УДК 536.421:534.2

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ДАВЛЕНИЯ И ПЛОТНОСТИ НАСЫЩЕННОГО И ПЕРЕГРЕТОГО ПАРА ФРЕОНА R-236EA ОТ 20 ДО 150 °C^{*}

В.А. ГРУЗДЕВ, С.Г. КОМАРОВ

Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск

С помощью пьезометра постоянного объема исследованы давление насыщения, давление и плотность перегретого пара 1,1,1,2,3,3-гесафторпропана (HFC-236ea, R-236ea) в интервале температур от 294 до 423 К до давления 4,0 МПа. Оценки погрешностей измерения температуры, давления и плотности составляют ± 20 мК, ± 1,5 кПа, ± (0,1÷0,2) % и ± (0,1÷0,2) % соответственно. Чистота исследованных образцов составляла 99,68 масс. %. Полученные экспериментальные данные представлены в виде таблиц и аналитических уравнений. На основе этих данных для R236ea рассчитаны коэффициенты вириального уравнения состояния.

введение

Экологически безопасный фреон R-236ea (1,1,1,2,3,3-гексафторпропан), близкий по термодинамическим свойствам к достаточно хорошо изученному фреону R-114, представляет интерес как новое рабочее вещество (или его компонент) для техники производства тепла и холода. Исследованию теплофизических свойств R-236ea посвящены работы [1–4]. Однако экспериментальные данные о свойствах R-236ea, приведенные в этих работах, относятся, в основном, к области температур ниже 120 °C и давлениям до 1÷1,6 МПа. Представленные в настоящей статье результаты исследований охватывают более широкий диапазон параметров (по температуре — 0÷150 °C, по давлению — 0,005÷4 МПа). По результатам измерений определена плотность пара на линии насыщения и получено вириальное уравнение состояния для газовой фазы R-236ea. Эксперименты проведены абсолютными методами на образцах, приготовленных в РНЦ "Прикладная химия" (С.-Петербург). По результатам хроматографического анализа исходный продукт содержал не менее 99,68 масс. % 1,1,1,2,3,3-гексафторпропана. Перед заполнением измерительных ячеек исходный продукт подвергался дополнительной очистке от воды и летучих примесей [5-6].

1. МЕТОД ИССЛЕДОВАНИЯ

Давление насыщения и плотность перегретого пара измерены с помощью неразгруженного пьезометра постоянного объема. Схема экспериментальной установки показана на рис. 1. Пьезометр *12* изготовлен из нержавеющей стали 1X18H10T в виде толстостенного цилиндрического стакана с коническим дном

^{*} Работа выполнена при финансовой поддержке РФФИ (грант № 04-02-16355).

[©] Груздев В.А., Комаров С.Г., 2006

Рис. 1. Схема экспериментальной установки.

и плоской крышкой. Уплотнение между стаканом и крышкой осуществляется с помощью болтового соединения и тонкой (0,2 мм) фторопластовой прокладки. Пьезометр помещен в жидкостный термостат объемом около 40 л, температура которого в течение эксперимента поддерживается постоянной в пределах ± 0,01°C и измеряется платиновым термометром сопротивления типа ПТС-10 с погрешностью не более ± 0,02 К. Измерительный объем пьезометра — объем, который отсекается при закрытии "горячих" (расположенных в том же термостате) вентилей V1 и V2, равен $439,35 \pm 0,05$ см³ при 20 °C. Пьезометр подсоединен к системе измерения давления через вентиль V2 и мембранный разделитель давления D, размещенный на крышке термостата. Для устранения капиллярной конденсации исследуемого вещества в разделителе давления его температура устанавливается на 20÷40 °С выше температуры термостата с помощью дополнительного электрического нагревателя. Мембранный разделитель D одновременно выполняет функцию нуль-индикатора разности давлений в пьезометре и в системе измерения давления. Для контроля смещения нуля-индикатора предусмотрен вентиль V3, который дает возможность прямого подключения пьезометра к системе измерения давления. Компенсирующее давление в последней создается азотом из баллона (N₂) и измеряется кварцевыми преобразователями (КП) типа ПТДК, предварительно тарированными по манометрам МП-6 и МП-60. Инструментальная погрешность измерения давления до 0,6 МПа не превышала 0,5 кПа и при максимальных значениях давления (~ 4,0 МПа) составляла 3÷5 кПа. Сухой азот использовался также для продувки пьезометра и соединительных линий при смене исследуемых образцов.

Необходимое для исследования количество вещества подавалось в пьезометр через вентильные блоки и вентиль V1 из термокомпрессора I (из жидкой фазы) и контролировалось по давлению пара в пьезометре. Точное определение массы производилось после завершения измерений вымораживанием исследуемого вещества из измерительного объема в специальные охлаждаемые жидким азотом ампулы 4 и их взвешивания. Погрешность определения массы образца в пьезометре путем вымораживания давала основной вклад в ошибку измерений плотности. Однако достаточно большой объем пьезометра обеспечивал небольшую величину этой погрешности (~ 0,05 %) при плотности пара больше 1 моль/л и 0,1÷0,3 % при более низких плотностях. Плотность пара рассчитывали с учетом теплового расширения пьезометра по формуле

$$d_V(t) = m \cdot [M \cdot V_{20} \cdot (1 + \beta \cdot (t - 20))]^{-1}, \text{ моль-л}^{-1}.$$
(1)

Здесь t — температура пьезометра, °С, m — масса вещества, г, M = 0,152039 кг·моль⁻¹ — его молекулярная масса, V_{20} — измерительный объем при 20 °С, см³ β (20, t) — средний температурный коэффициент объемного расширения стали 1X18H10T, который принимался таким же, как для стали S-304 [7]. Максимальная поправка на тепловое расширение пьезометра не превышала 0,2 %, поэтому погрешность в значении β не вносила существенной ошибки в значения плотности. Расчетные оценки показали, что изменением объема пьезометра под воздействием внутреннего давления можно пренебречь.

2. РЕЗУЛЬТАТЫ

Давление насыщенного пара. Измерения проведены в интервале температур от 293 до 412,15 К. Полученные значения давления пара P_S (табл. 1), аппроксимированы уравнением

$$\ln(P_S/P_C) = (C_1 \cdot \varepsilon + C_2 \cdot \varepsilon^{1,5} + C_3 \cdot \varepsilon^{2,5} + C_4 \cdot \varepsilon^6) \cdot T_C/T,$$
(2)

где $C_1 = -7,948537$, $C_2 = 2,1579416$, $C_3 = -3,503473$, $C_4 = -5,605665$, $P_C = 3416,92$ кПа — критическое давление, также полученное в результате обработки наших данных, а $\varepsilon = 1 - T/T_C$. Величина критической температуры $T_C = 412,375$ К принята такой же, как в работе [3], поскольку значение критического давления, приведенного в ней (3411,17 кПа), ближе к значению, полученному в настоящей работе, чем результаты работ [1, 4]. Уравнение 2, при выбранных в нем показателях степеней, описывает наши результаты измерений с минимальной дисперсией

Экспериментальные значения лавления насышения

Таблица 1

Т, К	Р, кПа	Т, К	Р, кПа	Т, К	<i>Р</i> , кПа
293,15	172,4	343,16	783,2	391,15	2274,8
294,08	178,0	350,15	932,0	393,15	2362,0
298,15	206,0	353,15	1000,8	393,15	2364,9
303,15	244,2	353,15	999,6	398,15	2605,2
308,15	288,0	363,15	1263,5	403,15	2874,5
313,15	337,2	363,15	1262,7	403,15	2871,5
313,15	337,5	372,15	1537,2	408,15	3145,8
318,15	392,6	373,15	1569,7	408,75	3197,6
323,15	455,2	373,15	1570,9	411,08	3336,0
333,15	602,0	381,15	1860,2	412,15	3397,2
333,15	602,5	383,15	1935,9		

(~ 0,08 %). На рис. 2 показаны отклонения от уравнения (2) результатов наших измерений и экспериментальных данных, полученных в работах [1, 3, 4]. В пределах погрешностей измерений (удвоенного значения дисперсии — 0,17 %) наши данные согласуются с наиболее надежными, по мнению авторов, данными из [3], однако в интервале температур 20–130 °C они лежат систематически ниже последних на ~ 0,11 %. Максимальное расхождение между ними составляет около 0,15 %. В то же время расхождения между литературными данными [1–4] достигают 0,4–0,5 %. Нормальная температура кипения R-236ea (при $P_s = 1013,25$ кПа), рассчитанная по уравнению (2), равна $T_{\rm кип} = 279,31$ К.

Плотность перегретого пара. P(T) — зависимости для паровой фазы R-236ea исследованы почти от температуры насыщения до 423,15 К с шагом ~10 К на 14 квази-изохорах (при постоянной массе вещества в пьезометре) в интервале плотностей от 0,0791 до 3,300 моль/л. В табл. 2 представлены изохоры давления перегретого пара (измеренные значения давления, исправленные на тепловое расширение пьезометра). Погрешности приведенных в табл. 2 значений температуры не превышают $\pm 0,02$ K, давления $\pm 0,1$ %, плотности $\pm (0,2-0,3$ %) на низких изохорах ($d_V < 0,5$ моль/л) и ± (0,05–0,1 %) при плотностях пара d_V больше 1,0 моль/л. Известно [7], что на результаты измерений PVT-свойств может влиять капиллярная адсорбция пара внутри пьезометра (в неровностях поверхности, узких зазорах уплотнений), которая проявляется в виде "завалов" экспериментальных изохор в небольшом интервале температур вблизи кривой насыщения. В наших экспериментах на R-236ea влияние адсорбции наблюдалось на 3-х изохорах (1,135, 1,438, 1,572 моль/л) в интервале температур ~3 °С. Точки, близкие к кривой насыщения, на результаты которых заметно влияла адсорбция, в табл. 2 не приведены и были исключены из дальнейшего рассмотрения. Исправленные таким образом экспериментальные изохоры Z(T) были сглажены полиномами 1-3-порядка относительно приведенной обратной температуры $(1/T_R = T_C/T)$.

Полученные *PVT*-данные описаны уравнением состояния в форме усеченного вириального разложения относительно молярной плотности $d_V = (\text{моль}/\pi)$

$$Z = 1 + B_2 \cdot d_V + B_3 \cdot d_V^2 + B_4 \cdot d_V^3 + B_5 \cdot d_V^4 + B_6 \cdot d_V^5 + B_7 d_V^6.$$
(3)

Рис. 2. Отклонения от уравнения (2) результатов наших измерений и данных других авторов: *I* — [3], *2* — [1], *3* — [4].

Таблица 2

-3	ксперимента	льные изо	хоры дав	ления пер	егретого п	apa

<i>T</i> , K	Р, кПа	<i>T</i> , K	Р, кПа	<i>T</i> , K	Р, кПа
$d_v = 0.079$	910 моль/л	383,15 816,36		405,65	2766,1
313,15	194,49	393,15	845,24	408,15	2819,0
323,15	201,80	403,15	873,62	410,65	2872,0
343,15	216,06	413,15	901,67	413,15	2924,5
363,15	230,21	423,15	929,58	415,65	2975,8
383,15	244,36	$d_v = 0,40$	13 моль/л	418,15	3027,2
403,15	258,22	383,15	1080,9	420,65	3078,6
423,15	272,00	393,15	1123,0	423,15	3130,0
$d_v = 0,100$	087 моль/л	403,15 1164,9		<i>d</i> _v = 1,5715 моль/л	
303,15	234,57	413,15	1205,9	400,64	2734,8
313,15	244,25	423,15	1246,9	403,15	2794,9
323,15	253,54	$d_v = 0,535$	55 моль/л	408,15	2916,3
333,15	263,00	362,15	1224,7	413,15	3035,6
343,15	272,14	363,15	1231,2	418,15	3152,4
353,15	281,27	368,15	1262,8	423,15	3268,2
373,15	299,63	373,15	1291,6	$d_v = 2,007$	5 моль/л
383,15	308,68	383,15	1356,3	413,15	3285,9
393,15	317,58	393,15	1416,6	413,15	3285,4
403,15	326,48	403,15	1475,5	417,15	3413,4
413,15	335,28	413,15	1533,4	419,15	3477,1
423,15	341,11	423,15	1591,4	419,15	3477,0
$d_v = 0,14978$ моль/л		<i>d_v</i> = 0,70192 моль/л		423,15	3603,5
316,15	354,27	383,15	1643,7	$d_v = 2,4692$	2 моль/л
318,15	358,97	393,15	1729,6	413,15	3398,7
323,15	364,12	403,15	1813,8	418,15	3616,7
333,15	378,59	413,15	1895,9	423,15	3822,7
343,15	392,89	423,15 1977,6		$d_v = 2,7744$	4 моль/л
353,15	407,01	<i>d_v</i> = 1,1353 моль/л		414,98	3533,4
363,15	420,93	390,36	2239,4	417,15	3639,3
373,15	434,79	393,15	2285,4	419,15	3735,8
383,15	448,58	398,15	2367,3	421,15	3832,3
393,15	462,31	403,15	2447,1	423,15	3928,4
403,15	475,88	408,15	2525,7	$d_v = 3,3004$	4 моль/л
432,15	502,99	413,15	2602,9	415,15	3580,6
$d_v = 0,288$	835 моль/л	418,15	2678,6	417,13	3696,0
343,15	697,68	423,15	2754,2	419,06	3809,5
353,15	727,92	<i>d_v</i> = 1,43814 моль/л		419,48	3834,6
363,15	757,83	401,15	2339,1	421,15	3931,4
373,15	787,41	403,15	2711,9	423,15	4048,7

Здесь $Z = P/(RTd_v)$ — фактор сжимаемости пара, P (кПа) — давление, R = 8,31447 (Дж·моль⁻¹·K⁻¹) — универсальная газовая постоянная, B_i — зависящие только от температуры параметры (так называемые вириальные коэффициенты).

Значения второго вириального коэффициента $B_2(T)$ определены путем экстраполяции к нулевой плотности экспериментальных изотерм $Z(d_v)$ и $(Z - 1)/d_v$, которые предварительно были рассчитаны от 293,15 до 423,15 К с шагом 10 К по аппроксимирующим полиномам для изохор. Ошибка определения $B_2(1/T_R)$ по нашим *PVT*-данным не более ± 2 %. Как видно из рис. 3, до 330 К наши данные для

 B_2 практически совпадают с результатами работ [1, 3], а при температурах T > 370 К лежат на 3–5 % выше данных [1] и на 4–7 % выше, чем результаты работы [3]. На рис. 3 приведены для сравнения температурные зависимости $B_2(T_R)$ для фреона R-227ea [5, 8] и пропана [9]. Значения B_2 для R-227ea и R-236ea лежат значительно ниже, чем для пропана, что подтверждает наличие у молекул его фторпроизводных соединений электрического дипольного момента. Третий вириальный коэффициент $B_3(1/T_R)$ также находили экстраполяцией к $d_V = 0$ разности $[(Z - 1)/d_V - B_2]/d_V$. Стандартное отклонение аппроксимации температурной зависимости этой величины составляет около 30–40 %. Параметры B_i более высокого порядка (B_4 , B_5 и т. д.) сильно коррелируют между собой, поскольку определялись одновременно путем совместного регрессионного анализа, и поэтому не являются достоверными оценками истинных вириальных коэффициентов.

Температурные зависимости параметров *B_i* аппроксимированы полиномами порядка не выше трех относительно обратной приведенной температуры

$$B_i(T_R) = \sum b_{ii} (1/T_R)^j, \quad i = 2 \dots 7, \quad j = 0 \dots 3$$
 (4)

Коэффициенты b_{ij} приведены в табл. 3. На рис. 4 показаны отклонения рассчитанных по уравнениям (3) и (4) значений фактора сжимаемости от экспериментальных. Относительные отклонения не превышают суммарной относительной погрешности измерения давления, температуры и плотности.

Плотность насыщенного пара. Плотность пара на кривой сосуществования определилась совместным решением уравнений экспериментальных изохор давления перегретого пара (уравнения в статье не приведены) и уравнения давления насыщенного пара (2). В результате решения для каждого значения плотности находили температуру отнесения, как абсциссу точки пересечения изохоры с линией насыщения. При больших плотностях пара ($d_V = 2,7744$ и 3,300 моль/л) изохоры имели две точки пересечения с кривой насыщения. В качестве температуры отнесения принимали большее значение (со стороны перегретого пара). Значения плотности насыщенного пара d_{VS} приведены в табл. 4 и аппроксимированы уравнением масштабной теории (скейлинга) [12]

$$d_{VS} = 3,72 \ (1 - 1,93661\varepsilon^{1/3} - 0,38871\varepsilon^{2/3} + 1,7269\varepsilon - 0,14893\varepsilon^{4/3}).$$
(5)

Рис. 3. Температурные зависимости вторых вириальных коэффициентов пропана и его фторпроизводных.

Таблица З

Параметры уравнения (4) b_{ij} i\j 0 1 2 3 2 0,063198 0,00559152 -0,241247 -0,149842 3 5,3690,41 -15,584 15,0055 -4,772 4 0,025712 0 -0,02656 0 5 0,64926 0 -0,3333426 -0,30844 6 0 0,080203 0,076229 -0,1591220 0,000518 0 7 -0,0002394 0

Рис. 4. Отклонения от уравнения (3) экспериментальных значений фактора сжимаемости R-236ea.

Таблица 4

Плотность насыщенного пара					
Т, К	$ ho_{VS}$, кг/м 3	$d_{\scriptscriptstyle VS}$, моль/л			
294,49	12,03	0,0791			
301,79	15,34	0,1009			
314,51	22,77	0,1498			
337,77	43,84	0,2884			
350,36	61,01	0,4013			
350,39	61,01	0,4013			
361,72	81,42	0,5356			
372,40	106,72	0,7019			
372,50	106,72	0,7019			
390,36	172,61	1,135			
398,01	218,65	1,438			
398,10	218,65	1,438			
400,58	238,93	1,572			
400,62	238,93	1,572			
407,03	305,22	2,008			
410,23	375,43	2,469			
411,48*	421,82	2,774			
412,285*	501,8	3,300			

* Точки пересечения определены с большой погрешностью.

Рис. 5. Отклонения экспериментальных значений плотности насыщенного пара от уравнения (5).

На рис. 5 видно, что относительные отклонения от уравнения (5) большей части экспериментальных данных, полученных разными исследователями и различными методами, лежат в пределах от -1 % до + 1,6 %. При низких температурах (T < 350 K) относительные отклонения данных, полученных оптическим [1] и *у*-методами [13], достигают ± 3 %, однако при этом отклонения не превышают абсолютной погрешности этих методов ($1 \div 2$ кг/м³).

ЗАКЛЮЧЕНИЕ

Полученные уравнения позволяют рассчитать таблицы термодинамических свойств R-236ea с точностью, достаточной для технологических приложений. В то же время имеются систематические расхождения между результатами разных авторов, которые превышают погрешности измерений и требуют проведения дополнительных исследований.

СПИСОК ЛИТЕРАТУРЫ

- Defibaugh D.R., Gillis K.A., Moldover M.R., Schmidt J.W., Weber L.A. Thermodynamic properties of CF 3-CHF-CHF2, 1,1,1,2,3,3-Hexafluoropropane // Fluid Phase Equilibrium. — 1996. — Vol. 122, No. 1-2. — P. 131–155.
- Gillis K.A. Thermodynamic properties of seven gaseous halogenated hydrocarbons from acoustic measurements // Intern. J. Thermophys. — 1997. — Vol. 18, No. 1. — P. 73–135.
- 3. Zhang H.L., Sato H., Watanabe K. Gas-phase PVT properties of 1,1,1,2,3,3-Hexafluoropropane // Intern. J. Thermophys. 1997. Vol. 18, No. 2. P. 407–418.
- 4. Di Nicola G., Giuliano G. Vapor pressure and PVT measurements for 1,1,1,2,3,3-hexafluoropropane (R-236ea) // J. Chem. Eng. Data. — 2000. — Vol. 45. — P. 1075–1079.
- Gruzdev V.A., Khairulin R.A., Komarov S.G., Stankus S.V. Thermodynamic properties of HFC-227ea // Intern. J. Thermophys. — 2002. — Vol. 23, No. 3. — P. 809–824.
- 6. Комаров С.Г., Груздев В.А. Равновесие жидкость-пар и скорость звука в HFC-236ea (CF₃-CHF-CHF₂) // Теплофизика и аэромеханика. 1999. Т. 6, № 1. С. 105–109.
- 7. Kell G.S., McLaurin G.E., Whalley E. PVT properties of water VII. Vapour densities of light and heavy water from 150 to 500°C // Proc. Royal Soc. Lond., A 425. 1989. P. 49–71.
- Duan Y.Y., Shi L., Zhu M.S., Han L.Z., Zhang C. Study on Thermodynamic properties of 1,1,1,2,3,3,3-Heptafluoropropane // Paper presented at the XIV Symposium on Thermophysical Properties. June 25-30, 2000. — Boulder, Colorado, USA.

- 9. Reid R.C., Prausnitz J.M., Sherwood T.K. The Properties of Gases and Liquids. Third Ed., McGraw-Hill Book Comp. New York, 1977.
- 10. Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей. Изд.2-е. М.: Изд-во Наука, 1972. 720 с.
- **11. Барышев В.П.** Комплексное исследование теплофизических свойств фреона 218 (октафторпропана). Одесса: ОТИХП, 1982. 19 с.
- Cooper M.J. Expended formulation of thermodynamic scaling in the critical region // J. of Research of NBS – A. Physics and Chemistry. — 1971. — Vol. 75A, No. 2. — P. 103–107.
- 13. Хайрулин Р.А., Багинский А.В., Станкус С.В. Гамма-плотномер для исследования термических свойств и критических явлений жидкофазных систем в широком интервале параметров состояния // Тез. докл. Х Росс. конф. по теплофиз. свойствам веществ. — Казань, 2002. — С. 70–71.

Статья поступила в редакцию 27 марта 2006 г.