УДК 662.612:32

ВОСПЛАМЕНЕНИЕ ДВУХТОПЛИВНОЙ СМЕСИ ВОДОРОД/СИЛАН В ВОЗДУХЕ

Д. А. Тропин, А. В. Фёдоров

Институт теоретической и прикладной механики им. С. А. Христиановича СО РАН, 630090 Новосибирск d.a.tropin@itam.nsc.ru, fedorov@itam.nsc.ru

На основе разработанной ранее модели детальной кинетики рассчитано время задержки воспламенения двухтопливных смесей водород/силан/воздух. Определено влияние концентрации силана и температуры смеси на время задержки воспламенения. Показано, что в диапазоне температуры $1\,200 \div 2\,500$ К добавление небольшого количества силана (до $20\,\%$) в водородовоздушную смесь приводит к значительному уменьшению времени задержки воспламенения смеси, а при концентрации силана более $20\,\%$ время снижается незначительно.

Ключевые слова: смесь водород/силан/воздух, время задержки воспламенения, детальная химическая кинетика, математическое моделирование.

DOI 10.15372/FGV20170101

ВВЕДЕНИЕ

Силан является одним из наиболее широко используемых газовых источников кремния в полупроводниковой промышленности, имеет непредсказуемые возможности для зажигания [1, 2] и способен воспламеняться при достаточно низкой температуре [3]. С недавнего времени силан рассматривается как инициатор зажигания водорода, используемого в качестве топлива в сверхзвуковых двигателях. Остановимся кратко на кинетических моделях окисления водорода в присутствии силана [4–6].

В [4] на основе разработанной модели детальной химической кинетики окисления силана, учитывающей 78 реакций (39 прямых и 39 обратных), рассчитано время задержки воспламенения смесей силан/водород/кислород/азот, определяемое как время от начала нагрева смеси до резкого повышения давления смеси. Анализ чувствительности кинетических констант в модели кинетики показал, что наибольшее влияние на время задержки воспламенения рассматриваемых смесей оказывает реакция $SiH_3 + O_2 \rightarrow SiH_2O + OH$. Это позволило авторам подобрать значения кинетических констант в этой реакции для описания экспериментальных

Кроме того, в [4] исследовалось влияние добавки силана в смесь водород/кислород/азот на время задержки воспламенения. Были проведены серии расчетов для составов в диапазоне от чистой смеси водород/кислород/азот до чистой смеси силан/кислород/азот. Расчеты показали, что добавление небольшого количества силана — до 20 % SiH₄ (за 100 % SiH₄ принимается значение молярно-объемной концентрации силана в стехиометрической силановоздушной смеси) в смесь водород/кислород/азот существенно снижает время задержки ее воспламенения — примерно на порядок при температуре T = 1200 К. Дальнейшее увеличение количества силана в смеси от 20 до 100 % незначительно уменьшает время задержки воспламенения. Таким образом, представленные зависимости времени задержки воспламенения от количества силана в смеси в области его концентраций свыше 20 % выходят на асимптотическое значение, соответствующее времени задержки воспламенения смеси силан/кислород/азот.

В работе [4] получены также распределения концентраций основных компонентов смеси водород/кислород/азот с добавкой 2 % силана при начальной температуре смеси 800 К. Оказалось, что диссоциация силана происходит до того, как начинает распадаться водо-

зависимостей времени задержки воспламенения смесей силан/водород/кислород/азот от температуры за отраженной ударной волной [5]. Кроме того, в [4] исследовалось влияние

Работа выполнена при частичной финансовой поддержке Российского научного фонда (проект № 16-19-00010) и Российского фонда фундаментальных исследований (проект № 15-08-01947-а).

[©] Тропин Д. А., Фёдоров А. В., 2017.

род. В период диссоциации силана наблюдается рост концентрации радикалов ОН, а также О и Н, которые, в свою очередь, вступают в реакции продолжения цепей с молекулами водорода. За счет появления данных радикалов и уменьшается время задержки воспламенения водорода. Авторы отмечают, что при концентрациях силана более $10\,\%$ на воспламенение водорода начинает значительно влиять тепловой эффект — увеличение температуры смеси в реакциях с участием радикалов ОН. При $T>1\,000\,$ К реакции диссоциации водорода и силана с последующим окислением протекают практически одновременно.

В работе [6] предложена новая модель химической кинетики окисления смесей водород/силан/кислород/азот в диапазонах температуры $800 \div 1250 \text{ K}$ и давления $0.5 \div 1.35 \text{ атм}$, учитывающая 90 элементарных химических реакций (45 прямых и 45 обратных). Используя данную модель, авторы рассчитали время задержки воспламенения и время горения смесей водород/силан/кислород/азот. Задержка воспламенения определялась как время, требуемое для повышения температуры смеси на 5 % от всего увеличения температуры: $T_0 + 0.05\Delta T$, где $\Delta T = T_e - T_0, T_e$ — температура в равновесном состоянии, T_0 — начальная температура смеси. Сравнение с экспериментальными данными по времени задержки воспламенения [5] показало их хорошее соответствие.

Кроме того, были построены зависимости времени задержки воспламенения от начальной температуры смеси водород/воздух с различными добавками силана (от 0 до 100 %). Так же, как и в [4], показано, что значительное уменьшение периода задержки воспламенения смеси наблюдается при концентрации силана до 20 %. Рассчитанные в данной работе времена задержки воспламенения при концентрации силана более 2 % на порядок превышают рассчитанные в работе [4], а удовлетворительное соответствие между этими расчетами наблюдается только для смеси с 2 % силана. Таким образом, получено только качественное соответствие результатов расчета по двум моделям детальной кинетики.

Помимо времени задержки воспламенения смесей, в работе [6] было рассчитано также и время горения смеси. Оказалось, что увеличение температуры смеси ведет к уменьшению данного параметра. Кроме того, установлено, что времена горения близки для смесей с коли-

чеством силана до 20~% и на два порядка меньше для чистой силановоздушной смеси (100~% силана). Сравнение времен горения и времен задержек воспламенения показало, что последние в 10 раз меньше для смесей с содержанием силана более 20~%. А для смесей с 2~% силана задержка воспламенения меньше времени горения в 10 раз при $T>1~200~\mathrm{K}$ и превышает время горения в $2\div3$ раза при $T<900~\mathrm{K}$.

В работе [7] для оценки влияния добавления силана в смесь водород/кислород/азот разработана модель химической кинетики окисления смесей водород/силан/кислород/азот, учитывающая 134 элементарные химические реакции (67 прямых и 67 обратных). На основе этой модели проведены расчеты времени задержки воспламенения рассматриваемых смесей и их сравнение с данными экспериментов [5]. Показано удовлетворительное соответствие результатов для двух смесей: 2% SiH₄ + 8% H₂ + 4% O₂ + 86% N₂ и 1.68% SiH₄ + 6.72% H₂ + 6.74% O₂ + 84.86% N₂.

Однако стоит отметить, что для чистой силановоздушной смеси зависимости времени задержки воспламенения, рассчитанные по предложенной модели кинетики, совпадают с аналогичными зависимостями для представленных выше смесей с содержанием силана до 2 %. Вместе с тем в работах [4, 6] показано, что время задержки воспламенения смесей с содержанием силана более 20 % уменьшается, хотя и незначительно (менее чем в два раза), с увеличением доли силана в смеси.

Кроме того, установлено, что добавление перекиси водорода H_2O_2 в смесь водород/кислород/азот приводит к уменьшению времени задержки воспламенения смеси. Так, при добавлении $1.68~\%~H_2O_2$ задержка воспламенения сокращается в два раза.

Для полноты описания все рассмотренные модели химической кинетики окисления водорода с силаном и термодинамические параметры смесей приведены в табл. 1.

В данной работе подобные расчеты времени задержки воспламенения смесей водород/силан/воздух проведены по использовавшейся нами ранее модели детальной кинетики [8] в более широком диапазоне термодинамических параметров смеси.

ФИЗИКО-МАТЕМАТИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ

Рассмотрим задачу о воспламенении сме-

Источник	Модель	p_0 , атм	T_0 , K	Критерий t_{ign}	Сопоставление с экспериментом [5]
[4]	78 реакций	$1 \div 1.35$	800 ÷ 1 200	Время увеличения температуры смеси на 5 % от всего повышения температуры	Удовлетворительное соответствие
[6]	90 реакций	$0.5 \div 1.35$	$800 \div 1250$	—//—	—//—
[7]	134 реакции	$1.25 \div 1.35$	800 ÷ 1 250	Максимум роста температуры со временем	—//—

 ${\rm Ta} {\rm б} \pi {\rm u} {\rm u} {\rm a} \ 1$ Модели химической кинетики

си водород/силан/воздух за фронтом отраженной ударной волны (УВ). Поскольку поток за фронтом отраженной УВ покоится, физикоматематическая модель сводится к следующей: уравнение для температуры смеси (уравнение энергии)

$$\frac{dT}{dt} = -\frac{1}{c_v(T)} \times \times \sum_{\alpha=1}^{N} (c_{v\alpha}(T)T + h_{0\alpha} - c_p(T)T_{00}) \frac{d\xi_{\alpha}}{dt}, \quad (1)$$

замыкаемое уравнением состояния для газовой смеси в целом

$$p = \rho T R \sum_{\alpha=1}^{N} \frac{\xi_{\alpha}}{M_{\alpha}}$$
 (2)

и кинетическими уравнениями детальной химической кинетики

$$\frac{d\xi_{\alpha}}{dt} = \frac{1}{\rho} M_{\alpha} \sum_{r=1}^{l} \rho^{m_r} (\nu'_{\alpha r} - \nu_{\alpha r}) \times$$

$$\times \left[k_{fr} \prod_{\beta=1}^{N} \left(\frac{\xi_{\beta}}{M_{\beta}} \right)^{\nu_{\beta r}} - k_{br} \prod_{\beta=1}^{N} \left(\frac{\xi_{\beta}}{M_{\beta}} \right)^{\nu_{\beta r}'} \right]. (3)$$

Здесь c_p — удельная теплоемкость при постоянном давлении, $Дж/(K \cdot kr)$; c_v — удельная теплоемкость при постоянном объеме, $Дж/(K \cdot kr)$; $c_{v\alpha}$ — удельная теплоемкость при постоянном объеме компонента α , $Дж/(K \cdot kr)$; $h_{0\alpha}$ — энтальпия образования компонента α , Дж/kr; k_{fr} , k_{br} — скорости прямых и обратных реакций; l — количество реакций; m — порядок реакции; M_{α} , M_{β} — молярные массы компонентов α , β , kr/моль; N — количество компонентов в смеси; T_{00} — стандартная

температура, К; ξ_{α} , ξ_{β} — концентрации компонентов смеси α , β ; $\nu_{\alpha r}$, $\nu_{\beta r}$ — стехиометрические коэффициенты, равные 1, если соответствующий компонент участвует в r-й реакции, и 0 в противоположном случае; $\nu'_{\alpha r}, \nu'_{\beta r}$ стехиометрические коэффициенты, относящиеся к продуктам реакции. Начальные данные $t=0:\; u\; =\; 0,\; p\; =\; p_r,\; T\; =\; T_r,\; \xi_{lpha}\; =\; \xi_{lpha 0},\;$ где p_r, T_r — давление и температура смеси за отраженной УВ, $\xi_{\alpha,0}$ — концентрации компонентов смеси за отраженной УВ. Для описания кинетики воспламенения и горения реагирующей смеси силана и воздуха используем несколько модифицированную детальную кинетическую схему [9], которая учитывает 140 прямых и обратных реакций 25 компонентов. Модификация данной модели кинетики, а также термодинамические и кинетические константы подробно описаны в наших предыдущих работах [3, 8]. Отметим, что с помощью данной модели ранее нами были описаны структура детонационной волны, время задержки воспламенения в смесях силан/водород/кислород/азот, пределы воспламенения смесей силан/кислород и силан/воздух [3, 8, 10].

КРИТЕРИЙ ВОСПЛАМЕНЕНИЯ

Для определения времени задержки воспламенения используется несколько критериев воспламенения [3, 11, 12]. В работах [3, 11, 12] было показано, что различные критерии воспламенения дают очень близкие результаты как для смесей водород/кислород/аргон, так и для смесей силан/водород/кислород/азот/аргон. Поэтому в данной работе мы выбираем один из критериев, а именно время, в течение которого достигается максимум роста температуры смеси, — (dT)

$$\max\left(\frac{dT}{dt}\right)$$

РЕЗУЛЬТАТЫ РАСЧЕТА ВРЕМЕНИ ЗАДЕРЖКИ ВОСПЛАМЕНЕНИЯ

В работах [4, 6] было показано, что добавление небольшого количества силана (до 20 % SiH₄) в водородовоздушную смесь значительно снижает время задержки воспламенения при низких температурах ($T \leq 1250 \text{ K}$). Мы же рассмотрим влияние добавки силана $(0.1 SiH_4, \approx 20 \% SiH_4)$ в более широком диапазоне температуры ($T = 1200 \div 2500$ K). На рис. 1 представлены зависимости времени задержки воспламенения смесей водород/воздух $(2H_2 + O_2 + 3.76N_2)$ и водород/силан/воздух $(2H_2 + 0.1SiH_4 + O_2 + 3.76N_2)$ от температуры за отраженной УВ. Концентрации компонентов в смесях: водород/воздух — $\xi_{\rm H_2} = 0.0283,$ $\xi_{\rm O_2}=0.2265,\,\xi_{\rm N_2}=0.7452;\,$ водород/силан/воздух — $\xi_{\rm H_2}=0.02768,\,\,\xi_{\rm SiH_4}=0.02215,\,\,\xi_{\rm O_2}=$ $0.2215,\ \xi_{\mathrm{N}_2}=0.72867.$ Видно, что добавление 20 % силана в водородовоздушную смесь значительно уменьшает время задержки воспламенения смеси: в два раза при $T=1\,200~{\rm K}$ и в 30 раз при T = 2500 K.

Теперь рассмотрим, как влияет концентрация силана (до 100~%) в водородовоздушной смеси при $T=1\,200 \div 2\,500~\mathrm{K}$ на время задержки ее воспламенения. В работе [4] было показано, что при $T\leqslant 1\,200~\mathrm{K}$ добавление силана в концентрациях более 20~% оказывает слабое влияние. На рис. 2 представлены зависимости времени задержки воспламенения сме-

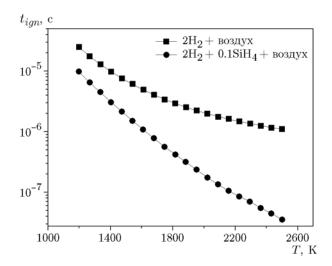


Рис. 1. Зависимость времени задержки воспламенения смесей водород/воздух и водород/силан/воздух от температуры за отраженной УВ

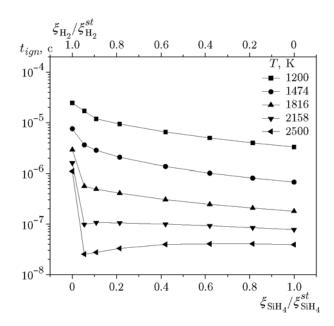


Рис. 2. Зависимость времени задержки воспламенения смесей водород/силан/воздух от концентрации топлива (водорода и силана) в смесях

си водород/силан/воздух от состава горючего (водорода и силана): на верхней оси ординат — отношение массовой концентрации водорода в смеси к массовой концентрации водорода в стехиометрической водородовоздушной смеси, на нижней оси ординат — отношение массовой концентрации силана в смеси к массовой концентрации силана в стехиометрической силановоздушной смеси. Видно, что для всех температур введение небольшого количества силана в водородовоздушную смесь приводит к значительному уменьшению времени задержки воспламенения. При дальнейшем увеличении доли силана в смеси происходит монотонное уменьшение времени задержки воспламенения вплоть до достижения температуры $2\,200\,$ K, а при $T\,>\,2\,200\,$ K наблюдается выход данных зависимостей на асимптотическое значение, соответствующее времени задержки воспламенения стехиометрической силановоздушной смеси. Таким образом, при высокой температуре (T > 2200 K) наличие водорода в смеси не влияет на задержку воспламенения, все определяется временем задержки воспламенения силана. Кроме того, при концентрации силана более 20 %, такой же как и в работе [4], но при более высокой, чем в [4], температуре $(1200 \div 2500 \text{ K})$ время задержки воспламенения водородовоздушной смеси снижается незначительно.

На рис. 3 представлены зависимости времени задержки воспламенения от температуры для различных составов смеси водород/силан/воздух (от стехиометрической водородовоздушной). Видно, что до $T\approx 2\,200\,$ К добавление силана в водородовоздушную смесь приводит к монотонному уменьшению времени задержки воспламенения. Однако при $T>2\,200\,$ К зависимости пересекаются и наблюдается обратный эффект: малая добавка силана ($0.1\mathrm{SiH_4}$) в водородовоздушную смесь дает большее уменьшение времени задержки воспламенения, чем добавка большего количества силана ($(0.2 \div 0.5)\mathrm{SiH_4}$).

Известно, что зависимость времени задержки воспламенения однотопливной смеси от температуры можно описать стандартной аррениусовской формулой [8, 11, 12]: $t_{ign} = A \exp(E/RT)$. Таким образом в переменных $(\ln(t_{ign}), 1/T)$ данные зависимости представляют собой прямые:

$$ln t_{ign} = A + \frac{E}{RT}.$$
(4)

В случае двухтопливных смесей подобные соотношения с постоянной энергией активации E могут не выполняться. Так, в работе [13] были построены подобные аппроксимационные формулы для смесей метан/водород/воздух в

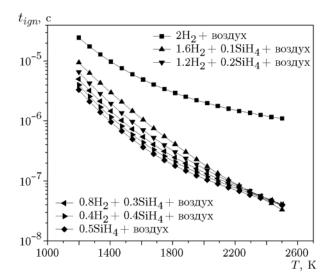


Рис. 3. Зависимость времени задержки воспламенения смеси водород/силан/воздух от температуры

рамках аррениусовской модели, но в предположении зависимости энергии активации Е от концентраций топливных компонентов в смеси. Это позволило описать экспериментальные времена задержки воспламенения рассматриваемых смесей. Поэтому представляется целесообразным построить зависимости логарифма времени задержки воспламенения $\ln t_{ian}$ смеси водород/силан/воздух от обратной температуры 1/T. Такие зависимости приведены на рис. 4. Видно, что для стехиометрических смесей водород/воздух и силан/воздух зависимости представляют собой прямые и могут быть описаны формулой (4). Кроме того, при содержании силана в смеси от 0.2 до 0.4 эти зависимости также являются прямыми, однако имеют различные углы наклона при различном содержании силана. Это свидетельствует о различии энергий активации этих смесей. То есть энергия активации в данном случае функцией концентрации силана $E = E(\xi_{SiH_4})$, подобно тому, что наблюдалось в работе [13]. При незначительном содержании силана в смеси $((0.05 \div 0.1) \text{SiH}_4)$ зависимости становятся нелинейными. Можно предположить, что в данном случае энергии активации являются функциями не только концентрации силана, но и температуры — $E = E(\xi_{SiH_4}, T)$. Более четко такую зависимость можно проследить на рис. 5, где представлены результаты расчета времени задержки воспламенения как

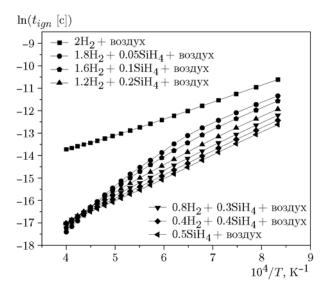


Рис. 4. Зависимость логарифма времени задержки воспламенения смеси водород/силан/воздух от обратной температуры

от обратной температуры и концентрации силана									
$10^4/T, \mathrm{K}^{-1}$	$\ln(t_{ign}[\mathrm{c}])$ при $\xi_{\mathrm{SiH}_4}/\xi_{\mathrm{SiH}_4}^{st}$								
10 /1, K	0	0.2136	0.4202	0.6201	0.8137	1			
8.33333	-10.61033	-11.5706	-11.9316	-12.2077	-12.431	-12.6204			
7.88644	-10.94989	-11.9762	-12.3627	-12.6486	-12.8755	-13.0655			
7.47943	-11.25673	-12.3588	-12.7671	-13.0585	-13.2867	-13.4769			
7.11744	-11.53517	-12.7263	-13.1492	-13.4419	-13.6688	-13.8574			
6.78426	-11.78736	-13.0851	-13.5102	-13.7996	-14.0232	-14.2071			
6.48508	-12.01711	-13.4357	-13.8506	-14.1309	-14.3482	-14.5268			
6.20732	-12.22628	-13.7782	-14.1686	-14.4373	-14.6468	-14.8179			
5.95593	-12.41433	-14.1045	-14.4646	-14.7194	-14.9181	-15.0796			
5.7241	-12.58587	-14.4143	-14.7419	-14.9787	-15.1645	-15.3183			
5.50661	-12.74393	-14.7108	-15.0013	-15.2179	-15.3881	-15.5331			
5.30786	-12.88335	-15.0013	-15.2468	-15.4375	-15.5934	-15.7261			
5.12033	-13.018	-15.2874	-15.4815	-15.645	-15.7852	-15.907			
4.94805	-13.13241	-15.5642	-15.7027	-15.8405	-15.9611	-16.0741			
4.78698	-13.2389	-15.8254	-15.9192	-16.0228	-16.1282	-16.229			
4.63392	-13.34551	-16.0693	-16.1231	-16.1961	-16.2865	-16.373			
4.49236	-13.43707	-16.2984	-16.3166	-16.3666	-16.4397	-16.5111			
4.3573	-13.50803	-16.5261	-16.5038	-16.5336	-16.5881	-16.6542			
4.23191	-13.5844	-16.753	-16.689	-16.6979	-16.7343	-16.7817			
4.11184	-13.66709	-16.9856	-16.8731	-16.8521	-16.8838	-16.9166			

-17.047

-17.022

 ${
m Ta}$ блица 2 Зависимость логарифма времени задержки воспламенения смеси водород/силан/воздух от обратной температуры и концентрации силана

функции концентрации силана и температуры $t_{ign}=t_{ign}(\xi_{\mathrm{SiH_4}},T),$ и в табл. 2, в которой представлены значения логарифма времени задержки воспламенения при различных концентрациях силана и температурах. Из рис. 5 видно, что существует несколько областей воспламенения:

-13.7202

-17.2268

4

- 1) область высоких концентраций силана $(\xi_{\mathrm{SiH_4}}/\xi_{\mathrm{SiH_4}}^{st} \in [0.6,1])$, в которой энергия активации зависит только от концентрации силана,
- 2) область средних концентраций силана $(\xi_{\text{SiH}_4}/\xi_{\text{SiH}_4}^{st} \in [0.2, 0.6])$, в которой энергия активации является функцией концентраций компонентов и температуры смеси,
- 3) область малых концентраций силана $(\xi_{\mathrm{SiH}_4}/\xi_{\mathrm{SiH}_4}^{st}\in[0,0.2]),$ в которой очень значи-

тельно (в 30 раз) изменяется время задержки воспламенения при высокой температуре и незначительно (в 2 раза) при низкой температуре.

-17.0597

-17.022

Таким образом, время задержки воспламенения двухтопливной смеси водород/силан/воздух в пространстве $\left(\ln(t_{ign}), \frac{1}{T}, \frac{\xi_{\mathrm{SiH_4}}}{\xi_{\mathrm{SiH_4}}^{st}}\right)$ будет описываться, возможно, тремя различными зависимостями $t_{ign} = t_{ign}(\xi_{\mathrm{SiH_4}}, T)$.

выводы

Рассчитано время задержки воспламенения двухтопливных смесей водород/силан/воздух на основе модифицированной ранее модели детальной кинетики [8, 9]. В более широ-

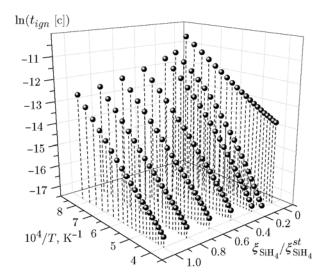


Рис. 5. Зависимость логарифма времени задержки воспламенения смеси водород/силан/воздух от обратной температуры и концентрации силана

ком диапазоне температуры воздействия, чем в предыдущих исследованиях, показано, что добавление до 20~% силана в водородовоздушную смесь значительно уменьшает время задержки воспламенения смеси: в 2 раза при низкой температуре ($T=1~200~\mathrm{K}$) и в $30~\mathrm{pas}$ при высокой температуре ($T=2~500~\mathrm{K}$).

Выявлено влияние концентраций топливных компонентов на процесс воспламенения. По результатам расчета определено:

- во всем рассматриваемом диапазоне температуры $(1\,200 \div 2\,500~{\rm K})$ добавление небольшого количества силана (до $20\,\%$) в водородовоздушную смесь приводит к значительному уменьшению времени задержки воспламенения смеси;
- добавление силана более 20 % незначительно снижает время задержки воспламенения водородовоздушной смеси, т. е. наличие водорода в смеси не влияет на задержку воспламенения, все определяется временем задержки воспламенения силана.

Оказалось, что до температуры порядка 2 200 К добавление силана в водородовоздушную смесь приводит к монотонному уменьшению времени задержки воспламенения по мере увеличения количества силана в смеси. При температуре выше 2 200 К небольшое добавление силана (до 20 %) в водородовоздушную смесь дает значительное уменьшение времени задержки воспламенения по сравнению со смесями с большим содержанием силана.

Показано, что для двухтопливных смесей водород/силан/воздух существует три области воспламенения:

- 1) область, в которой энергия активации задержки воспламенения зависит только от концентрации силана (в диапазоне его концентраций $60 \div 100~\%$);
- 2) область, в которой энергия активации задержки воспламенения является функцией концентраций компонентов и температуры смеси (при концентрациях силана $20 \div 60 \%$);
- 3) область, в которой очень существенно изменяется время задержки воспламенения при высокой температуре (в 30 раз) и незначительно (в 2 раза) при низкой температуре (при концентрациях силана $0 \div 20 \%$).

ЛИТЕРАТУРА

- Chen J. R., Tsai H. Y., Chen S. K., Pan H. R., Hu S. C., Shen C. C., Kuan C. M., Lee Y. C., Wu C. C. Analysis of a silane explosion in a photovoltaic fabricant plant // Process Saf. Prog. 2006. V. 25. P. 237–244.
- 2. Chang Y. Y., Peng D. J., Wu H. C., Tsaur C. C., Shen C. C., Tsai H. Y., Chen J. R. Revising of a silane explosion in a photovoltaic fabrication plant // Process Saf. Prog. 2007. V. 26. P. 155–157.
- 3. **Тропин Д. А., Федоров А. В.** Расчет пределов воспламенения смесей силан кислород и силан воздух // Физика горения и взрыва. 2016. Т. 52, № 1. С. 46–51.
- 4. Jachimowski C. J., McLain A. G. A Chemical kinetic mechanism for the ignition of silane/hydrogen mixtures // NASA Tech. Paper 2129. 1983.
- 5. McLain A. G., Jachimowski C. J., Rogers R. C. Ignition of SiH₄—H₂—O₂—N₂ behind reflected shock waves // NASA Tech. Paper 2114. 1983.
- 6. **Chinitz W.** Theoretical studies of the ignition and combustion of silane hydrogen air mixtures // NASA Contractor Rep. 3876. 1985.
- Golovitchev V. I., Bruno C. Numerical study of the ignition of silane/hydrogen mixtures // J. Propul. Power. — 1998. — V. 15, N 1. — P. 92–96.
- 8. **Тропин Д. А., Федоров А. В.** Физикоматематическое моделирование воспламенения и горения силана в проходящих и отраженных ударных волнах // Физика горения и взрыва. 2015. Т. 51, № 4. С. 37–45.
- 9. Britten J. A., Tong J., Westbrook C. K. A numerical study of silane combustion // Twenty-Third Symp. (Intern.) on Combustion. Pittsburgh: The Combustion Inst., 1990. P. 195–202.
- 10. **Федоров А. В., Фомин П. А., Тропин Д. А., Чен Д. Р.** Моделирование опасности

- взрыва и смягчение его последствий в силановоздушных смесях // Изв. вузов. Строительство. 2014. № 9-10. С. 108-125.
- Fedorov A. V., Fomin P. A., Fomin V. M., Tropin D. A., Chen J.-R. Mathematical Analysis of Detonation Suppression by Inert Particles. — Kaohsiung, Taiwan: Kao Tech Publishing, 2012.
- 12. Федоров А. В., Фомин П. А., Фомин В. М., Тропин Д. А., Чен Дж. -Р. Физикоматематическое моделирование подавления детонации облаками мелких частиц. Новосибирск: НГАСУ (Сибстрин), 2011.
- 13. Cheng R. K., Oppenheim A. K. Autoignition in methane hydrogen mixtures // Combust. Flame. 1984. V. 58. P. 125–139.

 $\it Hocmynuaa$ в редакцию $18/{
m III}~2016$ г., в окончательном варианте — $8/{
m IV}~2016$ г.