УДК 665.64:547.83 DOI: 10.15372/KhUR20180103

Термические превращения азотсодержащих оснований смол тяжелой нефти Усинского месторождения

Η. Η. ΓΕΡΑCИMOBA, Ρ. С. ΜИΗ, Τ. Α. СΑΓΑЧΕΗΚΟ

Институт химии нефти Сибирского отделения РАН, Томск, Россия

E-mail: dm@ipc.tsc.ru

(Поступила 05.09.17; после доработки 22.12.17)

Аннотация

Представлены результаты сравнительного изучения состава и структуры азотсодержащих оснований смол тяжелой нефти Усинского месторождения до и после термического воздействия при 450 °C в течение 30 мин. С использованием методов осаждения хлористым водородом и сернокислотной экстракции из исходных и термолизованных смол выделены азотсодержащие основания с различной молекулярной массой. В обоих случаях это преимущественно высокомолекулярные соединения, однако в термолизованных смолах их доля существенно ниже. Термопреобразованные основания имеют меньшие по сравнению с исходными средние молекулярные массы. Состав выделенных соединений исследован методами структурно-группового анализа и газовой хромато-масс-спектрометрии. Показано, что средние молекулы азотсодержащих оснований обоих типов смол состоят из полициклических ядер, включающих ароматические и насыщенные циклы с различным алкильным обрамлением. Средние молекулы соединений термолизованных смол более ароматичны за счет снижения доли нафтеновых и алкильных фрагментов. В составе оснований исходных и термолизованных смол присутствуют алкилпроизводные хинолина, бензохинолина, дибензохинолина и азапирена, максимум в распределении которых приходится на алкилбензохинолины. Среди азааренов термолизованных смол повышена доля алкилхинолинов. Для всех типов оснований термолизованных смол характерно преобладание структур с меньшим числом атомов углерода в алкильных заместителях. Можно полагать, что при термической переработке тяжелого углеводородного сырья идентифицированные соединения войдут в состав дистиллятных фракций, и этот аспект необходимо учитывать при получении на их основе высококачественных горюче-смазочных материалов.

Ключевые слова: смолы, азотсодержащие основания, термические превращения, содержание, структурно-групповой и индивидуальный состав

введение

Предлагаемая работа продолжает исследования [1] характеристик азотсодержащих оснований (AO) смолистых компонентов тяжелой нефти Усинского месторождения и посвящена изучению направлений их трансформации в процессе термического воздействия. Актуальность ее определяется растущими объемами смолистых и высокосмолистых нефтей, поступающих на нефтеперерабатывающие заводы. Поиск оптимальных путей их использования в значительной степени зависит от структуры часть нефтяных гетероатомных соединений, в частности АО. Их присутствие в углеводородном сырье значительно осложняет протекание процессов его каталитической переработки, ухудшает качество и эксплуатационные характеристики горюче-смазочных материалов [2]. В предыдущем сообщении [1] нами показано, что смолы усинской нефти концентрируют более 60 % основного азота, определяемого в нефти. Выявлены особенности распределения и структурно-группового состава высоко- и низкомолекулярных АО смолистых компонентов.

смолистых веществ, содержащих основную

Цель работы – сравнительная характеристика состава АО смол тяжелой усинской нефти до и после термического воздействия.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объекты исследования - АО исходных смол тяжелой усинской нефти с содержанием общего ($N_{o f u u}$) и основного ($N_{o c u}$) азота 1.09 и 0.55 мас. % соответственно, а также АО смол после их термической обработки при 450 °С в течение 30 мин в инертной среде с содержанием $\rm N_{\rm oбщ}$ и $\rm N_{\rm och}$ 0.62 и 0. 23 мас. % соответственно. Температура и время термолиза смол установлены по данным термического преобразования концентрата высокомолекулярных оснований, составляющих основную массу нефтяных АО [1, 3]. Термические превращения низкомолекулярных оснований завершаются при температуре 350 °С. Следовательно, АО в термолизованных смолах являются продуктами деструкции высокомолекулярных соединений.

Концентрирование АО проводили из гексановых растворов исходных и термопреобразованных смол в соответствии со схемой, включающей стадии осаждения высокомолекулярных оснований газообразным HCl (К-1), доосаждения растворимых в углеводородной среде хлористоводородных солей АО с помощью диэтиламина (К-2) и экстракции низкомолекулярных АО уксуснокислым раствором серной кислоты (К-3). Соединения К-1 и К-2 разделяли методом горячей экстракции гексаном на растворимые (К-1^{ГР} и К-2^{ГР}) и нерастворимые (К-1^{ГНР} и К-2^{ГНР}) в нем компоненты [4, 5].

Состав образцов исследован с привлечением оборудования Центра коллективного пользования Томского научного центра СО РАН. Комплекс аналитических методов включал: 1) определение элементного состава с использованием CHNS-анализатора Vario EL Cube; 2) исследование функционального состава азотистых соединений методом неводного потенциометрического титрования [6]; 3) измерение молекулярных масс криоскопией в бензоле [7]; 4) ЯМР Фурье-спектроскопию; 5) структурно-групповой анализ (СГА) [8]; 6) газовую хромато-масс-спектрометрию (ГХ-МС).

Спектры ЯМР ¹Н записывали на спектрометре ЯМР Фурье AVANCE AV 300 (Bruker, Германия), рабочая мощность 300 МГц, растворитель – CDCl₃. В качестве стандарта использовали тетраметилсилан. По спектрам ЯМР ¹Н проводили расчет относительного содержания протонов в различных структурных фрагментах, исходя из площадей пиков в соответствующих областях спектра: H_{ar} (доля протонов, содержащихся в ароматических структурах) равна 6.6–8.5 м.д.; H_{α} (доля протонов у атомов углерода в α -положении к ароматическим ядрам) – 2.2–4.0 м.д.; H_{β} и H_{γ} (доля протонов в метиленовых и концевых метильных группах алифатических фрагментов молекул соответственно) – 1.1–2.1 и 0.3–1.1 м.д. соответственно.

Метод СГА использовали для описания молекулярной структуры соединений К-1^{ГНР}, $K-1^{\Gamma P}$, $K-2^{\Gamma H P}$, $K-2^{\Gamma P}$ и K-3. На основе данных о молекулярных массах (ММ), элементном составе и распределении протонов между различными фрагментами их молекул рассчитывали средние структурные характеристики молекул исследуемых веществ [8]. В ходе расчетов определены следующие параметры: С_а, С_н, С_п – число ароматических, нафтеновых и парафиновых атомов углерода в средних молекулах соответственно; $f_{\rm a}, f_{\rm \scriptscriptstyle H}, f_{\rm \scriptscriptstyle II}$ – доли атомов углерода в ароматических, нафтеновых и парафиновых структурных фрагментах соответственно, %; $m_{\rm a}$ – число структурных блоков в средней молекуле; K_o^* , K_a^* , K_{H}^* – общее число, число ароматических и нафтеновых циклов в структурном блоке соответственно; С* - общее число атомов углерода в структурном блоке; С _ _ число алкильных углеродных атомов в структурном блоке; C^*_γ – число атомов углерода в не связанных с ароматическими ядрами терминальных метиль-

Индивидуальный состав АО К-1^{ГР}, К-2^{ГР} и К-3 исследовали методом ГХ-МС на приборе DFS фирмы Thermo Scientific (энергия ионизирующих электронов 70 эВ, температура ионизационной камеры 270 °С, температуура интерфейса 270 °С, температура инжектора 250 °С). Для хроматографического разделения использовали колонку DB-5MS длиной 30 м, диаметром 0.25 мм, с толщиной фазы DB-5MS, равной 0.25 мкм. Газ-носитель – гелий, при

ных группах.

ТАБЛИЦА :	1
-----------	---

Выделение азотсодержащих оснований из исходных и термолизованных смол

Образцы	Смолы исходные					Смолы термолизованные					
	Выход, мас. %	ММ, а.е.м.	Содержание		Выход,	MM,	Содержание, %				
			N _{общ} ,	N _{och} ,		мас. %	а.е.м.	N _{общ} ,	N _{och} ,		
			мас. %	мас. %	отн. %*			мас. %	мас. %	отн. %*	
К-1	37.6	844	1.36	1.17	79.9	9.5	597	1.41	1.25	50.4	
К-2	2.2	519	1.36	0.90	3.6	0.9	412	1.39	0.92	3.4	
K-3	1.0	392	1.42	1.31	2.4	0.6	310	1.40	1.28	3.3	

* Относительно N_{осн} смол.

постоянном расходе 0.8 мл/мин. Программа термостата: начальная температура 80 °C (3 мин), подъем до 300 °C (4 °C/мин), выдержка при конечной температуре 30 мин. Сканирование масс-спектров осуществлялось каждую секунду в диапазоне масс до 500 а.е.м. Реконструкцию молекулярно-массового разделения различных типов соединений проводили с использованием характеристических ионов на основе хроматограмм по полному ионному току с помощью программы Xcalibur. Индивидуальные соединения идентифицировали, привлекая литературные данные [9–11] и компьютерную библиотеку масс-спектров NIST 02.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

При термической обработке в выбранных условиях смолы генерируют газообразные (19%), твердые, коксоподобные (43%) и растворимые в бензоле (38%) продукты, состоящие из "вторичных" асфальтенов (17 отн. %) и мальтенов (83 отн. %) (далее – термолизованные смолы).

Сравнительный анализ показал, что концентрации $N_{\rm ofill}$ и $N_{\rm occh}$ в термолизованных

смолах, в отличие от исходных, уменьшаются в 1.8 и 2.4 раза соответственно. Суммарное содержание выделяемых концентратов К-1, К-2, К-3 и доля связанного с ними основного азота смол также снижаются (табл. 1). Совокупность этих данных подтверждает высказанные ранее предположения [12, 13] о том, что АО участвуют в формировании коксоподобных продуктов, образующихся в процессе термолиза нефтяного сырья.

Большая часть оснований, выделенных из обоих типов смол, представлена высокомолекулярными соединениями К-1 (см. табл. 1), однако относительное содержание связанного с ними N_{och} в термолизованных смолах ниже, чем в исходных смолах. Концентраты К-2 и К-3 исходных и термолизованных смол по относительному содержанию N_{och} в структуре их оснований практически не различаются.

Продукты, полученные из термолизованных смол, характеризуются меньшими значениями средних MM (см. табл. 1).

Согласно результатам фракционирования, АО концентратов К-1 и К-2 исходных и термолизованных смол различаются по содержанию соединений, растворимых и нераствори-

ТАБЛИЦА 2

Фракционирование азотсодержащих оснований исходных и термолизованных смол

Образцы	Смолы исходные					Смолы термолизованные					
	Выход, мас. %	ММ, а.е.м.	Содержание		Выход,	MM,	Содержание				
			N _{общ} , мас. %	N _{och} ,		мас. %	а.е.м.	N _{общ} ,	N _{och} ,		
				мас. %	отн. %*			мас. %	мас. %	отн. %*	
$K-1^{\Gamma HP}$	19.5	1566	1.25	1.03	36.5	4.5	748	1.15	0.95	18.4	
$K-1^{\Gamma P}$	18.1	592	1.48	1.32	43.4	5.0	458	1.70	1.52	32.0	
$ ext{K-2}^{ ext{FHP}}$	0.9	647	1.91	0.56	1.0	0.3	497	2.05	0.80	1.0	
$K-2^{\Gamma P}$	1.3	346	1.21	1.12	2.6	0.6	313	1.07	0.99	2.4	

* Относительно N_{осн} смол.

ТАБЛИЦА 3

ТАБЛИЦА 4

Расчетные параметры средних молекул азотсодержащих оснований исходных смол

Параметры	Образцы										
	$\text{K-1}^{\Gamma \mathrm{HP}}$	$\text{K-1}^{\Gamma P}$	$\text{K-2}^{\Gamma \text{HP}}$	$\mathrm{K-2}^{\Gamma\mathrm{P}}$	К-3						
Число углеродных атомов разного типа в средней молекуле											
C _a	39.4	12.9	12.0	12.0	5.6						
C _H	60.6	14.5	24.7	24.7	7.2						
С _п	22.7	11.8	6.0	6.0	13.3						
	Распределение атомов С, %										
$f_{\rm a}$	32.1	32.9	28.1	20.4	21.5						
$f_{\rm {\scriptscriptstyle H}}$	49.4	37.0	57.8	69.5	27.6						
f_{π}	18.5	30.1	14.1	10.1	50.9						
Пара	Параметры средних структурных блоков										
$m_{\rm a}$	3.0	1.5	1.5	1.0	1.1						
K_{o}^{*}	8.2	4.4	5.9	4.9	2.7						
\mathbf{K}^{*}_{a}	3.2	2.1	2.0	1.0	1.2						
К _н	5.0	2.3	3.9	3.9	1.5						
C*	40.6	25.6	28.2	23.8	24.4						
C_{π}^{*}	7.5	7.7	4.0	2.3	12.5						
C_{γ}^{\ast}	2.6	2.2	2.0	2.3	3.0						

Расчетные	параметры	средних	молекул	азотсодержащих
оснований	термолизов	анных сі	мол	

Параметры	Образцы							
	$\mathrm{K-1}^{\mathrm{\Gamma HP}}$	$\text{K-1}^{\Gamma P}$	$\text{K-2}^{\Gamma \text{HP}}$	$\text{K-}2^{\Gamma P}$	К-3			
Число углеро;	цных атом	ов разно	ого типа в с	редней :	молекуле			
C _a	25.6	12.8	10.9	6.0	5.3			
C _H	17.3	12.4	17.9	10.4	14.1			
C _π	9.1	6.3	3.0	4.6	1.1			
	Распред	целение	атомов С,	%				
$f_{\rm a}$	49.3	40.6	33.8	28.5	25.9			
$f_{_{\rm H}}$	33.2	39.4	61.8	49.8	68.7			
f_{π}	17.5	20.0	4.4	21.7	5.4			
Пара	аметры ср	редних с	труктурни	ых блок	ов			
$m_{ m a}$	2.1	1.5	1.4	1.1	1.1			
K_{o}^{*}	4.8	4.0	4.9	3.5	7.3			
K [*] _a	2.8	2.0	1.9	1.2	1.1			
К _н	2.0	2.0	3.0	2.3	6.2			
C*	24.5	21.3	23.0	19.7	19.6			
C_{π}^{*}	4.3	4.3	2.1	4.3	1.1			
C_{γ}^{*}	1.3	1.5	1.0	1.4	1.1			

мых в горячем гексане (табл. 2). Процесс термодеструкции сопровождается увеличением доли гексанорастворимых продуктов. Так, в случае термолизованных смол относительное содержание К-1 $^{\Gamma\mathrm{P}}$ и К-2 $^{\Gamma\mathrm{P}}$ составляет 52 и 63 отн. %, в случае исходных - 48 и 58 отн. % соответственно. Для обоих образцов смол ММ соединений К-1^{ГР} и К-2^{ГР} существенно ниже MM соединений К-1^{ГНР} и К-2^{ГНР}. В то же время ММ продуктов, полученных из термолизованных смол, меньше по сравнению с ММ одноименных продуктов из исходных смол. Выявленные различия могут быть связаны с протеканием при термодеструкции как реакций деалкилирования, так и раскрытия нафтеновых циклов, приводящих к образованию относительно низкомолекулярных соединений [12]. Участвовать в этих реакциях могут соединения К-1 и К-2 исходных смол.

Сопоставление данных СГА выявило сходство и различия в структурах АО исходных и термолизованных смол. Из приведенных в табл. 3, 4 расчетных параметров следует, что средние молекулы продуктов фракционирования высокомолекулярных соединений К-1 и К-2 (К-1^{ГНР}, К-1^{ГР}, К-2^{ГНР}, К-2^{ГР}) и низкомолекулярных К-3 в обоих случаях образуют системы, состоящие из ароматических (C_a), нафтеновых ($C_{\rm H}$) и парафиновых ($C_{\rm n}$) структурных фрагментов.

Во всех образцах большая часть углеродных атомов (50.7-79.6 %) приходится на насыщенные фрагменты ($f_{\rm \scriptscriptstyle H} + f_{\rm \scriptscriptstyle II}$), доля углерода ароматического характера (f_a) составляет 20.4-49.3 %. При этом средние молекулы АО термолизованных смол более ароматичны за счет снижения доли нафтеновых ($f_{\rm H}$) и парафиновых (f_п) углеродных атомов. Наиболее ярко изменения в структуре АО проявляются для средних молекул соединений К-1^{ГНР}. В процессе термолиза в их составе уменьшаются количество (с 3.0 до 2.1) и размеры средних структурных блоков (m_{2}) . Уменьшение их общих размеров, характеризующихся параметрами (С*, К₀*), происходит, главным образом, за счет снижения числа насыщенных циклов ($K_{\rm H}^*$) с 5.0 до 2.0 и углеродных атомов в алкильном обрамлении ($C_{\rm n}^*$) с 7.5 до 4.3. Среди последних вдвое (с 2.6 до 1.3) уменьшается число атомов углерода в метильных группах, удаленных от ароматического ядра (C_{γ}^*), что свидетельствует об уменьшении числа и/или степени разветвленности заместителей. Аналогичные изменения в составе структурных блоков наблюдаются для средних молекул всего ряда исследованных АО.

Качественный анализ продуктов К-1^{ГР}, К-2^{ГР} и К-3 методом ГХ-МС показал, что АО исходных и термолизованных смол имеют схожий групповой состав. В обоих типах смол обнаружены алкилзамещенные хинолины, бензо-, дибензохинолины и азапирены, максимум в распределении которых приходится на бензохинолины (табл. 5). Азотсодержащие основания термолизованных смол отличаются повышенным содержанием алкилхинолинов. Если в исходных смолах их содержание минимально, то в термолизованном образце оно сопоставимо (42.0 отн. %) с содержанием алкилпроизводных бензохинолина (53.8 отн. %).

Такое увеличение доли бициклических азааренов может быть связано со строением молекул оснований К-1^{ГР}, К-2^{ГНР} исходных смол. По данным СГА, в структуру их средних блоков входят фрагменты, содержащие бициклоароматическое ядро ($K_a^* = 2.0-2.1$) и два-четыре нафтеновых цикла ($K_{\rm H}^* = 2.3-3.9$) (см. табл. 3). Алкилхинолины, вероятнее всего, яв-

Рис. 1. Распределение алкилбензохинолинов в образцах К-3 исходных и термолизованных смол.

ляются основными продуктами термодеструкции таких оснований.

Сопоставление данных ГХ-МС по строению доминирующих соединений позволило установить, что в составе бензохинолинов термолизованных смол выше доля структур с более короткими алкильными заместителями. В качестве примера на рис. 1 приведено распределение алкилбензохинолинов в К-3 исходных и термолизованных смол.

ЗАКЛЮЧЕНИЕ

На основании сравнительного анализа распределения и состава азотсодержащих оснований в исходных и термообработанных смолистых компонентах тяжелой нефти Усинского месторождения установлено, что в исходных и термолизованных смолах они преимущественно представлены высокомолекулярными соединениями, однако в термолизованных смолах их доля существенно ниже. Термопреобразованные основания по сравнению с исходными имеют меньшие средние молекулярные массы. Их средние молекулы характеризуются повышенной ароматичностью за счет снижения доли нафтеновых и алкильных фрагментов. Среди оснований исходных и термолизованных смол присутствуют алкилпроизводные хинолина, бензохинолина, дибензохинолина и азапирена с преобладанием алкилбензохинолинов. В составе азааренов термолизованных смол повышена доля бициклических соединений. Для образующихся низкомолекулярных азотсодержащих оснований характерна более высокая доля структур с меньшим числом атомов углерода в алкильных заместителях. При термической переработке тяжелого нефтяного сырья идентифицированные соединения входят в состав дистиллятных фракций, что следует учитывать при выборе технических решений получения на их основе высококачественных нефтепродуктов.

СПИСОК ЛИТЕРАТУРЫ

- 1 Герасимова Н. Н., Классен А. С., Мин Р. С., Сагаченко Т. А. // Химия уст. разв. 2016. Т. 24, № 6. С. 739-744.
- 2 Pashigreva A. V., Klimov O. V., Bukhtiyarova G. A., Kochubey D. I., Prosvirin I. P., Chesalov Yu. A., Zaikovskii

V. I., Noskov A. S. // Catal. Today. 2010. Vol. 150, No. 3–4. P. 164–170.

- 3 Камьянов В. Ф., Аксенов В. С., Титов В. И. Гетероатомные компоненты нефтей. Новосибирск: Наука, 1983. 238 с.
- 4 Химический состав нефтей Западной Сибири / под ред. Г. Ф. Большакова. Новосибирск : Наука, 1988. 288 с.
- 5 Чешкова Т. В., Герасимова Н. Н., Сагаченко Т. А., Мин Р. С. // Изв. Том. политехн. ун-та. Инжиниринг георесурсов. 2017. Т. 328, № 8. С. 6–15.
- 6 Безингер Н. Н., Гальперн Г. Д. // В сб.: Методы анализа органических соединений нефти, их смесей и производных / Отв. ред. Г. Д. Гальперн. М.: Изд-во АН СССР, 1960. С. 141–169.
- 7 Современные методы исследования нефтей: справ.метод. пособие / под ред. А. И. Богомолова, М. Б. Темянко, Л. И. Хотынцевой. Л.: Недра, 1984. 431 с.
- Golovko A. K., Kam'yanov V. F., Ogorodnikov V. D. // Rus. Geology and Geophysics. 2012. Vol. 53, Issue 12. P. 1374–1381.
 Li M., Larter S. R. // Org. Geochem. 2001. Vol. 32. P. 1025–1030.
- 10 Bakel A. J., Philp R. P. // Org. Geochem. 1990. Vol. 16, No. 1-3. P. 353-367.
- 11 Schmitter J. M., Arpino P. J. // Mass-Spectrometry Rev. 1985. No. 4. P. 87–121.
- 12 Спейт Дж. // Нефтехимия. 1989. Т. 29, № 6. С. 723–730.
- 13 Антипенко В. Р. Термические превращения высокосернистого природного асфальтита: Геохимические и технологические аспекты. Новосибирск: Наука, 2013. 184 с.