в поровое пространство матрицы. Если используется унипористая матрица (размер всех пор одинаков: r = const), то деформация x_3 PK определяется отрезком BC, что характерно для элементов сухого трения: $F_{fr} = F_{int}$. Если используется разнопористая матрица ($r_{\min} < r < r_{\max}$), то деформационный процесс в PK после начала интрузии при F_{int}^0 будет характеризоваться отрезком BD, т. е. увеличением F_A , так как сначала заполняются поры с $r_{\max}(P_{\min})$, а затем — поры с $r_{\min}(P_{\max})$. Увеличение усилия F_A (отрезок BD) относительно постоянного значения F_{int}^0 (отрезок BCна рис. 7, δ) моделируется пружиной C_3 .

Динамические испытания амортизатора показали, что в области высоких скоростей внешнего возмущения на РК ($\dot{x} \ge \dot{x}_{mf}$) имеет место редкое явление: при одних и тех же амплитудах возмущений закон изменения усилий F_A определяется отрезком BE (см. рис. 7, δ), характеристика $F_A \sim x$ начинает "разбухать" по координате F_A . Можно предложить два объяснения этого явления.

Первое объяснение основано на традиционных представлениях о механизме диссипации механической энергии с использованием сил вязкого трения. Считается, что при высоких скоростях взаимодействия в системе жидкость — твердое тело поверхностные явления, в том числе эффект "проскальзывания" кластеров жидкости в лиофобных порах и капиллярах, становятся менее существенными, при этом преобладают силы вязкого трения рабочей жидкости в порах, возрастающие с увеличением скорости: $F_f = R_3 \dot{x}_3$.

Второе объяснение, названное термодинамическим, представляется более реалистичным, так как оно учитывает специфические свойства РК [2, 6, 18]. Суть этой версии сводится к следующему. Изотермическая интрузия жидкости в поровое пространство матрицы (изотермическое развитие межфазной поверхности Ω) является эндотермическим процессом [18, 19]. Изотермичность процесса образования поверхности Ω обеспечивается сбалансированным подводом извне теплоты образования этой поверхности Q в соответствии с формулой (6). Именно вследствие сохранения баланса между необходимой для образования межфазной поверхности тепловой мощностью dQ_{-}/dt (пропорциональной скорости образования поверхности $d\Omega/dt$) и подводимой извне мощностью dQ_+/dt достигается неизменность температуры в процессе увеличения площади межфазной поверхности Ω . В силу инерционности процессов теплообмена в системе РК — окружающая среда такой баланс обеспечивается тем надежней, чем меньше скорость образования поверхности $d\Omega/dt$ (скорость движения поршня \dot{x}). Однако при увеличении скорости механического воздействия \dot{x}_3 на PK начиная с определенного значения \dot{x} величина dQ_-/dt увеличивается пропорционально $d\Omega/dt$. При этом скорость подвода тепла dQ_+/dt извне меньше скорости потребления тепла системой в процессе образования поверхности. В этом случае условия теплообмена между РК и внешней средой приближаются к адиабатическим, т. е. реализуются без достаточно эффективного подвода тепла к системе от внешней среды. В результате в системе возникает дефицит тепла, который может покрываться за счет уменьшения ее внутренней энергии $dU = C_V dT$ (C_V — суммарная теплоемкость суспензии при постоянном объеме), что приводит к понижению температуры РК (dT < 0) [18]. Вследствие этого увеличивается поверхностное натяжение рабочей жидкости, а также капиллярное давление Лапласа (см. (3), (4)). При понижении температуры усилие F_A в амортизаторе увеличивается; характеристика $F_A \sim x$ начинает "разбухать" (отрезок BE на рис. 7, δ) относительно отрезка BD. Аналогичные явления наблюдаются при экструзии, но при этом знаки энергий меняются на противоположные.

Однако с учетом того, что $P_{int} \gg P_{ext}$, а репульсивные клатраты 7, 8 (см. рис. 4) включены гидравлически оппозитно по отношению к поршню, преобладающими становятся температурные эффекты, происходящие при сжатии клатрата ($d\Omega > 0$), а не при его расширении ($d\Omega < 0$). Таким образом, в результате процесса сжатия-расширения каждого в отдельности клатрата 7, 8 происходит адиабатическое понижение их температуры (что подтверждено экспериментально [18, 23]) и как следствие увеличение усилия F_A .

При всей обоснованности данного термодинамического объяснения описание механизма "разбухания" характеристики $F_A \sim x$ в области высоких скоростей изменения внешнего возмущения F_A в реологических терминах представляется неоправданно громоздким по сравнению с описанием, получаемым при использовании более простого традиционного объяснения ($F_f = R_3 \dot{x}_3$). Поэтому в дальнейшем при моделировании и изучении динамики РК используем в их реологической модели более простое звено $F_f = R_3 \dot{x}_3$, полагая, что отмеченное выше адиабатическое увеличение усилия F_A эквивалентно усилию F_f и обе эти силы в конечном счете обеспечивают одинаковую диссипацию энергии.

4. Эксперименты и моделирование поведения РК. В соответствии с техническим заданием фирмы Renault на основе РК созданы образцы амортизаторов, предназначенные для туристических автомобилей Renault Safran [22, 23]. Результаты измерений усилия F_A и деформации x при циклическом нагружении такого амортизатора (см. рис. 4) при различных значениях амплитуды и частоты приведены на рис. 8, a, δ .

Рис. 8. Кривые нагружения амортизатора при циклическом деформировании, полученные в экспериментах (a, δ) и в результате моделирования (e, c): AB, DE — упругое сжатие PK в одной из двух оппозитно включенных рабочих камер и расширение в другой камере; BC, EF — интрузия жидкости в поровое пространство PK в одной из двух рабочих камер и экструзия жидкости в другой камере

Рисунок	Кривая	x_m , MM	f, Гц	\dot{x} , м/с
а, в	1	40	1,0	0,251
$a, \ e$	2	30	$1,\!0$	$0,\!188$
а, б, в, г	3	20	1,0	$0,\!126$
$a, \ e$	4	10	1,5	$0,\!094$
$a, \ e$	5	5	1,5	0,047
б, г	6	13	12,0	0,754
б, г	7	6,5	12,0	$0,\!377$

Моделирование проводилось путем численного интегрирования системы дифференциальных уравнений

$$F_{ne} = F_A - C_3 x_3; \tag{9}$$

$$\frac{dx_3}{dt} = \begin{cases} 0, & F_{ne} < F_{fr}, \\ (F_{ne} - F_{fr} \operatorname{sign}(F_{ne}))/R_3, & F_{ne} \ge F_{fr}; \\ \frac{dF_A}{F_{A}} & (F_{A}) \end{cases}$$
(10)

$$\frac{dF_A}{dt} = C_2 \left(\dot{x}(t) - \dot{x}_3 - \frac{F_A}{R_1} \right) \tag{11}$$

относительно двух переменных — общей силы F_A в последовательно соединенных совокупностях элементов (см. формулу (8)) и деформации x_3 трехзвенного блока (см. рис. 7). В (9)–(11) F_{ne} — действующая на неупругие элементы в трехзвенном блоке (элементы с сухим F_{fr} и вязким F_f трением) внешняя неупругая сила, которая при циклическом деформировании может менять знак; $\dot{x}(t)$ — скорость изменения общей деформации, задаваемой как гармоническая функция времени $x(t) = x_m \sin \omega t$. Уравнение (11) получено из очевидного уравнения $\dot{F}_A = C_2 \dot{x}_2$ (8) с учетом того, что $\dot{x}_2 = \dot{x}(t) - \dot{x}_1 - \dot{x}_3$ вследствие (7), где $\dot{x}_1 = F_A/R_1$.

Базовые значения постоянных коэффициентов реологической модели (см. рис. 7) R_1 , R_3 , C_2 , C_3 , F_{fr} были получены по результатам экспериментов. В частности, для серии экспериментов [23], результаты которых представлены на рис. 6, 8, величина R_1 определялась способом, следующим из графических построений, приведенных на рис. 5: при заданной конструкторами критической скорости $\dot{x}_* \approx 0,09$ м/с с помощью дросселей 10, 11 (см. рис. 4) степень дросселирования α и, следовательно, гидравлическое сопротивление P_{res} изменялись до тех пор, пока не было выполнено равенство $P_{res} \approx P_{\rm L}^0 = P_{int}^0$ (начало интрузии) и не было достигнуто значение $F_{int}^0 = \Delta F = P_{res}s$ (s — эффективная площадь поршня). Наличие излома на характеристике усилие F — скорость \dot{x} в окрестности критической скорости (см. рис. 5) служит доказательством начала интрузии рабочей жидкости в поровое пространство матрицы РК при заданной скорости \dot{x}_* и основанием для расчета R_1 по формуле $R_1 = \Delta F/\dot{x}_*$ (где $\Delta F = F_{int}^0 = (960 + 540)/2 = 750$ H). Значение $\Delta F = 750$ H получено как среднее значение амплитуды усилия в процессе сжатия (участок AB на рис. 6). Так как $\dot{x}_* \approx 0,09$ м/с = 90 мм/с, то базовое значение $R_1 = 8,3$ H · с/мм.

Ориентировочные базовые значения параметров звеньев модели можно определить с помощью квазистатической характеристики амортизатора (частота циклического нагружения равна 1 Гц), представленной на рис. 6, построив параллелограмм с помощью касательных AB (CD) и BC (AD) к плоским участкам характеристики. Угол наклона малых сторон параллелограмма определяет жесткость $C_2 \approx 89$ Н/мм второго звена; наклон его больших сторон — жесткость $C_3 \approx 5,0$ Н/мм трехзвенного блока. Половины отрезков ABи CD определяют силу $F_{fr} = 750$ Н сухого трения в трехзвенном блоке.

Наиболее близкие к экспериментальным (см. рис. 8, a, b) результаты расчетов получены при следующих значениях параметров модели: $R_1 = 8 \text{ H} \cdot \text{с/мм}, R_3 = 0,005 \text{ H} \cdot \text{с/мм}, C_2 = 89 \text{ H/мм}, C_3 = 6 \text{ H/мм}, F_{fr} = 750 \text{ H}$ (см. рис. 8, b, c). Малое значение коэффициента демпфирования R_3 (при $\dot{x} \leq 2 \text{ м/с}$ им можно пренебречь) подтверждает предположение о том, что "звено-фантом" F_f (см. рис. 7) работает лишь в области высоких скоростей перемещения штока-поршня амортизатора ($3 \div 4 \text{ м/c}$).

Начальные условия для системы (9)-(11) соответствовали недеформированному ненагруженному состоянию рабочих тел (поршень амортизатора находится в нейтральном положении, т. е. в центральной части цилиндра 1 на рис. 4). Поэтому модельные кривые нагружения выходят из начала координат (см. рис. 8, 6, e).

Представленные на рис. 8, *a*, *б* контуры 3–5 показывают, что при гармоническом нагружении РК главным фактором интрузии-экструзии жидкости в поровое пространство матрицы является линейная скорость жидкости $v_{3m} = \omega x_{3m} = 2\pi f x_{3m}$. Видно, что при малых амплитудах ($x_m = 5, 10$ мм) и низких частотах (f = 1 Гп), а следовательно, при скоростях, меньших критической \dot{x}_* (см. рис. 5), рабочая жидкость не входит в поровое пространство матрицы, так как давление в системе ниже капиллярного давления Лапласа (см. рис. 8, *a*). Тем не менее при высоких частотах (f = 12 Гц) жидкость входит в поры (см. рис. 8, *b*), так как при высоких скоростях движения поршня в рабочей камере 5, 6 (см. рис. 4) за счет увеличения P_{res} достигается капиллярное давление Лапласа (1) — давление интрузии.

Эффективное рассеивание энергии в цикле увеличения-уменьшения площади поверхности Ω достигается за счет того, что давление экструзии жидкости из порового пространства на порядок меньше давления интрузии (наличие гистерезиса H). Наиболее четко это видно при сравнении контуров 4, 6 на рис. 8, a, δ ($x_m \approx 10$ мм): площадь, охваченная контуром 6 на рис. 8, δ , больше площади, охваченной контуром 4 на рис. 8, a. Аналогичная картина характерна для контура 5 ($x_m = 5$ мм). Величина рассеиваемой энергии (площадь, охваченная контуром 7 на рис. 8, δ) увеличивается с ростом частоты возмущения.

Сравнение результатов эксперимента и моделирования показывает, что предложенная реологическая модель (см. рис. 7) удовлетворительно аппроксимирует экспериментальные данные.

Вторая серия экспериментов проведена на испытательных стендах автомобильной фирмы PSA (Peugeot-Citroen), но уже с другими настройками и незначительно измененными геометрическими параметрами амортизатора (рис. $9, a, \delta, 10, a, \delta$). Результаты экспериментов по циклическому нагружению амортизатора с амплитудами, равными 60 и 50 мм, при различных значениях частоты деформирования показаны на рис. 9, a (скорость штока $\dot{x} = 0, 19 \div 1, 13$ м/с) и рис. $9, \delta$ ($\dot{x} = 0, 16 \div 0, 94$ м/с).

На рис. 10 видно, что в серии экспериментов при $x_m = 30, 40$ мм зафиксированы нелинейные участки (зоны насыщения) на рабочих характеристиках амортизатора, несмотря на его гармоническое нагружение $(\dot{x}(t) = x_0 \sin \omega t)$. Не исключено, что появление этих участков обусловлено несовершенством настройки байпасов (дроссель — обратный клапан) 10, 12 и 11, 13 амортизатора (см. рис. 4) в данной серии опытов.

На кривых нагружения для амплитуд деформации $x_m = 30, 40$ мм (см. рис. $10, a, \delta$) виден эффект "разбухания", проявляющийся при повышенных скоростях движения штока (от 0,13 до 3,78 м/с на рис. 10, a и от 0,09 до 3,96 м/с на рис. $10, \delta$). Это позволило определить базовое значение коэффициента демпфирования R_3^0 по наблюдаемому увеличению усилия ΔF , вызванному увеличением скорости движения поршня $\Delta \dot{x}$: $R_3^0 = \Delta F / \Delta \dot{x}$. В экспериментах, результаты которых представлены на рис. 10, a, получены значения $\Delta F = 160$ H, $\Delta \dot{x} = 3517$ мм/с, $R_3^0 = 0,05$ H · с/мм. Аналогично для экспериментальных данных, представленных на рис. $10, \delta$, получены значения $\Delta F = 240$ H, $\Delta \dot{x} = 3768$ мм/с; следовательно, $R_3^0 = 0,06$ H · с/мм.

Результаты моделирования по уравнениям (8)–(11) удовлетворительно согласуются с данными экспериментов, проведенных фирмой PSA, при следующих значениях параметров модели: $R_1 = 20 \text{ H} \cdot \text{c/mm}$, $R_3 = 0.07 \text{ H} \cdot \text{c/mm}$, $C_2 = 150 \text{ H/mm}$, $C_3 = 2 \text{ H/mm}$, $F_{fr} = 850 \text{ H}$. Таким образом, параметр $R_3 = 0.005 \text{ H} \cdot \text{c/mm}$ для амортизатора, испытанного фирмой Renault, на порядок меньше параметра $R_3 = 0.05 \text{ H} \cdot \text{c/mm}$, определенного по результатам испытаний незначительно измененного амортизатора, проведенных фирмой PSA (см. рис. 9, 10).

Наилучшее соответствие результатов моделирования экспериментальным данным наблюдается при $x_m = 50, 60$ мм (см. рис. 9). Это обусловлено умеренными линейными скоростями штока (поршня) амортизатора. При $x_m = 60$ мм за счет увеличения частоты колебаний скорость штока повышалась с 0,19 до 1,13 м/с; при $x_m = 50$ мм за счет увели-

Рис. 9. Кривые нагружения амортизатора, полученные в экспериментах (a, δ) и в результате моделирования (e, e) при $x_m = 50, 60$ мм:

Кривая	x_m , MM	f, Γ ц	\dot{x} , м/с
1		0,5	0,188
2	60	1,0	0,376
3		$_{3,0}$	1,130
1		0,5	0,157
2	50	1,0	0,314
3		3,0	0,942
	Кривая 1 2 3 1 2 3 3	Кривая $x_m, {\rm MM}$ 1 2 60 3 1 1 2 50 3 3 50 3	Кривая $x_m,$ мм $f,$ Гц10,526033,010,52503,03,0

Рис. 10. Кривые нагружения амортизатора, полученные в экспериментах (a, δ) и в результате моделирования (e, e) при $x_m = 30, 40$ мм:

Кривая	x_m , MM	f, Гц	\dot{x} , м/с
1		$0,\!5$	$0,\!13$
2	40	3,0	0,76
3		15,0	$3,\!78$
1	30	0,5	0,09
2		3,0	$0,\!57$
3		7,0	1,32
4		16,0	$3,\!01$
5		21,0	$3,\!96$
	Кривая 1 2 3 1 2 3 4 5	Кривая x _m , мм 1 40 3 40 1 40 3 3 1 30 4 5	Кривая $x_m,$ мм $f,$ Гц10,5240315,010,523,0330330416,0521,0

чения частоты нагружения амортизатора скорость штока повышалась с 0,16 до 0,94 м/с (стандартный диапазон скоростей для гидравлических амортизаторов легковых автомобилей).

Повышение скоростей движения штока-поршня амортизатора с 0,13 до 3,78 м/с при $x_m = 40$ мм (см. рис. 10,*a*) и с 0,09 до 3,96 м/с при $x_m = 30$ мм (см. рис. 10,*b*), по-видимому, обусловливает переход циклического изотермического режима увеличенияуменьшения площади межфазной поверхности Ω (в области повышенных скоростей движения поршня) в квазиадиабатический режим. В этих условиях интенсивность подвода тепла к РК извне dQ_+/dt при скоростях движения штока $\dot{x} = 3 \div 4$ м/с стала меньше необходимой (потребляемой) мощности dQ_-/dt , обусловленной увеличением скорости образования межфазной поверхности $d\Omega/dt$. Это вызвало относительное "охлаждение" системы (в адиабатическом процессе теплота образования поверхности достигается за счет уменьшения внутренней энергии системы, т. е. за счет понижения ее температуры [18]). Поэтому давление интрузии жидкости в поры возрастает: с увеличением скорости движения поршня характеристика амортизатора сила — перемещение на рис. 10, a, 6 "разбухает".

С учетом сложности термомеханических процессов, происходящих в РК, модель динамики амортизатора в диапазоне повышенных скоростей (см. рис. 9,6,c) при постоянных значениях параметров реологической модели R_1 , C_2 , F_{fr} , C_3 , R_3 (как и в экспериментах, результаты которых представлены на рис. 8,c,c) также можно считать удовлетворительной.

Отметим, что в экспериментах с амортизатором нового класса [22, 23] была получена эффективная диссипация энергии даже при частотах внешнего механического возмущения на автомобильное колесо и скоростях штока амортизатора, существенно превышающих значения тех же параметров для гидравлических автомобильных амортизаторов: при частоте f = 12 Гц скорость штока составила 2 м/с, а при частоте f = 20 Гц — более 4 м/с (обе указанные скорости штока остаются недостижимыми при работе традиционных гидравлических амортизаторов). При сравнимых частотах и амплитудах нагружения традиционного амортизатора и амортизатора на основе РК удельная мощность диссипации энергии последнего изменялась в диапазоне от 10 до $30 \div 40$ Вт/см³ [23], что в 50–100 раз превышает тот же показатель для гидравлических амортизаторов.

Заключение. В работе показаны физические основы функционирования новых рабочих тел — репульсивных клатратов, в которых на больших удельных межфазных поверхностях гетерогенной системы (суспензии) жидкость — капиллярно-пористая матрица, не смачиваемая этой жидкостью, действуют молекулярные силы отталкивания.

Отмечены термодинамические, гидромеханические и энергопреобразующие особенности PK, не имеющие аналогов в современной технической термодинамике.

Предложена пятизвенная обобщенная реологическая модель PK, состоящая из последовательно соединенных элементов Ньютона и Гука и трехзвенного блока, представляющего собой параллельно соединенные элементы Сен-Венана, Гука и "звено-фантом". Пятизвенную модель PK можно свести к трехзвенной, состоящей из элемента Максвелла, последовательно соединенного с блоком параллельно включенных элементов Фойгта и Сен-Венана.

Результаты испытаний амортизатора на основе PK показали, что предложенные уравнения (7)–(9) и дифференциальные уравнения (10), (11) адекватно описывают реологическое поведение PK.

Применение PK в инженерной практике открывает перспективы для создания высокоэффективных компактных диссипаторов механической энергии (амортизаторов, бамперов, антисейсмических и антивибрационных систем) с более широкой полосой пропускания частот. В частности, транспортные средства, оборудованные быстродействующими амортизаторами на основе PK, могут без риска механических поломок преодолевать дорожные препятствия со скоростями, в 2–4 раза превышающими скорость транспорта, оснащенного традиционными гидравлическими амортизаторами.

Высокая эффективность рассеивания механической энергии PK сопоставима с эффективностью рассеивания механической энергии живыми коралловыми рифами (гетерогенными гидрофобными системами) [27, 28], способными противостоять разрушительному действию океанских волн во время штормов и цунами.

Авторы выражают благодарность сотрудникам фирмы PSA Peugeot-Citroen Ф. Генгану и М. Цвиллеру, сотруднику Политехнической школы Парижа Л. Куаффару за помощь в проведении экспериментов, а также В. П. Студенцу и И. И. Пятилетову за полезное обсуждение результатов экспериментов и помощь при подготовке публикации.

ЛИТЕРАТУРА

- Пат. 1,254,811 А СССР (1981-ДСП) РФ (1993), F 03 G 7/00. Гетерогенная термодинамическая система, способ Ерошенко преобразования тепловой энергии в механическую и устройство для его осуществления / В. А. Ерошенко. Заявл. 24.07.1981 (ДСП); Опубл. 30.09.1996, Бюл. № 3.
- Ерошенко В. А. Термодинамика вдавливания жидких металлов в жесткие пористые матрицы // Капиллярные свойства и адгезия сплавов: Сб. науч. тр. Киев: Наук. думка, 1987. С. 100–109.
- Пат. 943444 СССР (1980) РФ (1993), F 15 В 1/04. Гидрокапиллярный аккумулятор / В. А. Ерошенко. Заявл. 28.04.1980; Опубл. 15.07.1982, Бюл. № 26.
- Пат. 1380357 А2 СССР (1983-ДСП) РФ (1993), F 03 G 7/00. Способ Ерошенко преобразования тепловой энергии в механическую / В. А. Ерошенко. Заявл. 30.11.1983 (ДСП); Опубл. 30.09.1996, Бюл. № 3.
- Пат. 1452262 СССР (1986-ДСП) РФ (1993), А1 F03 G 7/00. Роторный тепловой двигатель Ерошенко / В. А. Ерошенко. Заявл. 16.06.1986 (ДСП); Опубл. 30.09.1996, Бюл. № 3.
- 6. **Ерошенко В. А.** Необычные свойства одной сложной термодинамической системы // Докл. АН УССР. Сер. А. Физ.-мат. и техн. науки. 1990. № 10. С. 79–82.
- 7. **Ерошенко В. А.** Термомолекулярная энергетика // Пром. теплотехника. 1992. Т. 14, № 1–3. С. 22–25.
- 8. **Ерошенко В. А.** Мерность пространства как термодинамический потенциал системы // Докл. АН Украины. Сер. А. Физ.-мат. и техн. науки. 1993. № 5. С. 65–67.
- Pat. WO 96/18040 France, F 15 B 1/04, F 16 F 9/00, 5/00, F 15 B 21/06. Heterogeneous structure for accumulation or dissipation of energy, process to use it and associated devices / V. A. Eroshenko. Publ. 13.06.1996.
- Eroshenko V. A. Repulsive clathrates. A new operational material for efficient seismic isolation // Proc. of the Intern. post-SMITR conf. "Seismic isolation, passive energy dissipation and active control of seismic vibrations of structure", Taormina (Sicily, Italy), Aug. 25–27, 1997. Roma: GLIS-IAEA, 1997. P. 783–794.
- 11. Ерошенко В. А., Ткаченко С. Г. Эффект гипердилатометрии одной сложной термодинамической системы // Укр. физ. журн. 1993. Т. 38, № 12. С. 1789–1792.
- Eroshenko V. A. Dimensionnalité de l'espace comme potentiel thermodynamique d'un système (version élargie) // Entropie. 1997. V. 202/203. P. 110–114.
- Pat. WO 01/55616 A1 France, F 16 F 9/00. Damper with high dissipating power / V. A. Eroshenko. Publ. 02.08.01.

- 14. Eroshenko V. A., Stoudenets V. P. The influence of developed interfaces upon the heterogeneous nanosystem thermal capacity // Composites. Pt A. 2002. V. 33. P. 1349–1353.
- Eroshenko V., Regis R.-C., Soulard M., Patarin J. Energetics: a new field of applications for hydrophobic zeolites // J. Amer. Chem. Soc. 2001. V. 123. P. 8129–8130.
- 16. Eroshenko V., Regis R.-C., Soulard M., Patarin J. Les systèmes hétérogènes "eau-zéolithe hydrophobe": de nouveaux ressorts moléculaires // C. R. Physique. 2002. V. 3. P. 111–119.
- 17. Lehn J.-M. La chimie supramoléculaire. Paris: De Boeck et Locier, 1997.
- Ерошенко В. А. Влияние теплообмена на заполнение лиофобных пор и капилляров жидкостью // Коллоид. журн. 1987. Т. 49, № 5. С. 875–880.
- 19. Coiffard L., Eroshenko V. A., Grolier J.-P. Thermomechanics of the movement of interface in heterogeneous lyophobic systems // AIChE J. 2005. V. 51, N 4. P. 1246–1257.
- Ерошенко В. А., Фадеев А. Ю. Изучение поверхности химически модифицированных кремнеземов с помощью водной порометрии // Журн. физ. химии. 1996. Т. 70, № 8. С. 1482–1486.
- Eroshenko V. A. Non-compressibilité et non-dilatabilité adiabatiques d'un système thermodynamique complexe // Entropie. 1996. V. 196. P. 17–23.
- Eroshenko V. A. A new paradigm of mechanical energy dissipation. Pt 1. Theoretical aspects and practical solutions // Proc. Mech. Engrs. Pt D. J. Automobile Engng. 2007. V. 221, N 3. P. 285–300.
- 23. Eroshenko V. A., Piatiletov I. I., Coiffard L., Stoudenets V. P. A new paradigm of mechanical energy dissipation. Pt 2. Experimental investigation and effectiveness of a novel damper // Proc. Mech. Engrs. Pt D. J. Automobile Engng. 2007. V. 221, N 3. P. 301–312.
- Coiffard L., Eroshenko V. Temperature effect on water intrusion/expulsion in grafted silica gels // J. Colloid Interface Sci. 2006. V. 300. P. 304–309.
- 25. **Рейнер М.** Реология / Пер. с англ. Н. И. Малинина под ред. Э. И. Гриболюка. М.: Наука, 1965.
- 26. **Урьев Н. Б.** Физико-химические основы технологии дисперсных систем и материалов. М.: Химия, 1988.
- Ерошенко В. А. Роль термодинамических и космических факторов в строении, функционировании и распределении коралловых рифов / АН Украины. Ин-т биологии южных морей им. А. О. Ковалевского. Препр. Севастополь, 1993.
- 28. **Ерошенко В. А.** Роль термодинамических и космических факторов в эволюции коралловых рифов // Рос. хим. журн. 1995. Т. 39, № 2. С. 72–84.

Поступила в редакцию 11/III 2011 г.