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Для синтеза наноразмерных материалов, применяемых в различных областях, в том числе для
химического катализа, в качестве перспективных прекурсоров рассматриваются металлоргани-
ческие комплексы переходных металлов с неорганическими анионами. В данной работе синте-
зированы и охарактеризованы металлорганические комплексы никеля, железа, меди с органи-
ческим лигандом — имидазолом и с неорганическим — нитрат-анионом. С помощью методов

термогравиметрического анализа при низкой скорости нагрева, а также динамического масс-
спектрометрического высокоскоростного термического анализа определены кинетические пара-
метры термического разложения синтезированных металлорганических комплексов. В условиях
высокоскоростного нагрева идентифицированы основные газообразные продукты термического

разложения исследованных комплексов. Изучен химический и фазовый состав конденсированных
продуктов сгорания металлорганических комплексов на воздухе.
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ВВЕДЕНИЕ

Наноразмерные материалы, такие как на-
ночастицы металлов и их оксидов, находят ши-
рокое применение в различных областях: мик-
роэлектронике, медицине, синтезе новых ком-
позитных материалов и многих других. Одна-
ко самым перспективным направлением можно

считать их использование в качестве катали-
заторов, в том числе для получения экологиче-
ски чистых моторных топлив, утилизации СО2
с одновременным получением метана и других

ценных веществ, а также для управления ско-
ростью горения конденсированных энергетиче-
ских материалов, используемых в различных
газогенерирующих устройствах, таких, напри-
мер, как автомобильные подушки безопасности
и т. д. В литературе описано множество под-
ходов к синтезу нанопорошков никеля, меди и
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железа, а также их оксидов, однако все эти ме-
тоды имеют как определенные преимущества,
так и недостатки. Широко используется гидро-
термальный метод, в котором синтез наноча-
стиц происходит при разложении соединений

металлов в специальных реакторах в водной

среде при высоких давлениях и температурах

[1–7].
Наночастицы оксидов никеля, меди и желе-

за получают прокалкой соответствующих гид-
роксидов металлов, образующихся в реакциях
щелочей с солями этих металлов [8–10], а так-
же путем пиролиза в инертной среде полимер-
ных матриц, в которые внедрены неорганиче-
ские соли никеля [11–14].

Наночастицы меди, используемые в каче-
стве катализатора термического разложения

перхлората аммония и других энергетических

материалов, также получают путем пиролиза
полимерной или графеновой матриц, в кото-
рые введены соли меди [15, 16], а также мето-
дами механохимического синтеза [17, 18]. Для
получения нанопорошков металлов также ши-
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роко используется метод термического разло-
жения органических солей металлов, например
формиатов [19], оксалатов [20], малеатов и фта-
латов [21, 22], различных металлорганических
комплексов меди [23, 24] и железа [25]. К пре-
имуществам этого способа синтеза нанопорош-
ков металлов относится то, что термическое
разложение органических соединений металлов

происходит при относительно низких темпера-
турах, их пиролиз возможен не только в восста-
новительной, но и в инертной среде. Основны-
ми продуктами термического разложения явля-
ются газообразные вещества, поэтому они не
загрязняют порошок металла углеродом.

Вместе с тем, наиболее перспективными
с технологической точки зрения можно счи-
тать методы синтеза металлических и оксид-
ных наночастиц, в которых количество стадий
минимально, а исходные реагенты производят-
ся в промышленных масштабах. В последнее

время все более широкое применение получает

метод синтеза наночастиц металлсодержащей

фазы из энергоемких металлорганических ком-
плексов в процессе их горения [26, 27]. При го-
рении этих соединений происходит интенсив-
ное выделение низкомолекулярных газообраз-
ных продуктов, что способствует образованию
металлсодержащей фазы с высокой дисперсно-
стью и пористостью. Степень окисления метал-
ла в конденсированных продуктах, образую-
щихся во фронте горения, зависит от кислород-
ного баланса металлорганического комплекса.
Недостаток кислорода приводит к восстановле-
нию металлов, что нашло применение для по-
лучения мелкодисперсных и пористых метал-
лов, например никеля и меди [26]. Таким об-
разом, каталитическими свойствами металл-
содержащих частиц, образующихся непосред-
ственно в волне горения, можно управлять пу-
тем варьирования природы структурных ком-
понентов металлорганических комплексов.

В настоящее время для получения высоко-
дисперсных частиц NiO, Ni, а также смешан-
ных композитов NiO—Ni применяется метод
горения глицин-нитратных предшественников
[27–39]. В этом случае при варьировании со-
отношения между органическим компонентом,
выполняющим роль восстановителя, и окисли-
телем, к числу которых относятся нитрат ни-
келя и кислород, можно управлять составом
композитов NiO—Ni. При термолизе нитрата
никеля (без глицина) образуется оксид никеля.
В работе [37] показано, что добавление к нему

даже небольшого количества глицина способ-
ствует образованию примеси Ni0. В дальней-
шем многочисленные исследования показали,
что при избытке органического компонента в

качестве продукта горения образуется метал-
лическая фаза никеля [40–44]. Исследованиями
in situ установлено, что она образуется в ре-
зультате восстановления оксида никеля, фор-
мирующегося на стадии горения [38, 45–47].
В роли восстановителя после высокотемпера-
турной стадии выступает прежде всего амми-
ак, который, как известно, является продуктом
термолиза глицина [38, 48].

Расчеты термодинамических характери-
стик подтверждают, что повышение содержа-
ния глицина в составе топливной композиции, а
значит, и количества образующегося в зоне ре-
акции аммиака увеличивает адиабатическую

температуру горения, содержание водорода и
долю восстановленного металла в продуктах

горения [46, 47]. Сопоставительное исследова-
ние показывает, что органические компоненты,
содержащие азот, и их высокая концентрация
в составе топливной композиции, как правило,
являются предпочтительным условием получе-
ния металла в продуктах горения [49]. Отме-
тим, что другими азотсодержащими топлив-
ными компонентами, которые достаточно ча-
сто используются для получения нанодисперс-
ных металлов методом горения, являются гек-
саметилентетрамин (C6H12N4) [50], гидразин
(N2H4) [51], мочевина [52], лецитин [53].

Таким образом, в настоящий момент в ли-
тературе отсутствуют сведения о термическом

разложении и горении никелевых, железных
и медных металлорганических комплексов с

нитрат-анионами, что подчеркивает необходи-
мость изучения этих процессов для разработки

подходов целенаправленного синтеза никель-,
железо- и медьсодержащих наночастиц с задан-
ными составом и свойствами, в которых ско-
рость нагрева играет важную роль.

Целью данной работы являлось исследо-
вание структуры синтезированных нитратных

комплексов никеля, железа и меди с имида-
золом, определение кинетических закономерно-
стей их термического разложения при скорости

нагрева 5 ◦C/мин и в условиях высокоскорост-
ного нагрева, характерного для процессов горе-
ния (100 ÷ 1 000 ◦C/с), а также изучение хими-
ческого и фазового состава конденсированных

продуктов сгорания изученных металлоргани-
ческих комплексов на воздухе.
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1. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

1.1. Синтез энергоемких комплексных соединений

Нитрат гексаимидазолникеля (II) —
Ni(Im)6(NO3)2. В качестве исходных соедине-
ний для синтеза нитратa гексаимидазолнике-
ля (II) использовали имидазол (C3H4N2, CAS
№ 288-32-4, 99 % (мас.)) и нитрат никеля

(Ni(NO3)2 · 6H2O, ГОСТ 4055-78, 98 % (мас.)).
Синтез был реализован двумя способами.

В первом варианте комплекс готовили в этано-
ле. К 0.06 моль имидазола (Im) в 10 мл эта-
нола прикапывали при непрерывном переме-
шивании раствор 0.01 моль Ni(NO3)2 · 6H2O в

10 мл этанола. Раствор приобретал синий цвет,
и после добавления всей порции соли никеля

выпадал сине-фиолетовый осадок. Выпавший
осадок отфильтровывали, промывали неболь-
шим количеством холодной воды и этанолом.
Высушивали в вакуумном шкафу, затем в эк-
сикаторе над Р2О5. Выход продукта составил
91 %.

Во втором случае комплекс был синтезиро-
ван без использования растворителей — в рас-
плаве имидазола. В разогретый керамический
тигель, помещенный на плитку с заданной тем-
пературой 170 ◦C, насыпали 0.06 моль имида-
зола. К полученному расплаву (90 ◦C) быст-
ро, при непрерывном перемешивании, прибав-
ляли 0.01 моль Ni(NO3)2 · 6H2O. В результате
образовывался зеленый расплав, который мо-
ментально превращался в бледно-фиолетовую
комковатую массу. Далее температуру плитки
увеличивали до 200 ◦C, и продолжали переме-
шивание еще в течение ≈1 ч. Это обеспечи-
ло нагрев реакционной смеси до 150 ◦C и ее

постепенное высыхание до состояния сыпуче-
го порошка. Порошок остужали до комнатной
температуры в эксикаторе с СаСl2.

Нитрат тетраимидазолмеди (II) —
Cu(Im)4(NO3)2. В качестве исходных со-
единений для синтеза нитрата тетраимида-
золмеди (II) использовали имидазол (C3H4N2,
CAS № 288-32-4, 99 % (мас.)) и нитрат меди
(Сu(NO3)2 · 2.5H2O, CAS 19004-19-4, 98 %
(мас.)).

Синтез был реализован двумя способами.
В первом варианте комплекс готовили в водном

растворе. Для этого к раствору 0.04 моль ими-
дазола в 5 мл воды при непрерывном переме-
шивании добавляли по каплям 0.01 моль нит-
рата меди в 5 мл воды. Через 5 ÷ 7 мин пере-
мешивания выпал синий осадок. Реакционную

смесь продолжали перемешивать еще 30 мин,
после чего выдерживали при 2 ◦C в течение

≈17 ч. Далее осадок отфильтровывали, промы-
вали небольшим количеством холодной воды и

этанолом. Сушили в вакуумном шкафу и над
Р2О5. Выход продукта составил 65 %.

Во втором случае комплекс готовили без

использования растворителей — в расплаве

имидазола. В разогретый керамический ти-
гель, помещенный на плитку с заданной тем-
пературой 130 ◦C, насыпали 0.04 моль имида-
зола. К полученному расплаву (90 ◦C) быст-
ро, при непрерывном перемешивании прибав-
ляли 0.01 моль Cu(NO3)2 · 2.5H2O. В резуль-
тате образовывался фиолетовый расплав, ко-
торый быстро превращался в ярко-фиолетовую
комковатую массу. Далее температуру плитки
увеличивали до 180 ◦C и продолжали переме-
шивание еще в течение ≈1 ч. Это обеспечи-
ло нагрев реакционной смеси до 120 ◦C и ее

постепенное высыхание до состояния сыпуче-
го порошка. Порошок остужали до комнатной
температуры в эксикаторе с СаСl2.

Нитрат тетраимидазолжелеза (III) —
Fe(Im)4(NO3)3. В качестве исходных соедине-
ний для синтеза нитрата тетраимидазолже-
леза (III) использовали имидазол (C3H4N2,
CAS № 288-32-4, 99 % (мас.)) и нитрат же-
леза (Fe(NO3)3 · 9H2O, CAS 7782-61-8, > 99 %
(мас.)).

Синтез был реализован двумя способами.
В первом варианте комплекс готовили в этано-
ле. Для этого к 0.06 моль имидазола в 10 мл
этанола приливали 0.01 моль нитрата железа
в 10 мл этанола. В результате образовывался
рыже-коричневый осадок, который отфильтро-
вывали, промывали небольшим количеством

этанола, высушивали в вакуумном шкафу и

над Р2О5. Выход продукта составил 62 %.
Во втором случае комплекс готовили без

использования растворителей — в расплаве

имидазола. В разогретый керамический ти-
гель, помещенный на плитку с заданной тем-
пературой 180 ◦C, насыпали 0.06 моль имида-
зола. К полученному расплаву (90 ◦C) быст-
ро, при непрерывном перемешивании, прибав-
ляли 0.01 моль Fe(NO3)3 · 9H2O. В результа-
те образовывался темно-коричневый расплав,
наблюдалось газовыделение. Далее температу-
ру плитки увеличивали до 220 ◦C и продол-
жали непрерывное перемешивание еще в тече-
ние ≈2 ч. Расплав при этом медленно загусте-
вал, а затем постепенно «высыхал» до состо-
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яния сыпучего красновато-коричневого порош-
ка. Порошок остужали до комнатной темпера-
туры в эксикаторе с СаСl2.

1.2. Методы исследования энергоемких
комплексных соединений никеля, железа и меди

Количественное содержание Ni, Fe, Cu
в комплексных соединениях определяли ме-
тодом атомно-абсорбционной спектрометрии

с индуктивно-связанной плазмой на приборе

Optima 4300 DV («Perkin Elmer», США). Ко-
личественное содержание С, Н, N проводили на
автоматическом CHNS-анализаторе EURO EA
3000 («Euro Vector S.p.A.», Италия) в верти-
кальном реакторе в динамическом режиме при

1 050 ◦C в токе He с добавкой O2, навески проб
0.5 ÷ 2.0 мг. Основные результаты элементного
анализа представлены в табл. 1.

Инфракрасные спектры нарушенного пол-
ного внутреннего отражения (ИК-спектры
НПВО) снимали на спектрометре Agilent

Та блиц а 1

Характеристики синтезированных комплексных соединений никеля, меди и железа

Комплекс

(метод синтеза)

Брутто-формула,
молярная масса,

энтальпия образования

Состав комплексов, %
Кислородный

баланс, %
расчет эксперимент

Ni(Im)6(NO3)2
(из спиртового
раствора)

Ni(C3H4N2)6(NO3)2

NiC18H24N14O6

M = 591 г/моль

∆H0
f = −240 кДж/моль

Ni — 9.93

C — 36.57

H — 4.09

N — 33.17

O — 16.24

Ni — 9.30
C — 36.53
H — 4.17
N — 33.66

−116

Ni(Im)6(NO3)2
(из расплава)

Ni — 9.57
C — 36.08
H — 4.03
N — 33.45

Cu(Im)4(NO3)2
(из расплава)

Cu(C3H4N2)4(NO3)2

CuC12H16N10O6

M = 460 г/моль

∆H0
f = −360 кДж/моль

Cu — 13.9

C — 31.3

H — 3.5

N — 30.4

O — 20.9

Cu — 14.2
C — 30.9
H — 3.4
N — 30.1

−94

Cu(Im)4(NO3)2
(из водного
раствора)

Cu — 13.5
C — 31.4
H — 3.2
N — 30.9

Fe(Im)4(NO3)3
(из расплава)

Fe(C3H4N2)4(NO3)3

FeC12H16N11O9

M = 514 г/моль

∆H0
f = −690 кДж/моль

Fe — 10.9

C — 28.0

H — 3.1

N — 30.0

O — 28.0

Fe — 9.6
C — 28.9
H — 3.6
N — 29.4

−76

Fe(Im)4(NO3)3
(из спиртового
раствора)

Fe — 27.4
C — 20.7
H — 3.0
N — 20.2

Cary 600 («Agilent Technologies», США),
оснащенном приставкой Gladi ATR («PIKE
Technologies», США) в диапазоне 4 000 ÷
250 см−1, а также на приборе Cary 630
(«Agilent Technologies», США) в диапазоне

4 000 ÷ 500 см−1. Для записи спектра исполь-
зовали порошок комплекса или исходного ли-
ганда, который помещали непосредственно на
рабочую поверхность спектрометра без прессо-
вания.

Термический анализ соединений выполня-
ли на установке Netzsch STA 449 С Jupiter,
оснащенной держателем ДСК/ТГ, в интер-
вале температур 20 ÷ 500 ◦C в токе He
(20 мл/мин). Скорость нагрева образцов со-
ставляла 5 ◦C/мин, масса навески — 5 мг.

Анализ состава газообразных продуктов и

кинетики термического разложения в условиях

высокоскоростного нагрева в инертной газовой

среде проводился методом динамического

масс-спектрометрического термического ана-
лиза (ДМСТА) с использованием молекулярно-
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пучковой системы отбора проб [54, 55]. Ме-
тод ДМСТА позволяет определять кинети-
ку процесса разложения конденсированных ве-
ществ с одновременной идентификацией газо-
образных продуктов, которые вводятся в масс-
спектрометр в режиме молекулярного пучка.
Времяпролетный масс-спектрометр МСХ-4 с

разрешением по массам ≈ 70 в диапазоне масс
1 ÷ 150 а. е. м. позволяет регистрировать ин-
тенсивность шести пиков в масс-спектре за
0.02 с. Процесс термического разложения нике-
левых комплексов проводили в проточном реак-
торе в потоке инертного газа (аргон) при дав-
лении 1 атм.

Реактор представлял собой кварцевую

трубку с внутренним диаметром 1 см. В реак-
торе установлена кювета из танталовой фоль-
ги, открытая со стороны зонда. В кювету по-
мещалась навеска порошка исследуемых ком-
плексов ≈ 0.7 мг. Кювета нагревалась про-
пусканием через нее электрического тока, ско-
рость нагрева варьировалась от 25 до 150 ◦C/с
и задавалась регулируемым блоком питания.
Температура кюветы измерялась приваренной

к ее центральной части хромель-копелевой тер-
мопарой диаметром 50 мкм. Объемный расход
газа-носителя через реактор составлял 5 см3/с
(н. у.). Продукты разложения отбирались квар-
цевым зондом с внутренним углом раствора

конуса 40◦ и диаметром входного отверстия

70 мкм, расположенного на расстоянии около
2 ÷ 3 мм от кюветы. Для предотвращения за-
бивания отверстия зонда конденсирующимися

продуктами разложения кончик зонда нагре-
вался до температуры около 200 ◦C с помощью

электрического нагревателя [56].
В методе ДМСТА регистрируется зависи-

мость от времени интенсивности пиков Ii в
масс-спектре пробы, отобранной на выходе ре-
актора. Интенсивность пиков Ii прямо пропор-
циональна скорости образования соответству-
ющих продуктов разложения Wi:

Wi = WAr
Ii
IAr

1

Ki
,

где Ki — калибровочный коэффициент;
IAr,WAr — интенсивность массового пика

аргона и объемная скорость потока аргона [55].
Одновременное измерение зависимости

температуры образца и интенсивностей пи-
ков масс продуктов разложения от времени

позволяет исследовать кинетику разложения.
Скорость образования продукта разложения в

предположении n-го порядка реакции имеет

вид

W =
dx

dt
= k(1 − x)n,

где n — порядок реакции, x — доля образова-
ния соответствующего продукта, которая опре-
делялась как

x(t) =

t∫
0

Iidt
/ ∞∫

0

Iidt,

k — константа скорости реакции, k =
k0 exp(−Ea/RT ).

Обработка экспериментальных зависимо-
стей интенсивностей пиков масс, соответству-
ющих i-му продукту в аррениусовских коорди-
натах, позволяет определить энергию актива-
ции и предэкспоненциальный множитель кон-
станты скорости реакции, по которой образу-
ется данный продукт.

Для идентификации газообразных про-
дуктов разложения исследованных комплек-
сов были использованы индивидуальные масс-
спектры веществ из базы данных NIST [57].

2. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

2.1. Характеристика
полученных комплексных соединений

Для подтверждения состава синтезирован-
ных в данной работе металлорганических ком-
плексов никеля, железа, меди с органическим
лигандом— имидазолом и с неорганическим—
нитрат-анионом был определен их элемент-
ный состав и соотнесен с теоретическим. В
табл. 1 приведены характеристики изученных
комплексов.

Также для синтезированных комплексов

были получены ИК-спектры НПВО, представ-
ленные в табл. 2 и 3, и проведено соотнесение
наблюдаемых полос поглощения с литератур-
ными данными.

Данные табл. 2 и 3 позволяют утвер-
ждать, что взаимодействие имидазола с ка-
тионом металла при формировании внутрен-
ней координационной сферы металлорганиче-
ского комплекса происходит за счет неподелен-
ной электронной пары азота в имидазоле, что
согласуется с работами [58, 59].
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Та блиц а 2

Соотнесение частот колебаний (см−1) в ИК-спектрах НПВО имидазола и комплекса Ni(Im)6(NO3)2,
полученного в расплаве (идентификация колебаний выполнена на основании литературных данных)

Имидазол

(данная работа)
Ni(Im)6(NO3)2

(данная работа)
Ni(Im)6(NO3)2 [48] Ni(Im)6(NO3)2 [47] Соотнесение

3 120 (vs)
3 104 (sh)
3 014 (vs)
2 911(vs)
2 817 (vs)
2 788 (vs)
2 696 (vs)
2 617 (vs)

3 180 (vs)
3 135 (vs)
3 063 (m)
2 950 (m)
2 857 (w)

3 180 (s)

3 060 (s)

3 173 (s)

3 135

ν(N—H)

ν(С—Н)

1 540 (s)
1 495 (m)
1 481 (m)
1 448 (s)

1 537 (m)
1 502 (w)
1 490 (w)
1 439 (w)

1 540 (s)
1 500 (m, br)

1 540
1 503
1 490

ν ring

— 1 370 (vs) 1 380 (vs, br) 1 373 ν3(NO3)

1 325 (s) 1 324 (s) 1 329 (s) 1 326 ν ring

1 261 (w) 1 253 (w) 1 256 (s) 1 255 δ(СН)

1 244 (w) 1 233 (w) 1 240 (br, sh) 1 235 δ(NН)

1 146 (w) 1 138 (w) 1 140 (br) 1 141 ν ring

1 098 (m) 1 098 (m) 1 105 (s)
1 097 (s)

1 104
1 099

δ(С—Н)

1 054 (s) 1 067 (s) 1 074 (s) 1 072 δ(СН)

933 (s) 933 (m) 937 (s) 938 γ(N—H), δ ring, γ(C—H)

921 (s)
895 (m)
838 (s)
825 (s)

921 (w)
845 (m)

920 (m)
848 (s)

921
848

δ ring, γ(C—H)

— 825 (w) 828 (m) 827 ν2(NO3)

747 (m)
734 (s)

743 (s) 748 (vs) 747 γ(C—H)

— 712 (w) 712 (m) 715 ν4(NO3)

655 (s)
616 (m)

665 (m)
613 (m)

661 (s) 670
616

γ ring

— 260 (w) — 261 ν(Ni—N)

Прим е ч а н и я. vs — very strong (очень сильная), s — strong (сильная), m — medium (средняя), w — weak
(cлабая), br — broad (широкая), sh — shoulder (плечо), ring — деформационные колебания ароматического

кольца.

2.2. Термолиз комплексов
в неизотермических условиях в инертной среде

Термохимические превращения комплекс-
ных соединений никеля, железа и меди бы-
ли изучены методом термического анализа при

скорости нагрева 5 ◦C/мин в потоке инертного

газа (гелий). Закономерности изменения массы
при нагреве выбранных объектов исследования

и наблюдаемые тепловые эффекты приведены

на рис. 1.
Из кривых, полученных методом диффе-

ренциальной термогравиметрии (ДТГ), иссле-
дуемых комплексов видно, что их термическое
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Та блиц а 3

Характеристические полосы поглощения синтезированных комплексных соединений меди
и железа в ИК-спектрах НПВО и их идентификация в соответствии с литературными данными

Характерные

колебания

Полосы поглощения

Источник
Im

Cu(Im)4(NO3)2 Fe(Im)4(NO3)3

из расплава из водного

раствора
из расплава

ν(N—H) + ν(C— H)

3 130
3 010
2 910
2 820
2 780
2 690
2 610

3 160
3 140
2 960
2 860

3 160
3 140
2 960
2 860

3 210
3 130
2 960
2 850
2 760
2 640

[60]

ν(C==N) 1 670 1 760 1 760 1 760

ν(C==С) 1 540
1 500

1 540
1 510

1 540
1 510

1 590
1 540

ν(C—N) 1 480
1 450

1 490
1 440

1 490
1 440

1 530
1 490

ν(C—С) 1 330
1 320

1 330
1 320

1 330
1 320

1 340
1 320

[61]

ν3(NO3)− — 1 310
1 390

1 310
1 390

1 300
1 380

δ(C—H) + δ(N—H)

1 260
1 240
1 140
1 100

1 260
1 240
1 170
1 130

1 260
1 240
1 170
1 130

1 250
1 240
1 170
1 130

δ(C==N—H) 1 050 1 090 1 090 1 090

ν1(NO3)− —
—

1 070
1 050

1 070
1 050

1 070
1 040

δ(C—C) 930 950 950 950

γ(C—H) 920
890

940
920

940
920

940
900

γ(N—H) 840 860 860 870

Деформационные

колебания

ароматического

кольца

830 850 850 860 [61, 62]

ν2(NO3)− — 820 820 830

γ(C—H) 750
740

760
750

760
750

790
760

ν4(NO3)− — 710 710 720

Деформационные

колебания

ароматического

кольца

660
620

660
620

660
620

660
620
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Рис. 1. Данные термического анализа

Ni(Im)6(NO3)2 (а), Cu(Im)4(NO3)2 (б),
Fe(Im)4(NO3)3 (в) (поток He, 5 мг,
β = 5 ◦C/мин)

разложение имеет ряд стадий, особенно хоро-
шо это проявляется для нитрат-имидазольного
комплекса никеля (рис. 2,а). Заметная поте-
ря массы происходит при температуре выше

200 ◦C, а при 230 ◦C на кривой ДТГ наблюда-
ется первый пик (стадия I), амплитуда кото-
рого соответствует потере массы ∆m ≈ 20 %,

Рис. 2. Влияние природы металла на темпера-
туру начала разложения нитрат-имидазоль-
ных комплексов (а) и на тепловой эффект (б)

что соотносится с отщеплением двух моле-
кул имидазола из этого соединения. Такое по-
ведение типично для термолиза комплексных

соединений, в координационную сферу кото-
рых входят нейтральные N-донорные лиган-
ды [63, 64]. Важно отметить, что эта стадия
сопровождалась слабым эндотермическим эф-
фектом. Согласно расчетам отщепление двух

молекул имидазола из структуры этого ком-
плекса повышает кислородный баланс, но не
так значительно: с −116 до −93 %. Такая
структурная перестройка, по-видимому, при-
водит к тому, что с дальнейшим ростом тем-
пературы скорость разложения образца увели-
чивается, стадия I переходит в стадию II, ко-
торая достигает максимума при температуре

250 ◦C (см. рис. 2,а). При этой же темпера-
туре наблюдается максимальный экзотерми-
ческий эффект, обусловленный окислительно-
восстановительными превращениями, где мо-
лекулы имидазола выполняют роль топлива,
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а нитрат-анионы действуют как окислители.
С дальнейшим ростом температуры скорость

разложения уменьшается, но при 330 ◦C на

кривых ДТГ и ДСК (дифференциальной скани-
рующей калориметрии) появляются пики, ука-
зывающие на карбонизацию продуктов непол-
ного разложения органического лиганда с вы-
делением газообразных продуктов (стадия III).

Проведенный анализ результатов терми-
ческого разложения комплексных соединений

меди и железа также показал, что они имеют
аналогичные стадии термолиза, которые мо-
гут быть выражены в разной степени. Так,
для нитрат-имидазольного комплекса меди

(рис. 1,б) хорошо идентифицируются все три
стадии, аналогично рассмотренным выше ком-
плексам никеля. Для нитрат-имидазольного
комплекса железа (рис. 1,в) не зафиксирова-
на стадия I, на которой происходит удаление
лигандов из ближайшего окружения металла,
но стадия II протекает с интенсивным выде-
лением тепла. По-видимому, лиганды, выходя
из окружения металла, мгновенно окисляются
анионами.

Учитывая полученные результаты, можно
сделать вывод, что при разложении комплексов
образуется металлсодержащая фаза, которая
ускоряет взаимодействие органического ком-
понента комплекса с анионами-окислителями.

Та блиц а 4

Кинетические параметры термического разложения синтезированных комплексов, полученных разными методами

Образец Параметр

Коутс — Редферн Горовиц — Мецгер

Коутс — Редферн

с применением

генетического

алгоритма

стадия I стадия II стадия I стадия II стадия I стадия II

E, кДж/моль 88.5 252.7 125.4 260.6 122.9 260.2

Ni(Im)6(NO3)2 α 0.02 ÷ 0.18 0.35 ÷ 0.72 0.02 ÷ 0.32 0.35 ÷ 0.72 0.06 ÷ 0.76

R2 0.9938 0.9902 0.9965 0.9914 0.9995

E, кДж/моль 245.7 283 256.3

Cu(Im)4(NO3)2 α 0.01 ÷ 0.80 0.01 ÷ 0.80 0.06 ÷ 0.85

R2 0.9944 0.9982 0.9940

E, кДж/моль 175.9 198.5 217.4

Fe(Im)4(NO3)3 α 0.05 ÷ 0.82 0.05 ÷ 0.82 0.08 ÷ 0.81

R2 0.9948 0.9976 0.9962

Прим е ч а н и я. E — энергия активации реакции термолиза, α — степень разложения вещества, R2 —
коэффициент детерминации.

При этом в присутствии железа термохими-
ческие превращения его нитрат-имидазольного
комплекса протекают эффективнее, чем в слу-
чае никеля и меди (рис. 2).

Следовательно, природа металла играет
ключевую роль в термохимических превраще-
ниях комплексных соединений, поскольку она
определяет температуру начала разложения

комплекса (рис. 2,а) и величину теплового эф-
фекта (рис. 2,б).

2.3. Кинетика превращений комплексов
в условиях низкоскоростного нагрева

На основе результатов исследования

термохимических превращений синтезиро-
ванных комплексных соединений в инертной

среде (гелий) была сделана оценка кинети-
ческих параметров этого процесса. Полу-
ченные термогравиметрические данные при

скорости нагрева 5 ◦C/мин для комплексов

Ni(Im)6(NO3)2, Fe(Im)4(NO3)3, Cu(Im)4(NO3)2
были обработаны методами Коутса — Ред-
ферна [65] и Горовица — Мецгера [66] с

построением прямых в линейных координатах,
а также методом Коутса — Редферна с под-
бором кинетических параметров генетическим

алгоритмом [67, 68] (табл. 4). Получен-
ные кривые разложения хорошо описываются
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кинетикой первого порядка, поскольку все ко-
эффициенты детерминации R2 выше 0.95.

2.4. Газообразные продукты, выделяющиеся
в условиях высокоскоростного нагрева комплексов

Было изучено термическое превращение

никелевых, железных и медных комплексов в
условиях высокоскоростного нагрева в среде

аргона, приближенных к условиям горения вы-
сокоэнергетических твердотопливных компози-
ций в обедненной кислородом среде. Эти ком-
плексы способны при тепловом инициировании

к самопроизвольному превращению (горению)
в инертной среде, о чем свидетельствовала яр-
кая световая вспышка с характерным звуком.

Методом ДМСТА были получены сведения

о составе газообразных продуктов термическо-
го разложения нитрат-имидазольных комплек-
сов никеля, меди и железа. При их разложении
наблюдается выделение имидазола, посколь-
ку в масс-спектрах присутствует пик m/z =
68, характерный для этого соединения. Одна-
ко для медного и железного комплексов количе-
ство свободного имидазола значительно мень-
ше, чем у никелевого комплекса (рис. 3). С по-
вышением температуры количество свободно-
го лиганда уменьшается, но возрастает коли-
чество продуктов полного окисления (рис. 4).

Таким образом, с помощью масс-
спектрометрии были зафиксированы основные

продукты термораспада монометалличе-
ских комплексных соединений с разными

комплексообразующими металлами. Путем со-
поставления результатов масс-спектрометрии
с литературными данными были описаны

кинетика и механизм термохимических пре-
вращений имидазольных комплексов никеля,
железа и меди в условиях высокоскоростного

нагрева.

2.5. Кинетика превращений комплексов
в условиях высокоскоростного нагрева

Зависимости масс-спектральных пи-
ков от времени при нагреве комплек-
сов Ni(Im)6(NO3)2, Fe(Im)4(NO3)3 и

Cu(Im)4(NO3)2 были обработаны методом

Коутса — Редферна с применением генетиче-
ского алгоритма (табл. 5). Поскольку в данном
случае анализируются продукты реакции,
сделать выводы о кинетических параметрах

разложения можно только в том случае, если

Рис. 3. Выделение газов при термическом

распаде комплексов Ni(Im)6(NO3)2 (а),
Fe(Im)4(NO3)3 (б), Cu(Im)4(NO3)2 (в)

параллельно не идут побочные процессы, вли-
яющие на количество идентифицированных

продуктов, и их выход в процессе близок к

100 %. В литературе потеря массы на первой

стадии разложения имидазольных комплексов

объясняется удалением части лигандов, что
позволяет описывать эту стадию разложения

через скорость образования продуктов. В
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Рис. 4. Экспериментальные скорости выде-
ления газов в зависимости от темпера-
туры при термическом распаде комплек-
сов Ni(Im)6(NO3)2 (а), Fe(Im)4(NO3)3 (б),
Cu(Im)4(NO3)2 (в)

таком случае доля разложения в произвольный

момент времени соответствует доле выделив-
шегося продукта к этому времени от всего

выделившегося в ходе реакции продукта,
поэтому описанные выше подходы остаются

неизменными, а α(t) =

t∫
t0

I(t)d(t)
/ tfin∫

t0

I(t)d(t),

где I(t) — интенсивность пика продукта в

масс-спектре, t — текущее время, t0 — время

начала реакции, tfin — время окончания

реакции. Остальные продукты разложения

были также обработаны в предположении, что
они образуются с выходом 100 %.

Как отмечалось ранее, в масс-спектрах
продуктов разложения имидазольных комплек-
сов присутствует пик m/z = 68, который от-
носится к имидазолу. По динамике их выделе-
ния можно судить об энергии активации пер-
вой стадии.

Для имидазольных комплексов кривые вы-
деления имидазола плохо описываются кине-
тикой первого порядка, а также параллельно
с имидазолом наблюдаются пики m/z = 28
и 30, соответствующие N2 и NO, что свиде-
тельствует об окислении имидазола нитрат-
анионом уже на этой стадии. Это существен-
но влияет на вид кинетической кривой и значе-
ние энергии активации, однако не исключает
возможности качественного сравнения энергий

активации стадии удаления лиганда из разных

комплексов.
Вторая стадия разложения может быть

описана через выделение О2, N2 или других га-
зообразных продуктов, однако вследствие про-
текания большого количества параллельных

процессов сложно судить об их выходе. Несмот-
ря на это, качественное сравнение энергий ак-
тивации по О2 и N2 приводит к одинаковым

выводам.
Анализ полученных результатов позволя-

ет сделать заключение, что энергия активации
стадии отщепления лиганда, а следовательно
энергия связи лиганда с металлом, возраста-
ет в ряду Ni(Im)6(NO3)2 < Fe(Im)4(NO3)3 <
Cu(Im)4(NO3)2, в то время как энергия ак-
тивации стадии экзотермического разложе-
ния возрастает в ряду Fe(Im)4(NO3)3 <
Ni(Im)6(NO3)2 < Cu(Im)4(NO3)2. Важно ска-
зать, что эти результаты не могли быть

получены из данных стандартного термиче-
ского анализа, поскольку стадии отщепления
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Та блиц а 5

Кинетические параметры термического разложения комплексов, полученных
методом Коутса — Редферна с применением генетического алгоритма

Образец m/z
Скорость

нагрева,
К/с

Продукт
E, кДж/моль

стадия I стадия II

Ni(Im)6(NO3)2
68, 28,
30, 32,
44, 46

75

68 — имидазол 74.6 155.4

28 — N2 96.5 160.7

32 — O2 180.1 —

Fe(Im)4(NO3)3
68, 28,
30, 32,
44, 46

75

68 — имидазол 149.6

28 — N2 151.6

32 — O2 74.7

Cu(Im)4(NO3)2
68, 28,
30, 32,
44, 46

75

68 — имидазол 194.5 179.8

28 — N2 217.0 205.1

32 — O2 162.9 —

Та блиц а 6

Данные рентгенофазового анализа конденсированных продуктов газификации комплексов,
синтезированных безрастворным методом из расплава при Tset = 500 ◦C

Исходный

комплекс

Фазовый

состав
Номер PDF

Содержание,
% (мас.)

Средний размер ОКР, нм

LVol-IB LVol-FWHM

Ni(Im)6(NO3)2
NiO 47-1049 80 20 (1) 26 (1)

Ni0 04-0850 20 59 (5) 74 (7)

Cu(Im)4(NO3)2

CuO 45-937 74 28 37

Cu2O 5-667 24 30 37

Cu 4-836 2 76 72

Fe(Im)4(NO3)3
Fe2O3 33-664 89 40 54

Fe3O4 19-629 11 30 41

Прим е ч а н и я. ОКР — область когерентного рассеяния, LVol-IB — размеры ОКР, вычисленные по
интегральной интенсивности рефлексов, LVol-FWHM — по полуширине рефлексов.

лиганда и окислительно-восстановительная
реакция между лигандом и анионом для

комплексов Ni(Im)6(NO3)2, Fe(Im)4(NO3)3 и

Cu(Im)4(NO3)2 протекают одновременно.

2.6. Характеристика металлсодержащей фазы,
формирующейся в волне горения

Продукт горения комплекса

Ni(Im)6(NO3)2 был получен на воздухе в квар-
цевом тигле при температуре Tset = 300 ◦C
с дальнейшим повышением до Tset = 500 ◦C
и выдерживанием в течение 15 мин, что

обеспечило газификацию комплекса на 60 %.

Это было сделано целенаправленно, что-
бы изучить продукт термолиза комплекса,
поскольку степень его газификации соот-
ветствует степени разложения образца на

стадии II термохимических превращений (см.
рис. 2). Рентгенофазовый анализ (табл. 6)
выявил, что продукт горения Ni(Im)6(NO3)2
содержит только две кристаллические фазы

никеля — Ni0 и NiO.
Метод просвечивающей электронной мик-

роскопии высокого разрешения (ПЭМ ВР) под-
твердил, что этот образец преимущественно
состоит из мелких частиц NiO и более крупных

частиц металлического Ni0. Можно предполо-
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Рис. 5. Изображения ПЭМВР продуктов гази-
фикации комплекса Ni(Im)6(NO3)2, получен-
ного плавлением

жить, что формирование Ni0 при горении на
воздухе связано с восстановлением оксида ни-
келя аммиаком, который образуется при рас-
паде молекулы имидазола [69–71], аналогич-
но случаю горения глицин-нитратных компо-
зиций [38, 48].

Кроме того, в продукте горения комплек-
са Ni(Im)6(NO3)2 присутствует аморфная фаза

(рис. 5). По-видимому, она представляет собой

Рис. 6. Изображение ПЭМ ВР продуктов газификации комплексов Cu(Im)4(NO3)2 (а) и

Fe(Im)4(NO3)3 (б), полученных плавлением

углеродсодержащий остаток неполного разло-
жения органического лиганда комплекса, кото-
рый при достижении температуры ≈ 400 ◦C
начинает окисляться с образованием CO, CO2
и NH3 [72].

Продукты горения комплексов

Cu(Im)4(NO3)2 и Fe(Im)4(NO3)3, получен-
ных в аналогичных условиях на воздухе при

Tset = 500 ◦C, представляют собой крупные аг-
регаты разной морфологии (рис. 6), состоящие
из более мелких частиц (рис. 7).

Локальный анализ кристаллической

структуры отдельных частиц (рис. 7) показал,
что в случае Cu(Im)4(NO3)2 они представля-
ют собой оксиды меди Cu2O (PDF № 5-667:
[220] — 1.5100 Å), CuO (PDF № 45-937:
[-113] — 1.5058 Å; [022] — 1.4184 Å; [112] —
1.7769 Å). Кроме того, присутствуют частицы
металла (PDF № 4-836: [220] — 1.2780 Å;
[311] — 1.0900 Å), окруженные аморфным

углеродом (рис. 6,б), который, по-видимому,
предотвращает их окисление при горении.
Ранее нами было отмечено (см. рис. 1,б), что,
в отличие от железосодержащего комплекса,
термолиз комплекса Cu(Im)4(NO3)2 на воздухе

сопряжен с образованием трудноокисляемого

продукта неполного термолиза имидазола.
Для образца, полученного при горении

комплекса Fe(Im)4(NO3)3 (рис. 8), обнаружены
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Рис. 7. Детальный анализ структуры продуктов горения комплекса Cu(Im)4(NO3)2, полученного
плавлением:

квадраты с цифрами 1 и 2 — области локального анализа кристаллической структуры частицы, ко-
торым соответствуют дифрактограммы, показанные на врезках в углу рисунка с соответствующим
номером

Рис. 8. Детальный анализ структуры продуктов горения комплекса Fe(Im)4(NO3)3, полученного
плавлением:

квадраты с цифрами 1 и 2 — области локального анализа кристаллической структуры частицы, ко-
торым соответствуют дифрактограммы, показанные на врезках в углу рисунка с соответствующим
номером

только оксиды железа Fe2O3 (PDF № 33-664:
[211] — 1.6367 Å; [122] — 1.6033 Å; [018] —
1.5992 Å; [214] — 1.4859 Å; [208] — 1.3497 Å;
[0210] — 1.1632 Å), Fe3O4 (PDF № 19-629:
[422] — 1.7146 Å; [440] — 1.4845 Å; [620] —
1.3277 Å).

Рентгенофазовый анализ также под-

твердил преимущественное образование

оксидов (см. табл. 6) при горении комплексов
Cu(Im)4(NO3)2 и Fe(Im)4(NO3)3. В медьсодер-
жащем образце была зафиксирована примесь

восстановленного металла в количестве 2 %.
Размер кристаллитов образующихся фаз

укладывается в нанодиапазон. Для оксидов
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он составляет 28 ÷ 54 нм. Более крупные
кристаллиты характерны для металлической

меди, но их размер не превышает 76 нм.
Таким образом, в волне горения комплек-

са Fe(Im)4(NO3)3, характеризующегося более
низкими температурами стадии II взаимодей-
ствия имидазол — лиганд и стадии III доокис-
ления продуктов неполного термолиза имида-
зола воздухом (см. рис 1,в), образуются окси-
ды железа (преимущественно Fe2O3). Для бо-
лее термостабильных медь- и никельсодержа-
щих комплексов характерно образование ме-
талла наряду с оксидными фазами. Сделано
предположение, что восстановление металлов
осуществляется под действием аммиака, ко-
торый выделяется при термическом распаде

азотнасыщенных лигандов. Благодаря экрани-
рованию аморфным углеродсодержащим слоем

(см. рис. 8) металл не подвергается окислению.

ЗАКЛЮЧЕНИЕ

В работе были синтезированы и оха-
рактеризованы комплексные соединения

состава Ni(Im)6(NO3)2, Fe(Im)4(NO3)3 и

Cu(Im)4(NO3)2. Результаты термического

анализа показали, что природа металла ока-
зывает существенное влияние на скорость тер-
мического разложения изученных комплексов.
Тем не менее для них характерны три стадии

термодеструкции: (I) удаление лигандов из

внутренней координационной сферы катиона

металла; (II) окисление органического лиганда
нитрат-анионом, сопровождаемое сильным

экзотермическим эффектом; (III) пиролиз про-
дуктов неполного разложения органического

лиганда в инертной среде. Было установле-
но, что энергия активации экзотермической

стадии окислительно-восстановительных пре-
вращений в системе лиганд — нитрат зависит

от строения комплекса и при существенно

отличающихся скоростях нагрева увеличива-
ется в ряду Fe(Im)4(NO3)3 < Ni(Im)6(NO3)2 <
Cu(Im)4(NO3)2. Изучение химического и фа-
зового состава конденсированных продуктов

сгорания изученных металлорганических

комплексов на воздухе показало, что в слу-
чае никелевого комплекса они содержат две

кристаллические фазы никеля — Ni0 и NiO в

случае медьсодержащего — оксиды меди I и II
с небольшим количеством восстановленной ме-
ди, в случае железосодержащего комплекса —
только окисленные формы этого элемента —
Fe2O3 и Fe3O4.
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