УДК 539.3

ИССЛЕДОВАНИЕ ИЗГИБА ТОНКИХ ЭЛЕКТРОМАГНИТОУПРУГИХ ПЛИТ

С. А. Калоеров, А. В. Сероштанов

Донецкий национальный университет, 83001 Донецк E-mails: kaloerov@mail.ru, aleks.serosht@gmail.com

Приведены основные соотношения теории изгиба тонких электромагнитоупругих плит, в которой используются комплексные потенциалы. Получены точные аналитические решения задач об изгибе эллиптической плиты и бесконечной плиты с эллиптическим отверстием. Установлено, что в случае односвязной конечной плиты при механических воздействиях электрическая и магнитная индукции не возникают, при действии индукций механические напряжения не возникают, несмотря на то что пьезоэффект имеет место вследствие возникновения деформаций, перемещений и потенциалов поля; в случае бесконечной односвязной плиты пьезоэффект наблюдается всегда и оказывает существенное влияние на значения изгибающих моментов. В случае плиты с эллиптических отверстием изучено влияние физико-механических свойств материала и геометрических характеристик отверстия на значения изгибающих моментов.

Ключевые слова: теория изгиба тонких плит, электромагнитоупругость, комплексные потенциалы, метод рядов, точные решения, пьезоэффект.

DOI: 10.15372/PMTF20220214

Введение. В различных областях современной науки и техники в качестве элементов конструкций широко используются тонкие плиты из пьезоматериалов [1, 2], подвергаемые различным механическим и электромагнитным воздействиям (поперечный изгиб). Зачастую такие элементы имеют отверстия и инородные включения, вблизи которых при эксплуатации конструкций возникают высокие концентрации напряжений, приводящие к разрушению. Это обусловливает необходимость разработки методов решения задач определения электромагнитоупругого состояния (ЭМУС) таких плит. Для сплошных плит некоторые методы решения данных задач предложены в работах [3–5]. В случае многосвязных пьезоплит с произвольными отверстиями и включениями оптимальные решения получаются при использовании функций обобщенных комплексных переменных. Эти функции были введены в работе [6] для решения плоских задач, а в [7] использованы при решении краевых задач об изгибе тонких плит [8], полученных путем обобщения гипотез Кирхгофа [9] на случай электромагнитоупругих плит.

В данной работе кратко изложены принятые гипотезы теории изгиба тонких пьезоплит, сформулированы получаемые на их основе краевые задачи и предложены комплексные потенциалы электромагнитоупругости; последние использованы при получении точных аналитических решений задач об изгибе сплошной конечной плиты и бесконечной плиты с эллиптическим отверстием. 1. Краевые задачи теории изгиба тонких электромагнитоупругих плит. Рассматривается тонкая плита из пьезоматериала, имеющая постоянную толщину 2h, в прямоугольной системе координат Oxyz, плоскость Oxy которой совмещена со срединной плоскостью плиты. Принимаются следующие предположения: 1) в каждой точке плиты имеется плоскость материальной симметрии, параллельная ее срединной плоскости; 2) прямолинейные отрезки, до начала деформации нормальные к срединной плоскости, при изгибе плиты остаются прямолинейными и нормальными к изогнутой срединной поверхности и не меняют своей длины; 3) срединная поверхность плиты является нерастяжимой, т. е. при z = 0 перемещения u, v точек срединной плоскости равны нулю; 4) влияние взаимодействия продольных слоев плиты на удлинения и сдвиги материальных волокон, лежащих в этих слоях, пренебрежимо мало, поэтому напряжениями σ_z и компонентами D_z, B_z электрической и магнитной индукций также можно пренебречь; 5) на поверхностях плиты имеют место условия

$$z = -h; \quad \sigma_z = -q(x, y), \quad \tau_{xz} = \tau_{yz} = D_z = B_z = 0,$$

$$z = h; \quad \sigma_z = \tau_{xz} = \tau_{yz} = D_z = B_z = 0$$

 $(\sigma_z, \tau_{xz}, \tau_{yz}$ — напряжения; D_z, B_z — нормальные проекции векторов электрической и магнитной индукций).

С учетом данных условий так же, как в теории изгиба тонких анизотропных плит [10], получаем, что точки срединной плоскости перемещаются на расстояние w(x, y) по оси Oz (прогиб), а для перемещений u, v произвольных точек имеют место равенства

$$u = -z \frac{\partial w}{\partial x}, \qquad v = -z \frac{\partial w}{\partial y}$$

Следовательно, при малых деформациях имеем

$$\varepsilon_x = -z \frac{\partial^2 w}{\partial x^2}, \qquad \varepsilon_y = -z \frac{\partial^2 w}{\partial y^2}, \qquad \gamma_{xy} = -2z \frac{\partial^2 w}{\partial x \partial y}.$$

По аналогии с перемещениями *u*, *v* потенциалы электрического и магнитного полей выберем в виде линейных функций *z*:

$$\varphi(x,y) = z\varphi_0(x,y), \qquad \psi(x,y) = z\psi_0(x,y).$$

Здесь $\varphi_0(x, y), \psi_0(x, y)$ — плотности потенциалов электрического и магнитного полей на единицу длины.

Учитывая наличие в каждой точке плиты плоскости материальной симметрии, параллельной ее срединной плоскости, уравнения электромагнитоупругого состояния запишем в виде [8]

$$\begin{split} \varepsilon_x &= s_{11}\sigma_x + s_{12}\sigma_y + s_{16}\tau_{xy} + g_{11}D_x + g_{21}D_y + p_{11}B_x + p_{21}B_y, \\ \varepsilon_y &= s_{12}\sigma_x + s_{22}\sigma_y + s_{26}\tau_{xy} + g_{12}D_x + g_{22}D_y + p_{12}B_x + p_{22}B_y, \\ \gamma_{xy} &= s_{16}\sigma_x + s_{26}\sigma_y + s_{66}\tau_{xy} + g_{16}D_x + g_{26}D_y + p_{16}B_x + p_{26}B_y, \\ E_x &= -g_{11}\sigma_x - g_{12}\sigma_y - g_{16}\tau_{xy} + \beta_{11}D_x + \beta_{12}D_y + \nu_{11}B_x + \nu_{12}B_y, \\ E_y &= -g_{21}\sigma_x - g_{22}\sigma_y - g_{26}\tau_{xy} + \beta_{12}D_x + \beta_{22}D_y + \nu_{12}B_x + \nu_{22}B_y, \\ H_x &= -p_{11}\sigma_x - p_{12}\sigma_y - p_{16}\tau_{xy} + \nu_{11}D_x + \nu_{12}D_y + \chi_{11}B_x + \chi_{12}B_y, \\ H_y &= -p_{21}\sigma_x - p_{22}\sigma_y - p_{26}\tau_{xy} + \nu_{12}D_x + \nu_{22}D_y + \chi_{12}B_x + \chi_{22}B_y. \end{split}$$

Решив эти уравнения относительно напряжений и индукций, получаем [8]

$$\sigma_x = b_{11}\varepsilon_x + b_{12}\varepsilon_y + b_{16}\gamma_{xy} + c_{g11}E_x + c_{g21}E_y + c_{p11}H_x + c_{p21}H_y,$$

$$\begin{split} \sigma_y &= b_{12}\varepsilon_x + b_{22}\varepsilon_y + b_{26}\gamma_{xy} + c_{g12}E_x + c_{g22}E_y + c_{p12}H_x + c_{p22}H_y, \\ \tau_{xy} &= b_{16}\varepsilon_x + b_{26}\varepsilon_y + b_{66}\gamma_{xy} + c_{g16}E_x + c_{g26}E_y + c_{p16}H_x + c_{p26}H_y, \\ D_x &= -c_{g11}\varepsilon_x - c_{g12}\varepsilon_y - c_{g16}\gamma_{xy} + c_{\beta11}E_x + c_{\beta12}E_y + c_{\nu11}H_x + c_{\nu12}H_y, \\ D_y &= -c_{g21}\varepsilon_x - c_{g22}\varepsilon_y - c_{g26}\gamma_{xy} + c_{\beta12}E_x + c_{\beta22}E_y + c_{\nu12}H_x + c_{\nu22}H_y, \\ B_x &= -c_{p11}\varepsilon_x - c_{p12}\varepsilon_y - c_{p16}\gamma_{xy} + c_{\nu11}E_x + c_{\nu12}E_y + c_{\chi11}H_x + c_{\chi12}H_y, \\ B_y &= -c_{p21}\varepsilon_x - c_{p22}\varepsilon_y - c_{p26}\gamma_{xy} + c_{\nu12}E_x + c_{\nu22}E_y + c_{\chi12}H_x + c_{\chi22}H_y, \end{split}$$

где коэффициенты связи представляют собой элементы обратной матрицы

$$\begin{pmatrix} b_{11} & b_{12} & b_{16} & c_{g11} & c_{g21} & c_{p11} & c_{p21} \\ b_{12} & b_{22} & b_{26} & c_{g12} & c_{g22} & c_{p12} & c_{p22} \\ b_{16} & b_{26} & b_{66} & c_{g16} & c_{g26} & c_{p16} & c_{p26} \\ -c_{g11} - c_{g12} - c_{g16} & c_{\beta11} & c_{\beta12} & c_{\nu11} & c_{\nu12} \\ -c_{g21} - c_{g22} - c_{g26} & c_{\beta12} & c_{\beta22} & c_{\nu12} & c_{\nu22} \\ -c_{p11} - c_{p12} - c_{p16} & c_{\nu11} & c_{\nu12} & c_{\chi11} & c_{\chi12} \\ -c_{p21} - c_{p22} - c_{p26} & c_{\nu12} & c_{\nu22} & c_{\chi22} \end{pmatrix} = \begin{pmatrix} s_{11} & s_{12} & s_{16} & g_{11} & g_{21} & p_{11} & p_{21} \\ s_{12} & s_{22} & s_{26} & g_{12} & g_{22} & p_{12} & p_{22} \\ s_{16} & s_{26} & s_{66} & g_{16} & g_{26} & p_{16} & p_{26} \\ -g_{11} - g_{12} - g_{16} & \beta_{11} & \beta_{12} & \nu_{11} & \nu_{12} \\ -g_{21} - g_{22} - g_{26} & \beta_{12} & \beta_{22} & \nu_{12} & \nu_{22} \\ -p_{11} - p_{12} - p_{16} & \nu_{11} & \nu_{12} & \chi_{11} & \chi_{12} \\ -p_{21} - p_{22} - p_{26} & \nu_{12} & \nu_{22} & \chi_{12} & \chi_{22} \end{pmatrix}^{-1}$$

 s_{ij} — коэффициенты деформации материала, измеренные при постоянных индукциях электрического и магнитного полей; g_{ij} , p_{ij} — пьезоэлектрические и пьезомагнитные модули деформаций и напряженностей, измеренные при постоянных напряжениях и индукциях; β_{ij} , ν_{ij} , χ_{ij} — коэффициенты диэлектрической, магнитной и электромагнитной восприимчивости, измеренные при постоянных напряжениях.

Введем моменты по толщине плиты, вызванные напряжениями $\sigma_x, \sigma_y, \tau_{xy}$, индукциями D_x, D_y, B_x, B_y , потенциалами φ, ψ , и поперечные силы, обусловленные касательными напряжениями τ_{xz}, τ_{yz} :

$$M_{x} = \int_{-h}^{h} z\sigma_{x} dz, \quad M_{y} = \int_{-h}^{h} z\sigma_{y} dz, \quad H_{xy} = \int_{-h}^{h} z\tau_{xy} dz,$$

$$M_{dx} = \int_{-h}^{h} zD_{x} dz, \quad M_{dy} = \int_{-h}^{h} zD_{y} dz, \quad M_{bx} = \int_{-h}^{h} zB_{x} dz, \quad M_{by} = \int_{-h}^{h} zB_{y} dz, \quad (1.1)$$

$$M_{\varphi} = \int_{-h}^{h} z\varphi dz, \quad M_{\psi} = \int_{-h}^{h} z\psi dz;$$

$$N_{x} = \int_{-h}^{h} \tau_{xz} dz, \quad N_{y} = \int_{-h}^{h} \tau_{yz} dz. \quad (1.2)$$

Учитывая, что введенные величины не зависят от z, и вычисляя интегралы (1.1), (1.2), находим [8]

$$M_x = -\left(D_{11}\frac{\partial^2 w}{\partial x^2} + 2D_{16}\frac{\partial^2 w}{\partial x \partial y} + D_{12}\frac{\partial^2 w}{\partial y^2} - C_{g11}\frac{\partial \varphi_0}{\partial x} - C_{g21}\frac{\partial \varphi_0}{\partial y} - C_{p11}\frac{\partial \psi_0}{\partial x} - C_{p21}\frac{\partial \psi_0}{\partial y}\right),$$

$$\begin{split} M_{y} &= -\left(D_{12}\frac{\partial^{2}w}{\partial x^{2}} + 2D_{26}\frac{\partial^{2}w}{\partial x \partial y} + D_{22}\frac{\partial^{2}w}{\partial y^{2}} - C_{g12}\frac{\partial\varphi_{0}}{\partial x} - C_{g22}\frac{\partial\varphi_{0}}{\partial y} - \\ &- C_{p12}\frac{\partial\psi_{0}}{\partial x} - C_{p22}\frac{\partial\psi_{0}}{\partial y}\right), \quad (1.3) \\ H_{xy} &= -\left(D_{16}\frac{\partial^{2}w}{\partial x^{2}} + 2D_{66}\frac{\partial^{2}w}{\partial x \partial y} + D_{26}\frac{\partial^{2}w}{\partial y^{2}} - C_{g16}\frac{\partial\varphi_{0}}{\partial x} - C_{g26}\frac{\partial\varphi_{0}}{\partial y} - \\ &- C_{p16}\frac{\partial\psi_{0}}{\partial x} - C_{p26}\frac{\partial\psi_{0}}{\partial y}\right); \\ M_{dx} &= C_{g11}\frac{\partial^{2}w}{\partial x^{2}} + 2C_{g16}\frac{\partial^{2}w}{\partial x \partial y} + C_{g12}\frac{\partial^{2}w}{\partial y^{2}} + C_{\beta11}\frac{\partial\varphi_{0}}{\partial x} + C_{\beta12}\frac{\partial\varphi_{0}}{\partial y} + \\ &+ C_{\nu11}\frac{\partial\psi_{0}}{\partial x} + C_{\nu12}\frac{\partial\psi_{0}}{\partial y}, \\ M_{dy} &= C_{g21}\frac{\partial^{2}w}{\partial x^{2}} + 2C_{g26}\frac{\partial^{2}w}{\partial x \partial y} + C_{g22}\frac{\partial^{2}w}{\partial y^{2}} + C_{\beta12}\frac{\partial\varphi_{0}}{\partial x} + C_{\beta22}\frac{\partial\varphi_{0}}{\partial y} + \\ &+ C_{\nu12}\frac{\partial\psi_{0}}{\partial x} + C_{\nu22}\frac{\partial\psi_{0}}{\partial y}, \\ M_{bx} &= C_{p11}\frac{\partial^{2}w}{\partial x^{2}} + 2C_{p16}\frac{\partial^{2}w}{\partial x \partial y} + C_{p22}\frac{\partial^{2}w}{\partial y^{2}} + C_{\nu11}\frac{\partial\varphi_{0}}{\partial x} + C_{\nu12}\frac{\partial\varphi_{0}}{\partial y} + \\ &+ C_{\chi11}\frac{\partial\psi_{0}}{\partial x} + C_{\chi22}\frac{\partial\psi_{0}}{\partial y}, \\ M_{by} &= C_{p21}\frac{\partial^{2}w}{\partial x^{2}} + 2C_{p26}\frac{\partial^{2}w}{\partial x \partial y} + C_{p22}\frac{\partial^{2}w}{\partial y^{2}} + C_{\nu12}\frac{\partial\varphi_{0}}{\partial x} + C_{\nu22}\frac{\partial\varphi_{0}}{\partial y} + \\ &+ C_{\chi11}\frac{\partial\psi_{0}}{\partial x} + C_{\chi22}\frac{\partial\psi_{0}}{\partial y}, \\ M_{by} &= C_{p21}\frac{\partial^{3}w}{\partial x^{2}} + 2C_{p26}\frac{\partial^{2}w}{\partial x \partial y} + C_{p22}\frac{\partial^{2}w}{\partial y^{2}} + C_{\nu12}\frac{\partial\varphi_{0}}{\partial x} + C_{\nu22}\frac{\partial\varphi_{0}}{\partial y} + \\ &+ C_{\chi11}\frac{\partial\psi_{0}}{\partial x} + C_{\chi22}\frac{\partial\psi_{0}}{\partial y}, \\ M_{by} &= C_{p21}\frac{\partial^{3}w}{\partial x^{2}} + 2C_{p26}\frac{\partial^{2}w}{\partial x \partial y} + C_{p22}\frac{\partial^{2}w}{\partial y^{2}} + C_{\nu12}\frac{\partial\varphi_{0}}{\partial x} + C_{\nu22}\frac{\partial\varphi_{0}}{\partial y} + \\ &+ C_{\chi12}\frac{\partial\psi_{0}}{\partial y} - C_{g1}\frac{\partial^{2}\psi_{0}}{\partial y}, \\ M_{by} &= C_{p21}\frac{\partial^{3}w}{\partial x^{2}} + 2C_{p26}\frac{\partial^{2}w}{\partial x^{2}} + C_{p22}\frac{\partial^{2}w}{\partial y^{2}} - C_{p1}\frac{\partial^{2}\psi_{0}}{\partial x} - C_{g1}\frac{\partial^{2}\psi_{0}}{\partial y} - C_{g2}\frac{\partial^{2}\psi_{0}}{\partial y}, \\ M_{by} &= C_{p21}\frac{\partial^{3}w}{\partial x^{2}} + C_{p22}\frac{\partial^{2}w}{\partial y^{2}} - C_{p1}\frac{\partial^{2}w}{\partial x^{2}} - C_{p1}\frac{\partial^{2}\psi_{0}}{\partial y} - C_{p2}\frac{\partial^{2}\psi_{0}}{\partial y}, \\ N_{y} &= -\left(D_{11}\frac{\partial^{3}w}{\partial x^{3}} + D_{12}\frac{\partial^{2}\psi_{0}}{\partial y^{2}} - C_{p16}\frac{\partial^{2}\psi_{0}}}{\partial x^{2}} - C_{p22}\frac{\partial^{2}\psi_{0}}{\partial y$$

ΓД $C_{\beta ij} = c_{\beta ij} D_0, \ C_{\nu ij} = c_{\nu ij} D_0, \ C_{\chi ij} = c_{\chi ij} D_0 -$ электромагнитные жесткости материала плиты; $D_0 = 2h^3/3$ — постоянная, зависящая от толщины плиты. Учитывая выражения (1.3), (1.4) и интегрируя уравнения равновесия

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} = 0, \qquad \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{yz}}{\partial z} = 0, \qquad \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_z}{\partial z} = 0$$

и уравнения электромагнитостатики [11, 12]

$$\frac{\partial D_x}{\partial x} + \frac{\partial D_y}{\partial y} = 0, \qquad \frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} = 0, \qquad \frac{\partial E_x}{\partial x} - \frac{\partial E_y}{\partial y} = 0, \qquad \frac{\partial H_x}{\partial x} - \frac{\partial H_y}{\partial y} = 0, \qquad (1.7)$$

для определения функций w, φ_0, ψ_0 получаем систему дифференциальных уравнений [8]

$$L_{4s}w + L_{3g}\varphi_0 + L_{3p}\psi_0 = q(x, y),$$

$$L_{3g}w + L_{2\beta}\varphi_0 + L_{2\nu}\psi_0 = 0,$$

$$L_{3p}w + L_{2\nu}\varphi_0 + L_{2\chi}\psi_0 = 0,$$

(1.8)

где L_{ij} — дифференциальные операторы:

$$\begin{split} L_{4s} &= -\left(D_{11}\frac{\partial^4}{\partial x^4} + 4D_{16}\frac{\partial^4}{\partial x^3\partial y} + 2(D_{12} + 2D_{66})\frac{\partial^4}{\partial x^2\partial y^2} + 4D_{26}\frac{\partial^4}{\partial x\partial y^3} + D_{22}\frac{\partial^4}{\partial y^4}\right),\\ L_{3g} &= C_{g11}\frac{\partial^3}{\partial x^3} + (C_{g21} + 2C_{g16})\frac{\partial^3}{\partial x^2\partial y} + (C_{g12} + 2C_{g26})\frac{\partial^3}{\partial x\partial y^2} + C_{g22}\frac{\partial^3}{\partial y^3},\\ L_{3p} &= C_{p11}\frac{\partial^3}{\partial x^3} + (C_{p21} + 2C_{p16})\frac{\partial^3}{\partial x^2\partial y} + (C_{p12} + 2C_{p26})\frac{\partial^3}{\partial x\partial y^2} + C_{p22}\frac{\partial^3}{\partial y^3},\\ L_{2\beta} &= C_{\beta11}\frac{\partial^2}{\partial x^2} + 2C_{\beta12}\frac{\partial^2}{\partial x\partial y} + C_{\beta22}\frac{\partial^2}{\partial y^2}, \quad L_{2\nu} &= C_{\nu11}\frac{\partial^2}{\partial x^2} + 2C_{\nu12}\frac{\partial^2}{\partial x\partial y} + C_{\nu22}\frac{\partial^2}{\partial y^2},\\ L_{2\chi} &= C_{\chi11}\frac{\partial^2}{\partial x^2} + 2C_{\chi12}\frac{\partial^2}{\partial x\partial y} + C_{\chi22}\frac{\partial^2}{\partial y^2}. \end{split}$$

Систему дифференциальных уравнений (1.8) следует дополнить краевыми условиями [8], зависящими от условий нагружения и подкрепления края плиты.

2. Комплексные потенциалы теории изгиба тонких электромагнитоупругих плит. В работе [7] с помощью функций комплексной переменной решение системы уравнений (1.8) найдено в виде

$$w(x,y) = w_0(x,y) + 2\operatorname{Re}\sum_{k=1}^4 W_k(z_k);$$
(2.1)

$$\varphi_0(x,y) = \varphi_{00}(x,y) + 2 \operatorname{Re} \sum_{k=1}^4 \nu_k W'_k(z_k),$$

$$\psi_0(x,y) = \psi_{00}(x,y) + 2 \operatorname{Re} \sum_{k=1}^4 \rho_k W'_k(z_k),$$
(2.2)

где $w_0(x,y)$, $\varphi_{00}(x,y)$, $\psi_{00}(x,y)$ — частные решения системы (1.8); $W_k(z_k)$ — функции обобщенных комплексных переменных z_k :

$$z_k = x + \mu_k y, \tag{2.3}$$

 μ_k — корни характеристического уравнения

 $\begin{vmatrix} l_{4s}(\mu) & l_{3g}(\mu) & l_{3p}(\mu) \\ l_{3g}(\mu) & l_{2\beta}(\mu) & l_{2\nu}(\mu) \\ l_{3p}(\mu) & l_{2\nu}(\mu) & l_{2\chi}(\mu) \end{vmatrix} = 0,$

 $l_{ij}(\mu)$ — полиномы:

$$\begin{split} l_{4s}(\mu) &= -(D_{22}\mu^4 + 4D_{26}\mu^3 + 2(D_{12} + 2D_{66})\mu^2 + 4D_{66}\mu + D_{11}), \\ l_{3g}(\mu) &= C_{g22}\mu^3 + (C_{g12} + 2C_{g26})\mu^2 + (C_{g21} + 2C_{g16})\mu + C_{g11}, \\ l_{3p}(\mu) &= C_{p22}\mu^3 + (C_{p12} + 2C_{p26})\mu^2 + (C_{p21} + 2C_{p16})\mu + C_{p11}, \\ l_{2\beta}(\mu) &= C_{\beta22}\mu^2 + 2C_{\beta12}\mu + C_{\beta11}, \qquad l_{2\nu}(\mu) = C_{\nu22}\mu^2 + 2C_{\nu12}\mu + C_{\nu11}, \\ l_{2\chi}(\mu) &= C_{\chi22}\mu^2 + 2C_{\chi12}\mu + C_{\chi11}, \qquad \nu_k = \frac{\Delta_{1k}}{\Delta_{0k}}, \quad \rho_k = \frac{\Delta_{2k}}{\Delta_{0k}}, \\ \Delta_{1k} &= \begin{vmatrix} -l_{3g}(\mu_k) & l_{2\nu}(\mu_k) \\ -l_{3p}(\mu_k) & l_{2\chi}(\mu_k) \end{vmatrix}, \quad \Delta_{2k} &= \begin{vmatrix} l_{2\beta}(\mu_k) & -l_{3g}(\mu_k) \\ l_{2\nu}(\mu_k) & -l_{3p}(\mu_k) \end{vmatrix}, \quad \Delta_{0k} &= \begin{vmatrix} l_{2\beta}(\mu_k) & l_{2\nu}(\mu_k) \\ l_{2\nu}(\mu_k) & l_{2\chi}(\mu_k) \end{vmatrix}.$$

Подставив функции (2.1), (2.2) в выражения (1.3)–(1.5), для изгибающих и крутящего моментов, моментов индукций электрического и магнитного полей, перерезывающих сил с использованием комплексных потенциалов получаем следующие выражения:

$$(M_x, M_y, H_{xy}) = (M_{0x}, M_{0y}, H_{0xy}) - 2 \operatorname{Re} \sum_{k=1}^{4} (p_k, q_k, r_k) W_k''(z_k),$$

$$p_k = D_{11} + 2D_{16}\mu_k + D_{12}\mu_k^2 - (C_{g11} + C_{g21}\mu_k)\nu_k - (C_{p11} + C_{p21}\mu_k)\rho_k,$$

$$q_k = D_{12} + 2D_{26}\mu_k + D_{22}\mu_k^2 - (C_{g12} + C_{g22}\mu_k)\nu_k - (C_{p11} + C_{p22}\mu_k)\rho_k, \qquad (2.4)$$

$$r_k = D_{16} + 2D_{66}\mu_k + D_{26}\mu_k^2 - (C_{g16} + C_{g26}\mu_k)\nu_k - (C_{p16} + C_{p26}\mu_k)\rho_k;$$

$$(M_{dx}, M_{dy}, M_{bx}, M_{by}) = (M_{0dx}, M_{0dy}, M_{0bx}, M_{0by}) + 2 \operatorname{Re} \sum_{k=1}^{4} (d_{xk}, d_{yk}, b_{xk}, b_{yk})W_k''(z_k),$$

$$d_{xk} = C_{g11} + 2C_{g16}\mu_k + C_{g12}\mu_k^2 - (C_{\beta11} + C_{\beta12}\mu_k)\nu_k - (C_{\nu11} + C_{\nu12}\mu_k)\rho_k,$$

$$d_{yk} = C_{g21} + 2C_{g26}\mu_k + C_{g22}\mu_k^2 - (C_{\beta12} + C_{\beta22}\mu_k)\nu_k - (C_{\nu11} + C_{\nu12}\mu_k)\rho_k,$$

$$b_{yk} = C_{p11} + 2C_{p16}\mu_k + C_{p12}\mu_k^2 - (C_{\nu11} + C_{\nu12}\mu_k)\nu_k - (C_{\chi11} + C_{\chi12}\mu_k)\rho_k,$$

$$b_{yk} = C_{p21} + 2C_{p26}\mu_k + C_{p22}\mu_k^2 - (C_{\nu12} + C_{\nu22}\mu_k)\nu_k - (C_{\chi11} + C_{\chi12}\mu_k)\rho_k,$$

$$b_{yk} = C_{p21} + 2C_{p26}\mu_k + C_{p22}\mu_k^2 - (C_{\nu12} + C_{\nu22}\mu_k)\nu_k - (C_{\chi11} + C_{\chi22}\mu_k)\rho_k;$$

$$(M_{\varphi}, M_{\psi}) = (M_{0\varphi}, M_{0\psi}) + D_0(\varphi_0, \psi_0);$$

$$(2.6)$$

$$(N_x, N_y) = (N_{0x}, N_{0y}) - 2 \operatorname{Re} \sum_{k=1}^{4} (l_k, -s_k)W_k'''(z_k),$$

$$s_k = -D_{16} - (D_{12} + 2D_{66})\mu_k - 3D_{26}\mu_k^2 - D_{22}\mu_k^3 +$$

$$+ (C_{g16} + (C_{g12} + C_{g26})\mu_k + C_{g22}\mu_k^2)\nu_k + (C_{p16} + (C_{p12} + C_{p26})\mu_k + C_{p22}\mu_k^2)\rho_k,$$

$$l_k = D_{11} + 3D_{16}\mu_k + (D_{12} + 2D_{66})\mu_k^2 + D_{26}\mu_k^3 + (C_{g11} + (C_{g21} + C_{g16})\mu_k + C_{g26}\mu_k^2)\nu_k - (C_{p11} + (C_{p21} + C_{p16})\mu_k + C_{p26}\mu_k^2)\rho_k.$$
(2.7)

Здесь величины, содержащие 0 в индексах, соответствуют частному решению системы уравнений (1.8) и вычисляются по формулам (1.3)–(1.5), в которых функции w(x,y), $\varphi_0(x,y)$, $\psi_0(x,y)$ нужно заменить на функции $w_0(x,y)$, $\varphi_{00}(x,y)$, $\psi_{00}(x,y)$. При выводе формул (2.4)–(2.7) учтены связи

$$l_k - \mu_k s_k = d_{xk} + \mu_k d_{yk} = b_{xk} + \mu_k b_{yk} = 0,$$

из которых следуют равенства

$$l_k = \mu_k s_k, \qquad d_{xk} = -\mu_k d_{yk}, \qquad b_{xk} = -\mu_k b_{yk}.$$

Кроме того, наложены связи

$$s_k + r_k = -p_k/\mu_k, \qquad s_k - r_k = q_k\mu_k$$

Комплексные потенциалы $W_k(z_k)$ должны удовлетворять определенным граничным условиям на краях плиты. Эти условия следуют из соответствующих условий для системы дифференциальных уравнений (1.8). В общем случае для определения комплексных потенциалов имеем условия [7]

$$2\operatorname{Re}\sum_{k=1}^{4} g_{ikp}W'_{k}(t_{k}) = f_{ip}(t) \qquad (i = \overline{1, 4}),$$
(2.8)

L

где постоянные g_{ikp} и функции $f_{ip}(t)$ принимают определенные значения в зависимости от способа нагружения или подкрепления контура L_p . При этом, в случае если контур L_p плиты нагружен механическими изгибающими моментами $M_n = m_l(s)$, поперечными усилиями $N_n = p_l(s)$, изгибающими индукционными моментами $M_{dn} = m_{dl}(s)$, $M_{bn} = m_{bl}(s)$, имеем

$$g_{1kp} = p_k/\mu_k, \quad g_{2kp} = q_k, \quad g_{3kp} = a_{yk}, \quad g_{4kp} = b_{yk},$$

$$f_{1p}(t) = I_{0xy1} \pm \int_0^s (m_p \, dy + f_p \, dx) - c_p x + c_{1p},$$

$$f_{2p}(t) = I_{0xy2} \pm \int_0^s (m_p \, dx - f_p \, dy) + c_p y + c_{2p},$$

$$f_{3p}(t) = M_{0d} \pm \int_0^s m_{dp} \, ds + c_{3p}, \qquad f_{4p}(t) = M_{0b} \pm \int_0^s m_{bp} \, ds + c_{4p},$$

$$I_{0xy1} = \int_0^s (M_{0x} \cos nx + (H_{0xy} - I_0) \cos ny) \, ds,$$

$$I_{0xy2} = \int_0^s ((H_{0xy} + I_0) \cos nx + M_{0y} \cos ny) \, ds,$$

$$M_{0d} = \int_0^s (M_{0dx} \cos nx + M_{0dy} \cos ny) \, ds, \qquad M_{0b} = \int_0^s (M_{0bx} \cos nx + M_{0by} \cos ny) \, ds,$$

$$J_{01} = \int_0^s (N_{0xy} - H_{0xy}) \, dx + M_{0x} \, dy, \qquad J_{02} = -\int_0^s M_{0y} \, dx - (N_{0xy} + H_{0xy}) \, dy,$$

$$f_p(s) = \int_0^s p_p(s) \, ds,$$

где c_p , c_{il} — вещественная и комплексные постоянные; верхний знак соответствует внешнему контуру L_0 плиты, нижний — контурам отверстий L_l ; s — длина дуги контура, обходимого против часовой стрелки. В случае если контур L_p плиты жестко подкреплен, имеют место соотношения

$$g_{1kp} = 1,$$
 $g_{2kp} = \mu_k,$ $g_{3kp} = d_{yk},$ $g_{4kp} = b_{yk},$
 $f_{1p}(t) = -\frac{\partial w_0}{\partial x} + c_{1p},$ $f_{2p}(t) = -\frac{\partial w_0}{\partial y} + c_{2p},$

функции $f_{3p}(t)$, $f_{4p}(t)$ сохраняют вид (2.9). Если контур жестко защемлен, то выполняется условие $c_{1p} = c_{2p} = 0$.

Определив комплексные потенциалы, основные характеристики ЭМУС при изгибе можно вычислить по формулам (2.4)–(2.7), а напряжения индукции — по формулам

$$\sigma_x = \frac{3M_x}{2h^3} z, \qquad \sigma_y = \frac{3M_y}{2h^3} z, \qquad \tau_{xy} = \frac{3H_{xy}}{2h^3} z,$$

$$\tau_{xz} = \frac{3N_x}{4h^3} (h^2 - z^2), \qquad \tau_{yz} = \frac{3N_y}{4h^3} (h^2 - z^2),$$

$$D_x = \frac{3M_{dx}}{2h^3} z, \quad D_y = \frac{3M_{dy}}{2h^3} z, \quad B_x = \frac{3M_{bx}}{2h^3} z, \quad B_y = \frac{3M_{by}}{2h^3} z.$$

Пусть в общем случае плита занимает многосвязную область S, ограниченную внешним контуром L_0 и контурами отверстий L_l $(l = \overline{1, L})$. Плита находится под действием приложенных к ее контурам распределенных механических и электромагнитных нагрузок; во внутренних точках $z_r^0(x_r^0, y_r^0)$ (r = 1, R) области S действуют сосредоточенные силы $P_r^0(X_r^0, Y_r^0)$ и сосредоточенные моменты индукций M_{Dr}^0 , M_{Br}^0 . В частном случае бесконечной многосвязной плиты будем полагать, что на бесконечности заданы моменты M_x^{∞} , M_y^{∞} , H_{xy}^{∞} , а также компоненты моментов индукций M_{dx}^{∞} , M_{dy}^{∞} , M_{bx}^{∞} , M_{by}^{∞} .

Комплексные потенциалы $W_k(z_k)$ определены в областях S_k обобщенных комплексных переменных z_k , ограниченных контурами L_{kl} , соответствующими контурам L_l области Sпри аффинных преобразованиях (2.3), и в общем случае имеют вид [6, 7]

$$W'_{k}(z_{k}) = g\Gamma_{k}z_{k} + \sum_{l=1}^{L} (A_{kl}z_{k} + B_{kl})\ln(z_{k} - z_{kl}) + \sum_{r=1}^{R} (A_{kr}^{0}z_{k} + B_{kr}^{0})\ln(z_{k} - z_{kr}^{0}) + W'_{0k}(z_{k}), \quad (2.10)$$

где g — постоянная (g = 0 в случае конечной области, g = 1 в случае бесконечной области); Γ_k — постоянные, определяемые из решения системы линейных алгебраических уравнений

$$2\operatorname{Re}\sum_{k=1}^{4} (D_{11} + 2D_{16}\mu_k + D_{12}\mu_k^2 - \nu_k(C_{g11} + C_{g21}\mu_k) - \rho_k(C_{p11} + C_{p21}\mu_k))\Gamma_k = -M_x^{\infty},$$

$$2\operatorname{Re}\sum_{k=1}^{4} (D_{12} + 2D_{26}\mu_k + D_{22}\mu_k^2 - \nu_k(C_{g12} + C_{g22}\mu_k) - \rho_k(C_{p12} + C_{p22}\mu_k))\Gamma_k = -M_y^{\infty},$$

$$2\operatorname{Re}\sum_{k=1}^{4} (D_{16} + 2D_{66}\mu_k + D_{26}\mu_k^2 - \nu_k(C_{g16} + C_{g26}\mu_k) - \rho_k(C_{p16} + C_{p26}\mu_k))\Gamma_k = -H_{xy}^{\infty},$$

$$2\operatorname{Re}\sum_{k=1}^{4} (C_{g11} + C_{g16}\mu_k + C_{g12}\mu_k^2 + \nu_k(C_{\beta11} + C_{\beta12}\mu_k) + \rho_k(C_{\nu11} + C_{\nu12}\mu_k))\Gamma_k = -M_{dx}^{\infty},$$

$$(2.11)$$

$$2\operatorname{Re}\sum_{k=1}^{4} (C_{g21} + C_{g26}\mu_k + C_{g22}\mu_k^2 + \nu_k(C_{\beta12} + C_{\beta22}\mu_k) + \rho_k(C_{\nu12} + C_{\nu22}\mu_k))\Gamma_k = -M_{dy}^{\infty},$$

$$2\operatorname{Re}\sum_{k=1}^{4} (C_{p11} + C_{p16}\mu_k + C_{p12}\mu_k^2 + \nu_k(C_{\nu11} + C_{\nu12}\mu_k) + \rho_k(C_{\chi11} + C_{\chi12}\mu_k))\Gamma_k = -M_{bx}^{\infty},$$

$$2\operatorname{Re}\sum_{k=1}^{4} (C_{p21} + C_{p26}\mu_k C_{p22}\mu_k^2 + \nu_k(C_{\nu12} + C_{\nu22}\mu_k) + \rho_k(C_{\chi12} + C_{\chi22}\mu_k))\Gamma_k = -M_{by}^{\infty},$$

$$2\operatorname{Re}\sum_{k=1}^{4} (C_{p21} + C_{p26}\mu_k C_{p22}\mu_k^2 + \nu_k(C_{\nu12} + C_{\nu22}\mu_k) + \rho_k(C_{\chi12} + C_{\chi22}\mu_k))\Gamma_k = -M_{by}^{\infty},$$

$$2\operatorname{Re}\sum_{k=1}^{4} (C_{p21} + C_{p26}\mu_k C_{p22}\mu_k^2 + \nu_k(C_{\nu12} + C_{\nu22}\mu_k) + \rho_k(C_{\chi12} + C_{\chi22}\mu_k))\Gamma_k = -M_{by}^{\infty},$$

 A_{kl}, B_{kl} — постоянные, определяемые из решения системы линейных алгебраических уравнений

$$2\operatorname{Re}\sum_{k=1}^{4} \left(1, \mu_{k}, \mu_{k}^{2}, \frac{1}{\mu_{k}}, \nu_{k}, \nu_{k}\mu_{k}, \rho_{k}, \rho_{k}\mu_{k}\right) iA_{kl} = \left(0, 0, 0, \frac{P_{l} + P_{0l}}{2\pi D_{11}}, 0, 0, 0, 0\right); \quad (2.12)$$

$$2\operatorname{Re}\sum_{k=1}^{4} \left(1, \mu_{k}, \mu_{k}^{2}, \frac{1}{\mu_{k}}, \nu_{k}, \nu_{k}\mu_{k}, \rho_{k}, \rho_{k}\mu_{k}\right) iB_{kl} = \left(0, 0, -\frac{M_{xl} + M_{0xl}}{2\pi D_{22}}, -\frac{M_{yl} + M_{0yl}}{2\pi}, 0, 0, M_{Dl} + M_{0Dl}, M_{Bl} + M_{0Bl}\right), \quad (2.13)$$

 P_l, M_{xl}, M_{yl} — главный вектор и компоненты главного момента поперечных внешних усилий, приложенных к контуру отверстия $L_l; M_{Dl}, M_{Bl}$ — суммарные моменты электрической и магнитной индукций по контуру $L_l; P_{0l}, M_{0xl}, M_{0yl}, M_{0Dl}, M_{0Bl}$ — величины, аналогичные величинам $P_l, M_{xl}, M_{yl}, M_{Dl}, M_{Bl}$ и соответствующие частному решению системы дифференциальных уравнений (1.8); A_{kr}^0, B_{kr}^0 — постоянные, удовлетворяющие системам, получаемым из систем (2.12), (2.13) путем замены величин $A_{jl}, B_{jl}P_l, M_{xl}, M_{yl}$ на величины $A_{kr}^0, P_r^0, M_{xr}^0, M_{yr}^0$, при этом величины с нулями в индексах опускаются; $W'_{0k}(z_k)$ — функции, голоморфные в многосвязных областях S_k , получаемых из заданной области S аффинными преобразованиями (2.3) и ограниченных контурами $L_{kl}; z_{kl}, z_{kr}^0$ — точки в областях S_k , соответствующие при аффинных преобразованиях произвольным точкам $z_{0l}(x_{0l}, y_{0l})$ внутри контуров L_l и точкам, в которых приложены сосредоточенные силы z_r^0 .

Аналогичным образом для плит строятся решения задач электроупругости (ЭУ), в случае когда не учитываются магнитные свойства материала, соответствующие уравнения и гипотезы; задач магнитоупругости (МУ), в случае когда не учитываются электрические свойства, соответствующие уравнения и гипотезы; задач классической теории упругости (ТУ) анизотропного тела, в случае когда не учитываются электрические и магнитные свойства, уравнения (1.7) и гипотезы об электромагнитных свойствах. Однако, если составлена программа численной реализации решения некоторой задачи электромагнитоупругости (ЭМУ), то для частных случаев задач ЭУ, МУ и ТУ можно не составлять новую программу, а использовать программу решения задачи ЭМУ, задавая значения некоторых параметров λ_g , λ_p , λ_{gp} , характеризующих каждую из частных задач. Эти параметры введены таким образом, чтобы постоянные g'_{ij} , β'_{ij} , p'_{ij} , χ'_{ij} , ν'_{ij} модельного материала вычислялись по формулам $g'_{ij} = \lambda_g g_{ij}$, $\beta'_{ij} = \beta_{ij}/\lambda_p$, $p'_{ij} = \lambda_p p_{ij}$, $\chi'_{ij} = \chi_{ij}/\lambda_p$, $\nu'_{ij} = \lambda_{gp}\nu_{ij}$. Тогда для задач ЭУ нужно принимать значения $\lambda_p \leq 10^{-3}$, $\lambda_{gp} \leq 10^{-3}$, для задач МУ — $\lambda_g \leq 10^{-3}$, $\lambda_{gp} \leq 10^{-3}$, для задач ТУ — $\lambda_p \leq 10^{-3}$, $\lambda_g \leq 10^{-3}$.

3. Точные аналитические решения задач для односвязных плит. В случае односвязных конечных и бесконечных плит с эллиптическими контурами методом рядов получены точные аналитические решения задач об их электромагнитоупругом изгибе.

3.1. Эллиптическая плита. Пусть эллиптическая плита, контур которой описывается параметрическими уравнениями $x = a_0 \cos \theta$, $y = b_0 \sin \theta$, где a_0 , b_0 — длины полуосей, находится под действием механических изгибающих моментов $M_n(s) = m_0$, поперечные усилия и индукционные моменты на контуре равны нулю $(p(s) = m_{d0}(s) = m_{b0}(s) = 0)$. В этом случае комплексные потенциалы (2.10) имеют вид $W'_k(z_k) = W'_{k0}(z_k)$, где $W'_{k0}(z_k)$ функции, голоморфные в областях S_k , полученных из заданной области S и ограниченных контурами L_{k0} , соответствующими контуру L_0 при аффинных преобразованиях (2.3). Для нахождения вида этих функций используем конформные отображения.

Отобразим внешности единичных кругов $|\zeta_{k0}| \ge 1$ на внешности эллипсов L_{k0} :

$$z_k = R_{k0} \Big(\zeta_{k0} + \frac{m_{k0}}{\zeta_{k0}} \Big), \qquad R_{k0} = \frac{a_0 - i\mu_k b_0}{2}, \quad m_{k0} = \frac{a_0 + i\mu_k b_0}{a_0 - i\mu_k b_0}.$$

Тогда функции $W'_{k0}(z_k)$, голоморфные в эллипсах L_{k0} , можно разложить в ряды по полиномам Фабера:

$$W'_{k}(z_{k}) = \sum_{n=0}^{\infty} a_{k0n} P_{n}(z_{k}), \qquad (3.1)$$

где $P_n(z_k)$ — полиномы Фабера, для которых имеют место равенства

$$P_0 = 1,$$
 $P_n(z_k) = \zeta_{k0}^n + \frac{m_{k0}^n}{\zeta_{k0}^n},$

 a_{k0n} — неизвестные постоянные, значения которых вычисляются из граничных условий на контуре плиты. На основе (2.8) все условия на L_0 можно записать в векторном виде

$$2\operatorname{Re}\sum_{k=1}^{4} \left(\frac{p_k}{\mu_k}, q_k, d_{yk}, b_{yk}\right) W_k'(z_k) = \left(-m_0 y + c_{10}, -m_0 x + c_{20}, c_{30}, c_{40}\right),$$
(3.2)

где c_{i0} — комплексные постоянные.

Подставляя функции (3.1) в условия (3.2) и учитывая, что уравнения контура имеют вид $x = a_0 \cos \theta = (a_0/2)(\sigma + 1/\sigma), y = b_0 \sin \theta = -(ib_0/2)(\sigma - 1/\sigma), \zeta_{k0} = \sigma, \sigma = e^{i\theta},$ методом рядов получаем равенство $a_{k0n} = 0$ при $n \ge 2$ и систему линейных алгебраических уравнений для определения a_{k01} :

$$\sum_{k=1}^{4} \left(\left(\frac{p_k}{\mu_k}, q_k, d_{yk}, b_{yk}\right) a_{k0n} m_{k0} + \left(\frac{\bar{p}_k}{\bar{\mu}_k}, \bar{q}_k, \bar{d}_{yk}, \bar{b}_{yk}\right) \bar{a}_{k01} \right) = \left(-m_0 \frac{ib_0}{2}, -m_0 \frac{a_0}{2}, 0, 0 \right).$$

Тогда функции (3.1) с точностью до постоянных слагаемых принимают вид

$$W'_k(z_k) = a_{k01} \left(\zeta_{k0} + \frac{m_{k0}}{\zeta_{k0}} \right) = a_{k01} \frac{z_k}{R_{k0}}$$

Для моментов (2.4), (2.5) получаем выражения

$$(M_x, M_y, H_{xy}, M_{dx}, M_{dy}, M_{bx}, M_{by}) = -2 \operatorname{Re} \sum_{k=1}^{4} (p_k, q_k, r_k, d_{xk}, d_{yk}, b_{xk}, b_{yk}) \frac{a_{k01}}{R_{k0}}$$

из которых следует, что моменты постоянны во всех точках плиты, причем для любых материалов и длин полуосей эллиптического диска $M_x = M_y = m_0$, $H_{xy} = M_{dx} = M_{dy} = M_{bx} = M_{by} = 0$. Иными словами, в результате действия механических моментов моменты индукций в плите не возникают, несмотря на то что имеет место пьезоэффект, поскольку возникают деформации, перемещения и потенциалы поля, что следует из уравнений состояния.

3.2. Бесконечная плита с эллиптическим отверстием. Рассмотрим односвязную область в виде бесконечной плиты с эллиптическим отверстием, имеющим контур L_1 , который описывается параметрическими уравнениями $x = a_1 \cos \theta$, $y = b_1 \sin \theta$, где a_1 , b_1 — длины полуосей. Контур отверстия свободен от нагружений, на бесконечности действуют механические моменты M_x^{∞} , M_y^{∞} , H_{xy}^{∞} и индукционные моменты M_{dx}^{∞} , M_{dy}^{∞} , M_{bx}^{∞} , M_{by}^{∞} .

В данном случае функции (2.10) имеют вид

$$W_k'(z_k) = \Gamma_k z_k + W_{0k}'(z_k),$$

где Γ_k — постоянные, определяемые решением системы уравнений (2.11); $W'_{k0}(z_k)$ — функции, голоморфные в бесконечных областях, ограниченных контурами L_{k1} , получаемыми из L_1 путем аффинных преобразований (2.3). Для построения этих функций используем конформные отображения. Отобразим внешность единичных кругов $|\zeta_k| \ge 1$ на внешности эллипсов L_{k1} :

$$z_k = R_{k1} \left(\zeta_{k1} + \frac{m_{k1}}{\zeta_{k1}} \right), \qquad R_{k1} = \frac{a_1 - i\mu_k b_1}{2}, \quad m_{k1} = \frac{a_1 + i\mu_k b_1}{a_1 - i\mu_k b_1}.$$

Тогда функции $W'_{k0}(z_k)$, голоморфные в областях вне контура L_{k1} , включающих бесконечно удаленную точку, можно разложить в ряды Лорана по отрицательным степеням ζ_{k1} :

$$W'_{k}(z_{k}) = \Gamma_{k} z_{k} + \sum_{n=1}^{\infty} \frac{a_{k1n}}{\zeta_{k1}^{n}},$$
(3.3)

где a_{k1n} — неизвестные постоянные, определяемые из граничных условий (2.8) на контуре отверстия. В рассматриваемом случае эти условия принимают вид

$$2\operatorname{Re}\sum_{k=1}^{4} \left(\frac{p_k}{\mu_k}, q_k, d_{yk}, b_{yk}\right) W'_k(z_k) = (c_{10}, c_{20}, c_{30}, c_{40}),$$
(3.4)

где c_{i0} — комплексные постоянные.

Подставляя в (3.4) функции (3.3) с учетом

$$x = a_1 \cos \theta = (a_1/2)(\sigma + 1/\sigma), \qquad y = b_1 \sin \theta = -(ib_1/2)(\sigma - 1/\sigma)$$

и применяя метод рядов, получаем равенство $a_{k1n} = 0$ при $n \ge 2$ и систему линейных алгебраических уравнений для определения a_{k11} :

$$\sum_{k=1}^{4} \left(\frac{p_k}{\mu_k}, q_k, d_{yk}, b_{yk}\right) a_{k11} = \\ = -\sum_{k=1}^{4} \left[\left(\frac{p_k}{\mu_k}, q_k, d_{yk}, b_{yk}\right) R_{k1} m_{k1} \Gamma_k + \left(\frac{\bar{p}_k}{\bar{\mu}_k}, \bar{q}_k, \bar{d}_{yk}, \bar{b}_{yk}\right) \bar{R}_{k1} \bar{\Gamma}_k \right].$$
(3.5)

Тогда функции (3.3) принимают вид

$$W'_k(z_k) = \Gamma_k z_k + a_{k11} / \zeta_{k1}, \tag{3.6}$$

Значения момента M_s на контуре кругового отверстия в бесконечной плите

Материал	M_s						
	0	$\theta = \pi/12$	$\theta = \pi/6$	$\theta = \pi/4$	$\theta = \pi/3$	$\theta = 5\pi/12$	$\theta = \pi/2$
M1	1,845	1,725	1,400	0,970	0,570	0,305	0,215
M2	2,184	2,003	$1,\!457$	0,767	0,336	0,230	$0,\!158$
M3	1,719	1,720	1,537	1,130	0,600	0,231	-0,008

где Γ_k , a_{k11} — постоянные, вычисляемые из решения систем уравнений (2.11) и (3.5) соответственно. Продифференцировав (3.6) и подставив $W_k''(z_k)$ в (2.4), (2.5), получаем формулы для моментов

$$(M_x, M_y, H_{xy}, M_{dx}, M_{dy}, M_{bx}, M_{by}) = = -2 \operatorname{Re} \sum_{k=1}^{4} (p_k, q_k, r_k, d_{xk}, d_{yk}, b_{xk}, b_{yk}) \Big(\Gamma_k - \frac{a_{k11}}{R_{k1}(\zeta_{k1}^2 - m_{k1})} \Big).$$
(3.7)

В случае жесткого подкрепления контура отверстия в решении (3.7) нужно принять $p_k/\mu_k = 1, q_k = \mu_k$.

Если при $b_1 = 0$ эллипс превращается в прямолинейный разрез (трещину или жесткое линейное включение), то можно вычислить коэффициенты интенсивности моментов (КИМ) на его концах: k_{1M}^{\pm} (КИМ, соответствующий моменту M_y) и k_{2M}^{\pm} (КИМ, соответствующий моменту H_{xy}).

Проведены численные исследования для пластин с эллиптическим отверстием, изготовленных из следующих материалов: 1) композита на основе BaTiO₃-CoFe₂O₄ (материал M1) [13]; 2) композита, упругие, пьезоэлектрические и электрические постоянные которого соответствуют селениду кадмия CdSe, а пьезомагнитные и магнитные — BaTiO₃ (материал M2) [14]; 3) композита, упругие, пьезоэлектрические и электрические постоянные которого соответствуют материалу PZT-4, а пьезомагнитные и магнитные — CoFe₂O₄ (материал M3) [14]. Рассматривались три случая внешнего воздействия: механическое, электрическое или магнитное. Электрическое воздействие не приводит к существенным изменениям напряженно-деформированного состояния, поэтому результаты, полученные для этого случая, в данной работе не приводятся.

В таблице для плит из различных материалов с круговым отверстием радиусом a_1 $(b_1 = a_1)$, на которые действуют механические моменты $M_y^{\infty} = m_y$, приведены нормированные на m_y значения моментов M_s на контуре отверстия на площадках, перпендикулярных контуру, в зависимости от величины центрального угла отверстия θ , отсчитываемого от положительного направления оси Ox против часовой стрелки. Из таблицы следует, что на контуре отверстия в окрестности точки $\theta = 0$ наблюдается концентрация моментов M_s (напряжений σ_s). Наиболее значительные изменения этих моментов имеют место в плите, изготовленной из материала M3.

На рис. 1 для плиты с круговым отверстием, изготовленной из материала M3, приведены распределения момента M_s для задач ЭМУ, МУ, ЭУ, ТУ. Из рис. 1 следует, что совместный учет электрических и магнитных свойств оказывает значительное влияние на основные характеристики ЭМУС. В некоторых точках значения моментов M_s , полученные с учетом всех свойств, существенно различаются. Поэтому даже в случае механических воздействий при решении задач нельзя пренебрегать ни электрическими, ни магнитными свойствами пьезоматериалов, тем более что при действии электрических и магнитных моментов в теле возникают значительные напряжения и деформации, которые можно определять, только решая общую задачу электромагнитоупругости. На рис. 2 для плиты

Рис. 1. Схема плиты с круговым отверстием и распределение момента M_s/m_y на контуре кругового отверстия в плите из материала МЗ при действии на бесконечности механических моментов $M_y^{\infty} = m_y$: сплошная линия — задача ЭМУ, штриховая — задача МУ, пунктирная — задача ТУ, штрихпунктирная — задача ЭУ

Рис. 2. Схема плиты с круговым отверстием и распределение момента M_s/μ на контуре кругового отверстия в плитах из материалов М1 (сплошная линия), М2 (штриховая линия) и М3 (пунктирная линия) при действии магнитной индукции $M_{by}^{\infty} = \mu$

с круговым отверстием приведены распределения на контуре отверстия момента M_s/μ при действии моментов магнитной индукции $M_{by}^{\infty} = \mu$. Видно, что если плита находится под действием магнитного поля, приложенного на бесконечности, то в ней на контуре отверстия возникают значительные изгибающие моменты. При этом большое влияние на значения основных характеристик оказывают постоянные материала: для плиты из материала M2, пьезомагнитные и пьезоэлектрические постоянные которого на два порядка больше соответствующих постоянных материала M1, максимальные значения моментов в несколько десятков раз больше соответствующих значений моментов для плиты из материала M1.

Как показывают расчеты, на значения моментов и распределение момента M_s на контуре отверстия существенно влияет соотношение длин полуосей эллипса b_1/a_1 . Чем больше это соотношение отличается от единицы, тем больше момент M_s вблизи конца большой полуоси эллипса. На рис. 3 представлены распределения момента M_s на контуре отверстия в случае изгиба плиты механическими моментами $M_y^{\infty} = m_y$ при различных значениях параметра b_1/a_1 . При $b_1/a_1 \leq 10^{-3}$ вдали от концов большой оси моменты малы, а вблизи них велики.

Заключение. С использованием гипотез теории изгиба тонких плит Кирхгофа с учетом полной связности механических и электромагнитных полей и с помощью комплексных потенциалов решение задачи об электромагнитоупругом состоянии тонких плит сведено к определению четырех функций обобщенных комплексных переменных из соответству-

Рис. 3. Схема плиты с эллиптическим отверстием и распределение момента M_s/m_y на контуре эллиптического отверстия в плите из материала M3 в случае действия на бесконечности механических моментов $M_y^{\infty} = m_y$ при различных значениях отношения длин полуосей b_1/a_1 : $1 - b_1/a_1 = 0,1, 2 - b_1/a_1 = 0,5, 3 - b_1/a_1 = 1,0$

ющих граничных условий. Приведены решения задач для эллиптической плиты и бесконечной плиты с эллиптическим отверстием. При построении решений использованы представление голоморфных функций в виде рядов по полиномам Фабера или рядов Лорана, а также метод рядов для нахождения неизвестных коэффициентов рядов. Для плиты с эллиптическим отверстием изучено влияние пьезоэффекта, а также закономерности изменения значений изгибающих моментов в зависимости от физико-механических постоянных материала и соотношения длин полуосей отверстия.

ЛИТЕРАТУРА

- 1. Бичурин М. И. Магнитоэлектрические материалы / М. И. Бичурин, В. М. Петров, Д. А. Филиппов, Г. Сринивасан, С. В. Нан. М.: Акад. естествознания, 2006.
- 2. Пятаков А. П. Магнитоэлектрические материалы и их практическое применение // Бюл. Рос. магнит. о-ва (МАГО). 2006. Т. 5, № 2. С. 1–3.
- Eringen A. C. Theory of electromagnetic elastic plates // Intern. J. Engng Sci. 1989. V. 27, N 4. P. 363–375.
- Librescu L., Hasanyan D., Ambur D. R. Electromagnetically conducting elastic plates in a magnetic field: modeling and dynamic implications // Intern. J. Non-Linear Mech. 2004. V. 39, N 5. P. 723–739.
- 5. Gales C., Baroiu N. On the bending of plates in the electromagnetic theory of microstretch elastity // Z. angew. Math. Mech. 2014. Bd 94, N 1/2. S. 55–71.
- 6. Калоеров С. А., Петренко А. В. Двумерная задача электромагнитоупругости для многосвязных сред // Мат. методы и физ.-мех. поля. 2008. Т. 51, № 2. С. 208–221.
- 7. Калоеров С. А. Комплексные потенциалы теории изгиба тонких электромагнитоупругих плит // Вестн. Дон. нац. ун-та. Сер. А. Естеств. науки. 2019. № 3/4. С. 37–57.

- 8. **Калоеров С. А.** Краевые задачи прикладной теории изгиба тонких электромагнитоупругих плит// Вестн. Дон. нац. ун-та. Сер. А. Естеств. науки. 2019. № 1. С. 42–58.
- Kirchhoff G. R. Uber das gleichgewichi und die bewegung einer elastishem scheibe // J. reine angew. Math. 1850. Bd 40. S. 51–88.
- 10. Лехницкий С. Г. Теория упругости анизотропного тела. М.: Наука, 1977.
- Maxwell J. C. A treatise on electricity and magnetism: In 2 vol. Oxford: Clarendon Press, 1873. V. 2.
- 12. Тамм И. Е. Основы теории электричества. М.: Наука, 1976.
- Tian W.-Y., Gabbert U. Multiple crack interaction problem in magnetoelectroelastic solids // Europ. J. Mech. Pt A. 2004. V. 23. P. 599–614.
- Hou P. F., Teng G.-H., Chen H.-R. Three-dimensional Greens function for a point heat source in two-phase transversely isotropic magneto-electro-thermo-elastic material // Mech. Materials. 2009. V. 41. P. 329–338.

Поступила в редакцию 17/XII 2020 г., после доработки — 9/IV 2021 г. Принята к публикации 26/IV 2021 г.