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В работе исследуется технология расчета разностных задач с внутренними граничными условиями
баланса потоков, построенными с помощью односторонних многоточечных разностных аналогов первых
производных произвольного порядка точности. Предлагаемая технология одинаково подходит для лю-
бых типов решаемых дифференциальных уравнений и допускает однотипную реализацию при любых
порядках точности. Она, в отличие от аппроксимаций, опирающихся на продолженную систему уравне-
ний, не приводит к осложнениям при расщеплении многомерных задач на одномерные. Сформулированы
достаточные условия разрешимости и устойчивости реализации алгоритмов методом прогонки для гра-
ничных условий произвольного порядка точности. Доказательство основано на приведении многоточеч-
ных граничных условий к виду, не нарушающему трехдиагональную структуру матриц, и установлении
условий диагонального преобладания в преобразованных строках матрицы, соответствующих внешним
и внутренним граничным условиям.
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In this paper we study the technology of calculating difference problems with internal boundary conditions
of flow balance constructed by means of one-sided multipoint difference analogs of first derivatives of arbitrary
order of accuracy. The proposed technology is equally suitable for any type of differential equations to be
solved and admits a uniform realization at any order of accuracy. It, unlike approximations based on the
continued system of equations, does not lead to complications in splitting multidimensional problems into
one-dimensional ones. Sufficient conditions of solvability and stability of the realization of algorithms by the
run method for boundary conditions of arbitrary order of accuracy are formulated. The proof is based on
the reduction of multipoint boundary conditions to a form that does not violate the tridiagonal structure
of matrices, and the establishment of the conditions of diagonal dominance in the transformed matrix rows
corresponding to the external and internal boundary conditions.
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1. Аппроксимация баланса потоков
на границах раздела сред

Существует несколько способов аппроксимации условий баланса потоков на грани-
цах раздела сред. Первый заключается в аппроксимации закона сохранения в балансной
ячейке m-мерного пространства, составленной из 1/2m частей смежных ячеек сетки,
примыкающих к данному узлу сетки. При этом разностные законы сохранения форму-
лируются единообразно для внутренних однородных балансных ячеек, ячеек на границах
раздела сред и внешних границах, что порождает так называемую схему сквозного счета.
Порядок точности таких схем обычно не выше второго, за редким исключением [1].

В случае применения компактных схем повысить порядок точности граничного усло-
вия можно путем компенсации главного члена разложения погрешности подходящим
разностным выражением, полученным с привлечением продолженной системы. Иллю-
страция сложности этой процедуры приведена в [2]. С повышением порядка точности
такие граничные условия становятся все более громоздкими, особенно в многомерном
случае, а также возникают значительные сложности при расщеплении задачи на одно-
мерные. Кроме того, алгоритм существенно зависит от решаемого уравнения, будучи
связанным при его формулировании с использованием продолженной системы.

Этих недостатков лишены граничные условия, использующие многоточечные одно-
сторонние аналоги производных заданного порядка аппроксимации [3,4]. Такие условия
не зависят от вида решаемого уравнения и не приводят к проблемам при расщеплении
задачи на одномерные. Структура их одинаково одномерна при любой размерности за-
дачи и любых порядках аппроксимации. Такая технология успешно применялась при
исследовании тепловых, колебательных и других процессов в кусочно-однородных обла-
стях [5, 6], а также при исследовании течений жидкости в каналах ступенчатой геомет-
рии [7]. Построение универсального алгоритма численного решения таких задач основано
на превращении составной области в логически простую область клетчатой структуры [8]
путем продолжения всех реальных участков границ до пересечения с габаритами обла-
сти и последующей постановкой на появляющихся в результате фиктивных границах
“мягких” внутренних граничных условий гладкости в виде равенства потоков слева и
справа.

В “длинных” строках матрицы, соответствующих многоточечным граничным услови-
ям, диагональное преобладание очевидным образом нарушается. В случае симметричных
операторов и отсутствия границ раздела сред теоретическое обоснование применимости
многоточечных аппроксимаций потоков во внешних граничных условиях проведено в
работе [2]. На практике при решении самых разнообразных краевых задач в кусочно-
однородных областях (см. [3–8]) метод показал надежность и реальную сходимость схем
с теоретически ожидаемым порядком, однако до настоящего времени не было теоретиче-
ского обоснования разрешимости и устойчивости реализации алгоритмов с такого рода
матрицами. Решению этой проблемы и посвящена данная работа. Проблема реализации
алгоритма и проблема теоретического обоснования метода решаются путем локального
применения к “длинным” строкам матрицы, соответствующим граничным условиям, ме-
тода исключения Гаусса для преобразования системы к эквивалентной трехдиагональной
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и последующего вывода достаточных условий разрешимости и устойчивости счета ме-
тодом прогонки, исходя из требования диагонального преобладания в преобразованных
строках матрицы.

2. Многомерные задачи в неоднородных областях

2.1. Области клетчатой структуры

Рассмотрим произвольную область, составленную из конечного числа прямоуголь-
ников, одинаково ориентированных вдоль осей декартовой системы координат. Будем
предполагать, что область кусочно-однородная, составленная из нескольких однород-
ных подобластей той же геометрии, что и вся область. Способ подготовки области к
виду, удобному для применения разностных методов, заключается в том, что все участ-
ки внешних границ и границ раздела сред продолжаются до пересечения с габаритами
области. В результате получается область клетчатой структуры, прямоугольные клетки
которой либо однородны, либо пусты. Затем вся область покрывается прямоугольной
кусочно-равномерной сеткой (равномерной в пределах каждой клетки), согласованной с
границами клеток.

Пусть во внутренних узлах непустых клеток решается некоторое разностное уравне-
ние

A1A2
un+1 − un

τ
= Ωun − φn (1)

с расщепленным оператором, представляющим собой произведение трехточечных одно-
мерных разностных операторов A1 и A2, действующих по своим координатным направ-
лениям. Каждый из них можно представить в виде (индекс координатного направления
опущен)

A = E + δ1vτ∆− δ2λτΛ,

где δ1, δ2 — веса неявности в схеме, соответствующие конвективным и диссипативным
членам, v — значение компоненты скорости, λ > 0 — коэффициент диссипации (тепло-
проводности, вязкости, диффузии), ∆ и Λ — простейшие разностные аналоги операторов
однократного и двойного дифференцирования, τ — шаг по времени (или итерационный
параметр, если (1) — итерационный процесс решения стационарной задачи). Обычно ∆ —
либо односторонняя разделенная разность, согласованная со знаком v (разность “назад”
при v > 0), либо центральная разность.

При обращении каждого трехточечного оператора в схеме (1) по отдельной коорди-
натной линии одномерное разностное уравнение может быть записано в индексном виде

−aui−1 + bui − cui+1 = Fi

с коэффициентами

a = D +
θ + 1

2
K, b = 1 + θK + 2D, c = D +

θ − 1

2
K, (2)

где K и D представляют собой произведения безразмерных параметров конвекции и дис-
сипации, к которым для сокращения записи удобно добавить в качестве сомножителей
весовые коэффициенты схемы:
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K = δ1
vτ

h
, D = δ2

λτ

h2
.

Параметр θ характеризует тип схемы: в случае схемы с центральной разностью θ = 0, а
в противопоточной схеме параметр θ = ±1 в зависимости от знака v. В противопоточной
схеме диагональное преобладание выполняется безусловно, а в центрально-разностной —
при некотором ограничении сверху на пространственный шаг h, так как при h → 0
величина K является малой в сравнении с D. В дальнейшем будем предполагать, что
a > 0, c > 0 постоянны внутри области однородности, а b = 1 + c+ a. В частном случае
отсутствия конвективных членов K = 0, и тогда оператор A оказывается симметричным
(a = c).

Если в клетчатой области решается, например, уравнение теплопроводности, то на
внутренних границах раздела сред следует задать условия непрерывности температуры
и потока (условия четвертого рода), а на фиктивных внутренних границах, полученных
в результате продолжения истинных границ раздела сред до габаритов области, следу-
ет требовать выполнения дифференциального уравнения. Однако такая неоднородность
алгоритма препятствовала бы логически простой его реализации.

Представляется целесообразным рассматривать фиктивные границы раздела сред
как равноправные реальным, аппроксимируя на них не решаемое дифференциальное
уравнение, а условия непрерывности потоков. Но так как фиктивный участок границы
разделяет области с одним и тем же материалом, то условия баланса потоков превра-
щаются в условия равенства левых и правых производных, т. е. в условия гладкости.
Их можно считать “мягкими” граничными условиями. Совершенно ясно, что отказ от
аппроксимации уравнения теплопроводности на фиктивных границах в пользу аппрок-
симации на них условий непрерывности потоков вполне корректен, так как фиктивные
границы допустимо также трактовать как реальные границы между подобластями, за-
нятыми материалами с идентичными теплофизическими характеристиками, и тогда на
них следует ставить именно условия четвертого рода.

Точно так же можно поступить и в случае решения, например, уравнений Навье–
Стокса в ступенчатом канале, преобразованном в область клетчатой структуры, аппрок-
симируя на фиктивных границах не уравнения системы, а условия непрерывности потока
по нормали к фиктивной границе. Ясно, что коэффициент вязкости λ = 1/Re одинаков
по разные стороны фиктивной границы. Поэтому и здесь, как в тепловой задаче, полу-
чаются “мягкие” граничные условия, выражающие гладкость решения.

Возможно, для самых простых ступенчатых каналов описанный выше подход может
показаться излишеством, однако для более сложных областей приведение их к клетчатой
структуре с постановкой мягких граничных условий на фиктивных границах имеет важ-
ное значение для построения универсального алгоритма с простой логикой. Таким же об-
разом формулируются краевые задачи для уравнения колебаний в кусочно-однородных
средах [9] с различными значениями модуля Юнга или для уравнений оптики в состав-
ных областях с разными коэффициентами преломления. Аналогично могут быть сфор-
мулированы задачи в трехмерных областях, а также в областях, представляющих собой
объединения “криволинейных” прямоугольников в криволинейных ортогональных коор-
динатах.

2.2. Граничные условия в схеме дробных шагов

Покажем, что если на целых шагах в разностной задаче используются одномерные
граничные условия, то и для схемы в дробных шагах они также одномерны. Пусть на
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границах клеток поставлены разностные аналоги условий баланса потока по нормали к
границе

λ+Lsu
n − λ−L−su

n = gn, (3)

несколько более общие, чем условия непрерывности потока, а именно, при gn ≡ 0 поток
непрерывен, в противном случае в зависимости от знака gn имеет место поверхностный
источник или сток тепла. Здесь Ls, L−s — одномерные односторонние многоточечные
аппроксимации первой производной. Например, в направлении координаты x они имеют
вид

Lsu(x) =
1

h+

s∑
j=0

αju(x+ jh+), L−su(x) =
1

h−

s∑
j=0

(−αj)u(x− jh−),

где h+, h− — шаги равномерных сеток в соседних клетках, примыкающих к данному
участку границы. Если при этом коэффициенты операторов задать в виде

αj =
(−1)j+1

j
Cj
s (j = 1, . . . , s), α0 = −

s∑
j=1

αj , (4)

то погрешность аппроксимации условия баланса потока будет O(hs), максимально воз-
можного порядка на данном шаблоне из s+ 1 узлов.

Если на внешних границах или на их части поставлены условия второго или третьего
рода, то условимся производные в них также аппроксимировать с порядком s с исполь-
зованием представленных выше операторов. Тогда при любом порядке аппроксимации
достигается универсальность в соотношениях на границах в двух аспектах: в смысле оди-
наковой для них одномерной структуры с явно заданными коэффициентами и в смысле
их полной независимости от решаемого уравнения.

Для реализации схемы в дробных шагах

A1u
n+1/2 = Ωun − φn,

A2w
n+1 = un+1/2, wn+1 =

un+1 − un

τ
,

на вертикальных участках границ клеток необходимо сформулировать граничные усло-
вия для промежуточной величины un+1/2. С этой целью подействуем на обе части второго
уравнения расщепленной системы оператором l = λsL+ − λ−L−s. В результате получим

lun+1/2 = A2
lun+1 − lun

τ
= A2

gn+1 − gn

τ
.

Следовательно, на границах клеток для решения на дробном шаге следует ставить од-
номерные условия вида (3):

λ+Lsu
n+1/2 − λ−L−su

n+1/2 = A2
gn+1 − gn

τ
.

На вертикальных участках внешних границ граничные условия для промежуточной
дробной величины un+1/2 определяются аналогично. Если, например, на левой внешней
границе поставлено условие третьего рода λux − µu = ξ(y, t), которое на целых шагах
аппроксимируется разностным условием вида λLsu

n − µun = ξn, то на дробном шаге
получится одномерное граничное условие того же вида:

λLsu
n+1/2 − µun+1/2 = A2

ξn+1 − ξn

τ
.
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Так как прогонки по границам клеток не делаются, то после второго шага вычислений ре-
шение определяется всюду в области, кроме всех вертикальных участков границ клеток.
После этого решение на вертикальных границах клеток (кроме угловых узлов) опреде-
ляется явно из многоточечного граничного условия. Завершает процедуру вычислений
на данном временном (или итерационном) слое определение решения во всех угловых
узлах клеток с помощью специальных формул замыкания [8, 9].

Заметим, что при построении граничных условий с привлечением продолженной си-
стемы операторы L±s были бы многомерными и в результате их расщепление, постановка
на дробном шаге и реализация были бы проблематичными.

Таким образом, при использовании в граничных условиях многоточечных одномер-
ных аппроксимаций производных многомерная задача расщепляется на элементарные
одномерные системы линейных алгебраических уравнений специального типа. Матрицы
этих систем имеют почти трехдиагональную структуру: в трехдиагональной структу-
ре имеются отдельные изолированные “длинные” строки, соответствующие внутренним
и внешним граничным условиям. Ниже в общем виде исследуется одномерная система
такого типа на предмет ее разрешимости и устойчивости расчета методом прогонки.

3. Критерии разрешимости одномерной системы

Пусть x0, x1, . . . , xr — возрастающая последовательность значений переменной x,
представляющих собой координаты границ слоев xj−1 < x < xj (j = 1, . . . , r), в каждом
из которых введена равномерная сетка со своим шагом. Во внутренних узлах каждого
слоя решение удовлетворяет трехточечному соотношению

−aui−1 + bui − cui+1 = Fi, b = 1 + a+ c, a > 0, c > 0, (5)

с постоянными в пределах слоя (но различными в разных слоях) коэффициентами a, b, c.
На границах раздела сред ставятся “длинные” (2s+ 1)-точечные граничные условия

вида (3). Например, при s = 4 фрагмент матрицы системы в окрестности сопряжения
слоев выглядит так

−a− b− −c− 0 0 0 0 0 0
0 −a− b− −c− 0 0 0 0 0
0 0 −a− b− −c− 0 0 0 0
γ−4 γ−3 γ−2 γ−1 γ−0 + γ+0 γ+1 γ+2 γ+3 γ+4
0 0 0 0 −a+ b+ −c+ 0 0
0 0 0 0 0 −a+ b+ −c+ 0
0 0 0 0 0 0 −a+ b+ −c+

.

Здесь постоянные коэффициенты a, b, c трехточечных строк, постоянные слева и справа
от границы раздела, снабжены индексами “−” и “+” соответственно, а

γ−j =
λ−
h−

αj , γ+j =
λ+
h+

αj , j = 0, 1, . . . , s = 4,

где коэффициенты αj определены формулой (4). Естественно предполагать, что в каж-
дом слое шаг h ограничен сверху так, что произведение sh не превосходит ширины слоя,
иначе шаблон аппроксимации первой производной выходил бы за пределы одного слоя.
При этом в каждом фрагменте матрицы, изображенном выше, граничное условие ока-
зывается изолированным от внутренних условий на соседних границах и может быть
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независимо преобразовано в трехточечное с помощью локальной гауссовой процедуры,
т. е. вычитанием подходящих линейных комбинаций s строк, выше и ниже данной. В
результате длинная строка фрагмента преобразуется к трехточечной

[ . . . 0 β−1 β−0 + β+0 β+1 0 . . . ] .

Так как во внутренних узлах сетки каждого слоя диагональное преобладание предпола-
галось, то для разрешимости системы в целом достаточно потребовать выполнения хотя
бы нестрогого диагонального преобладания также и в преобразованных строках:∣∣β̂−0 + β̂+0

∣∣ ≥ ∣∣β̂−1 ∣∣+
∣∣β̂+1 ∣∣.

Для устранения неопределенности условимся считать, что в сумме β−0 + β+0 результаты
осуществления гауссовой процедуры со строками слева от границы раздела отражаются
только на левом слагаемом β−0 , а правое слагаемое β

+
0 является результатом манипуляций

с трехточечными уравнениями справа от границы.
Предполагая совпадение знаков β−0 и β+0 , заменим данное условие формально более

сильным требованием ∣∣β−0 ∣∣ ≥ ∣∣β−1 ∣∣, ∣∣β+0 ∣∣ ≥ ∣∣β+1 ∣∣. (6)

На внешних границах в случае задания там условий Дирихле дополнительных огра-
ничений не возникает, а условия второго или третьего рода

µ0u0 −
λ1
h1

s∑
j=0

αjuj = φ0, µruN −
λr
hr

s∑
j=0

αjuN−j = φr

приводятся к двухточечным соотношениям аналогично. Заметим, что в многоточеч-
ной аппроксимации производной коэффициент α0 отрицателен. Действительно, из фор-
мул (4) имеем

α0 = −
s∑

k=1

αk =
s∑

k=1

(−1)k

k
Ck
s =

∫ 1

0

(1− ξ)s − 1

ξ
dξ

и утверждение следует из отрицательности функции под знаком интеграла. Ввиду от-
рицательности α0 наименее благоприятный для диагонального преобладания случай в
строках внешних граничных условий реализуется при µ0 = µr = 0, т. е. в случае условий
Неймана, при котором критерием диагонального преобладания на внешней границе яв-
ляется одно из неравенств (6): второе для левой границы и первое для правой. Тогда для
граничных соотношений третьего рода диагональное преобладание в преобразованных
строках тем более выполняется.

Итак, для каждой реальной или фиктивной границы раздела двух сред имеем два
неравенства (6), а для внешних границ — по одному из них. Неудобство системы двух
неравенств (6) заключается в том, что они относятся к разным слоям, где коэффици-
енты разностного уравнения (5) в общем случае различны. Исправляет положение иная
группировка неравенств (6) — не по принадлежности к границе раздела, а по принад-
лежности к данному слою. Иначе говоря, представляется целесообразным объединить в
пару второе неравенство (6) для данной границы и первое для следующей. В этом случае
оба неравенства будут относиться к одной и той же среде, в которой разностное уравне-
ние во внутренних узлах имеет постоянные коэффициенты a, b, c. В этом случае можно
обозначать их без индексов. При такой группировке и для крайних слоев получается
ровно такая же система двух неравенств: одно из внешнего граничного условия, другое
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из условия Неймана на ближайшей границе раздела сред. Далее, нетрудно заметить,
что при независимом преобразовании разностных потоков слева и справа общие посто-
янные множители λ±/h± можно отбросить, поскольку на них можно сократить заранее
соответствующие половины длинных строк матрицы системы. С учетом сказанного вы-
ше становится ясно, что достаточно привести к трехдиагональной форме фрагмент (он
изображен для частного случая s = 4) вида

α0 α1 α2 α3 α4 ... 0 0 0 0 0
−a b −c 0 0 · · · 0 0 0 0 0
0 −a b −c 0 · · · 0 0 0 0 0
0 0 −a b −c · · · 0 0 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 · · · −a b −c 0 0
0 0 0 0 0 · · · 0 −a b −c 0
0 0 0 0 0 · · · 0 0 −a b −c
0 0 0 0 0 · · · α4 α3 α2 α1 α0

для фиксированного слоя, где коэффициенты верхней и нижней строки удовлетворяют
условиям (4). При этом после преобразования фрагмента к трехдиагональному виду в
первой и последней строках фрагмента с точностью до положительных множителей λ/h
получатся параметры, входящие в критерии (6), но относящиеся к одной и той же среде.

4. Преобразование системы к трехдиагональной форме

Прежде всего заметим, что если верхняя строка, предположим, уже преобразована в
короткую двухточечную, то, очевидно, проводить аналогичную операцию с нижней стро-
кой не понадобится; достаточно в результирующих выражениях осуществить взаимную
замену коэффициентов a и c. Итак, рассмотрим матричный фрагмент вида

α0 α1 α2 α3 · · · αs−2 αs−1 αs 0 · · ·
−a b −c 0 · · · 0 0 0 0 · · ·
0 −a b −c · · · 0 0 0 0 · · ·
0 0 −a b · · · · · · · · · · · · 0 · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · −a b −c 0 0 · · ·
0 · · · · · · · · · 0 −a b −c 0 · · ·

.

Из первой строки вычтем линейную комбинацию следующих за ней строк с коэффициен-
тами γj (j = 1, . . . , s− 1), а затем выберем их так, чтобы все элементы преобразованной
строки, кроме первых двух, обратились в нуль. Дополним для удобства совокупность
неизвестных коэффициентов двумя фиктивными (γs и γs+1) и получим задачу Коши
для трехточечного разностного уравнения

−aγj+1 + bγj − cγi−1 = αj (j = 2, . . . , s), γs = γs+1 = 0,

которая может быть решена явно. Задача сводится к двум рекуррентным соотношениям
первого порядка

γj+1 − p γj = Ij+1, j = 1, . . . , s− 1, γs = 0,

Ij+1 − q Ij = −αj

a
, j = 2, . . . , s, Is+1 = 0,
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где p и q — корни характеристического уравнения

a ρ2 − b ρ+ c = 0,

положительные в силу теоремы Виета.
Решая второе рекуррентное соотношение, получим

Ij+1 =
qj

a

s∑
`=j+1

α`

q`
.

Подставляя полученное выражение в правую часть первого рекуррентного соотношения
и затем решая его, получим

γj = −1

a

s∑
m=j+1

pj−m
s∑

`=m

qm−`−1α` .

Меняя порядок суммирования, после несложных преобразований получим решение за-
дачи Коши в более компактной форме

γj =
1

a(p− q)

s∑
`=j+1

(
pj−` − qj−`

)
α` . (7)

Введем в рассмотрение полиномиальную функцию

Vs(z) =
s∑

`=0

z`α` ,

которую можно представить также в виде интеграла:

Vs(z) =
s∑

`=1

α`(z
` − 1) =

s∑
`=1

(−1)` C`
s

1− z`

`
=

∫ z

1

1− (1− ξ)s

ξ
dξ.

Из общей формулы (7) выразим первые два коэффициента:

γ1 =
1

a

(
pVS

(
1
p

)
− qVS

(
1
q

)
p− q

− α0

)
, γ2 =

1

a

(
p2VS

(
1
p

)
− q2VS

(
1
q

)
p− q

− α1 − α0(p+ q)

)
. (8)

Они необходимы для вычисления двух ненулевых элементов первой строки, полученной
после преобразования фрагмента к трехдиагональной форме:

β+0 = α0 + a γ1, β+1 = α1 − b γ1 + a γ2.

Подставляя сюда коэффициенты γ1 и γ2 из (8) и учитывая тождество p+q = b/a, получим

β+0 =
pVs
(
1
p

)
− qVs

(
1
q

)
p− q

, β+1 = pq
Vs
(
1
q

)
− Vs

(
1
p

)
p− q

. (9)

Как отмечалось выше, для вычисления пары коэффициентов преобразованной нижней
строки фрагмента достаточно поменять местами a и c. Ясно, что паре корней p и q исход-
ного характеристического уравнения при взаимной замене a и c будут соответствовать
корни 1/q и 1/p. Выполнив эти замены в (9), получим коэффициенты преобразованной
нижней строки фрагмента:
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β−0 =
pVs(q)− qVs(p)

p− q
, β−1 =

Vs(p)− Vs(q)
p− q

. (10)

Таким образом, вопрос об условиях разрешимости исходной системы и устойчивости
счета методом прогонки сводится к решению для каждого слоя системы трех условий:
неравенств (6) для пар коэффициентов (9) и (10) и проверке совпадения знаков β+0 и β−0 .

Заметим, что при отсутствии конвективных членов имеет место симметрия (a = c).
Тогда в силу теоремы Виета q = 1/p, следовательно, пары коэффициентов (9) и (10)
идентичны и неравенства в критерии (6) совпадают между собой. Таким образом, в
симметричном случае анализ разрешимости и устойчивости сводится к проверке един-
ственного неравенства.

Следует заметить, что если рассматриваемая одномерная разностная задача есть ап-
проксимация краевой задачи для обыкновенного дифференциального уравнения с раз-
рывным коэффициентом при второй производной, то полученные критерии разрешимо-
сти системы гарантируют также сходимость схемы.

В общем случае выражения коэффициентов (10) имеют раскрываемую неопределен-
ность 0/0 при p = q, и после сокращения числителя и знаменателя на разность p− q они
превращаются в полиномы переменных p и q. По той же причине выражения (9) зависят
полиномиально от 1/p и 1/q. Поэтому при любом фиксированном порядке s соответству-
ющие три неравенства критерия легко решить численно и определить затем пересечение
множеств решений как в пространстве (p, q), так и в пространстве коэффициентов (a, c)
или нормированных параметров конвекции и диссипации (K,D). Однако при не очень
больших, но практически значимых порядках s, неравенства можно решить точно.

5. Примеры

1. В тривиальном случае двухточечных аппроксимаций потоков (s = 1) все необходимые
неравенства очевидным образом выполняются.

2. Рассмотрим вариант аппроксимации потоков на границах с порядком s = 2. Ввиду
равенства V2(z) = −(z2 − 4z + 3)/2, теоремы Виета (pq = c/a, p+ q = b/a) и выражения
b = 1 + a+ c из (9) находим

β−0 =
c− 3a

2a
, β−1 =

3a− c− 1

2a
, β+0 =

a− 3c

2c
, β+1 =

3c− a− 1

2c
.

Очевидно, здесь правосторонняя пара коэффициентов превращается в левостороннюю и
обратно перестановкой a и c.

Условия (6) эквивалентны системе неравенств {3a− c ≥ 1/2, 3c− a ≥ 1/2}, истинной
при ограничениях

a

3
+

1

6
≤ c ≤ 3a− 1

2
. (11)

Это множество не пусто и представляет собой часть плоскости (a, c) между двумя луча-
ми, исходящими вправо вверх из точки a = c = 1/4.

Коэффициенты β+0 и β−0 имеют одинаковые знаки при условии a/3 < c < 3a, которое
в сравнении с ограничениями (11) лимитирующим фактором не является. Поэтому окон-
чательно условием нестрогого диагонального преобладания в преобразованных строках
матрицы, соответствующих граничным соотношениям, является критерий (11). При со-
блюдении строгих неравенств и диагональное преобладание будет строгим.

Подставляя в (11) выражения коэффициентов (2), получим критерий разрешимости
в терминах нормированных к сетке параметров конвекции и диссипации с весами
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D ≥ 1

4
+
|K|
|θ|+ 1

, K = δ1
vτ

h
, D = δ2

λτ

h2
, (12)

где |θ| = 1 в случае противопоточной аппроксимации и θ = 0 в случае центрально-
разностной. Заметим, что при стремящихся к нулю шагах сетки D � |K|, поэтому нера-
венство выполняется, например, при D ≥ 1/4 + ε и достаточно малых значениях шага h.
Ограничение (12) не является обременительным.

3. Рассмотрим случай, когда потоки на внешних и внутренних границах аппроксимиру-
ются с порядком s = 3. Тогда V3(z) = (z − 1)(2z2 − 7z + 11)/6 и из (10) получаем

β−0 =
1

6
(−2PS + 9P − 11), β−1 =

1

6
(2S2 − 9S − 2P + 18), (13)

где P = pq = c/a, S = p + q = b/a. Воспользуемся теоремой Виета и для удобства
сделаем замену c = A+R, a = A−R. Тогда с точностью до одинакового положительного
знаменателя 6a2 коэффициенты (13) приобретут вид

β−0 = −2(1 + 2A)(A+R) + 9(A2 −R2)− 11(A−R)2,

β−1 = 2(1 + 2A)2 − 9(1 + 2A)(A−R)− 2(A2 −R2) + 18(A−R)2,

или, после упрощений,

β−0 = −B − 2A− 2R, β−1 = B −A+ 9R+ 2,

где B = 6A2 − 18AR+ 20R2.
Нетрудно доказать, что коэффициенты β−0 < 0, β−1 > 0. Это следует из их представ-

лений в виде сумм c выделенными полными квадратами:

−β−0 = 2

(
c− 7

4
a

)2

+
39

8
a2 + c > 0, β−1 = 2

(
1− 5

4
a

)2

+ 4c+ 2

(
c− 7

4
a

)2

+
7

4
a2 > 0.

Тогда неравенство |β−0 | ≥ |β
−
1 | равносильно следующему простому линейному ограни-

чению: 7R ≤ 3A − 2. Прибегая к обратной замене, получим неравенство 2c ≤ 5a − 2.
Учитывая, что для правосторонней пары коэффициентов β+0 и β+1 по тем же точно осно-
ваниям получится неравенство с переставленными местами a и c, получим окончательно

2a

5
+

2

5
≤ c ≤ 5a

2
− 1. (14)

Это множество не пусто и представляет собой часть плоскости (a, c) между двумя луча-
ми, исходящими вправо вверх из точки a = c = 2/3.

Подставляя в (14) выражения коэффициентов (2), получим критерий в терминах
обезразмеренных параметров конвекции и вязкости с весами схемы

D ≥ 1

3
+

7− 3|θ|
12

|K|, K = δ1
vτ

h
, D = δ2

λτ

h2
, (15)

где θ = 1 в случае противопоточной аппроксимации и θ = 0 в случае центрально-
разностной. Ограничение (15) аналогично (12) и также не является обременительным,
при очевидном ограничении на D и достаточно малом шаге h оно выполняется.
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4. В следующем примере s = 4. Имеем

V4 = −1

4
z4 +

4

3
z3 − 3z2 + 4z − 25

12
.

По формулам (10) вычислим

β−0 =
1

4
PS2 − 1

4
P 2 − 4

3
PS + 3P − 25

12
, β−1 = −1

4
S3 +

4

3
S2 +

1

2
PS − 4

3
P − 3S + 4. (16)

Ограничимся частным симметричным случаем (a = c), тогда P = 1. Имеем

β−0 = β+0 =
1

12

(
3S2 − 16S + 8

)
, β−1 = β+1 =

1

12

(
− 3S3 + 16S2 − 30S + 32

)
. (17)

Отсюда следует, что условие диагонального преобладания (β−0 )2 ≥ (β−1 )2 эквивалентно
следующему неравенству:(

3S3 − 13S2 + 14S − 24
)
(2− S)

(
3S2 − 13S + 20

)
≥ 0.

Многочлен в первой скобке имеет единственный вещественный корень S0 ' 3.6554, по-
следняя скобка всюду положительна, а вторая отрицательна в силу неравенства

S = p+ q = p+
1

p
> 2.

Отсюда находится решение неравенства 2 ≤ S ≤ 3.6554 и определяется ограничение

D = a = c ≥ 0.2736, D = δ2
λτ

h2
.
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