\[dE(t)/dt = (kT - E(t))/\tau_\epsilon(\infty), \]

где

\[\tau_\epsilon(\infty) = (kT)^2 \int_0^{p_1} B(\varepsilon) f^0(\varepsilon) d\varepsilon. \]

Формула (3.6) правильно описывает поведение \(\tau_\epsilon(\infty) \) в зависимости от \(W \) и \(\xi_0 \).

Отметим в заключение основные особенности влияния ангармоничности на кинетику процесса колебательной релаксации в бинарной смеси двухатомных молекул. Это влияние определяется главным образом значениями параметра адиабатичности \(\xi_0 \) и отношением основных частот \(W \). Для любых \(W \) при \(\xi_0 \leq 10 \), а также для \(W < 1/3 \) и \(W > 3 \) при любых \(\xi_0 \), доминирующем по скорости является процесс \(V - T \)-обмена. При \(1/3 \leq W \leq 3 \) и \(\xi_0 > 10 \) важную роль (в зависимости от энергий возбуждения) играет процесс колебательно-колебательного обмена, при этом роль ангармоничности возрастает с увеличением \(\xi_0 \) и зависит от \(W \) (при целочисленных значениях \(W \) ангармоничность приводит к уменьшению эффективности колебательно-колебательного обмена, при дробных — к его увеличению). Текущее характерное время релаксации средней энергии \(\tau_\epsilon \) может изменяться в процессе релаксации на 1—2 порядка.

Поступила 23 IX 1981

ЛИТЕРАТУРА

1. Никитин Е. Е., Осипов А. И. Колебательная релаксация в газах.— Итиги науки и техники ВИНИТИ. Кинетика и катализа, 1977, т. 4.

5. Сафарян М. Н., Скребков О. В. Кинетика колебательно-поступательного обмена двухатомных молекул — ангармонических осцилляторов в среде инертного газа.— ФГВ, 1975, т. 11, № 4.

УДК 532.525.2

О ЗАВИСИМОСТИ ЭФФЕКТИВНОСТИ РЕЗОНАТОРА СО2-ГДЛ ОТ ПАРАМЕТРОВ ЛАЗЕРНОЙ СМЕСИ

Г. Я. Дынникова

(Москва)

Газодинамические лазеры на двуокиси углерода являются в настоящее время наиболее полно изученными [11]. Разработаны многочисленные методы расчета характеристик ГДЛ, начиная от приближенных аналитических формул, позволяющих делить некоторые оценки, до численных методов решения сложных систем дифференциальных уравнений, описывающих многообразные физические процессы. Тем не менее усовершенствование аналитических формул остается актуальным. Это связано с непрерывно развивающимся поиском повышения эффективности ГДЛ, применением и разработкой новых способов получения активной среды, что, в свою очередь, связано с необходимостью оптимизации многих параметров.

В данной работе получена аналитическая зависимость предельного значения эффективности резонатора (под эффективностью резонатора здесь понимается отношение числа вышедших из резонатора квантов излучения к числу колебательных квантов, накопленных на верхнем лазерном уровне и в молекулах азота) от характеристик активной среды на входе в резонатор с учетом релаксационных потерь в его полости и отсутствия термо-
динамического равновесия между колебательными модами (четырехтемпературная модель). При выводе использовано условие равенства полных потерь излучения и полного усиления при постоянной интенсивности во всем объеме резонатора [2]

\[2\langle k \rangle d = \ln (1/r), \]

где \(\langle k \rangle = (1/S) \int k dS; \ k \) — коэффициент усиления; \(S \) — площадь зоны генерации; \(r \) — эффективный коэффициент отражения резонатора, учитывающий потери, связанные с поглощением в зеркалах и выходом излучения; \(d \) — толщина активной среды вдоль оптической оси. В [2] получено явное выражение для генерируемой мощности в рамках двухтемпературной модели. Анализ этого выражения и оптимизация некоторых параметров резонатора позволяют получить предельные значения эффективности резонатора \(\sigma \) при заданном отношении \(\eta \) усиления активной среды \(k_0d \) на входе в резонатор к коэффициенту поглощения зеркал \(\delta \):

\[\sigma = 1 - (1 + \ln \eta)/\eta. \]

Однако формула, приведенная в [2], неправильно отражает характер зависимости мощности генерируемого излучения от состава лазерной смеси (например, максимальное ее значение получается в отсутствие паров воды) и от длины зоны генерации, при уменьшении которой, согласно [2], мощность непрерывно возрастает. Это является следствием использования двухтемпературной модели, которая неприменима при больших значениях интенсивности излучения в резонаторе и малой скорости релаксации нижнего лазерного уровня, имеющей место при недостатке паров. Все это приводит к необходимости рассмотрения четырехтемпературной модели. В [2] представлены линеаризованные уравнения, описывающие систему в соответствии с этой моделью, и намечены пути решения задачи. В данной работе решение доведено до явного выражения для \(\sigma \) и проведен его анализ. Использовалась система линейных уравнений, аналогичная [2]:

\[\frac{de}{d\xi} = A e + B, \]

\[e = (e_1, e_2, e_3), \quad B = (K_1 e_1^{*}, 0, 0), \]

\[A = \begin{pmatrix}
-K_1 + \beta_1 I + 2\beta_2 K_{1,2} & -\beta_1 I + \beta_2 K_{1,2} & 0 \\
\beta_1 I + K_1 e_2^{*} & -\beta_1 I + \beta_2 K_{1,2} & x_N \\
0 & x_N & -(x_C + x_N K_{1,2})
\end{pmatrix}, \]

где \(\xi = x/v_0; \ \beta = K_0 v_0 (x_C N_e e_0 - e_1(0))h^2)^{1/2} ; \ K_1 = \tau_0/v_1 ; \ \beta_1 = \beta h / v_1 ; \ \beta_2 = \beta h / v_2 ; \ \tau_0 = \tau_1 = \tau_2 = \tau_3 = \text{время обмена колебательными квантами между N_2 и CO_2; v_1, v_2, v_3} = \text{время релаксации соответственно молекул H_2O, a также видимо неясным, не релаксации соответственно молекул CO_2}.

Уравнение (3) отличается от уравнений [2] наличием члена, учитывающего \(V - T \)-релаксацию колебаний азота при соударении с молекулами H_2O, а также видимо неясным, не релаксации соответственно молекул CO_2.

Можно показать, что для CO_2-лазера с небольшими концентрациями углекислого газа (\(x_C < 0.2 \) одного из собственных чисел матрицы \(A \) по абсолютной величине много меньше других и все три отрицательны. Благодаря этому при рассмотрении интегральных характеристик резонатора можно пренебречь вкладом в решение собственных векторов матрицы \(A \), соответствующих большим по модулю собственным числам, и ограничиться исследованием медленно убывающего решения. Можно показать также, что минимальное собственное число \(\lambda \) по абсолютной величине много меньше диагональных элементов второго и третьего строк матрицы \(A \). Это упрощает нахождение \(\lambda \) и соответствующего ему собственного вектора настроения.
\(c_1, c_2, c_3 \). Так, подставляя в первое и второе уравнения системы (3) решение
\[e = c \exp(-\lambda \xi) - A^{-1}B \]
и пренебрегая величиной \(\lambda \) по сравнению с диагональными элементами, получим значения компонент собственного вектора
\[e_{const} + \begin{pmatrix} x_N (\beta_1 + 3 \beta_2 K_{1.2}) \\ \beta I [K_1 + 2 \beta_2 x_N - \beta_2 (1 - \beta_2) K_{1.2}] + K_1 K_{1.2} + x_N (K_1 + 3 \beta_2 K_{1.2}) \end{pmatrix} \]
Зная \(e \), из первого уравнения можно найти
\[\lambda = \frac{\beta I [K_1 - \beta_2 (1 - \beta_2) K_{1.2}] + K_{1.2}}{\beta I [K_1 + 2 \beta_2 x_N - \beta_2 (1 - \beta_2) K_{1.2}] + K_{1.2} + x_N (K_1 + 3 \beta_2 K_{1.2}) + x_N K_1} \]
Величина интенсивности \(I \) находится из условия (1)
\[\frac{\frac{e_2}{e_3} - \frac{e_1}{\lambda L}}{e_3} \left[1 - \exp(-\lambda L) \right] + K_1 \frac{\frac{e_1}{e_3}}{\lambda} \left(\text{Det} A \right) \left[x_N K_3 (x_N + K_{1.2} - \beta_2 K_{1.2}) + x_N K_{1.2} (1 - \beta_2) \right] = \frac{\frac{e_1}{e_3}}{\lambda} \ln (1/r). \]
Генерируемая мощность \(W \) соответственно равна [1]:
\[W = (t/2) I S, \]
где \(t \) — коэффициент пропускания. Максимизируя величину \(W \) по \(t \) и \(L \), можно найти предельное значение эффективности резонатора при заданных параметрах рабочего газа на входе:
\[\sigma = F(g, \psi), \]
\[f = x_C a_1 (x_C a_2 + x_N K_2 a_3)^{-1}, \quad g = a_4 a_1^{-1}, \]
\[\gamma = (x_N a_1 + x_C x_N K_{1.2}) a_4 a_1^{-1} (x_N K_3 a_2 + x_C a_2)^{-1}, \]
\[a_1 = 1 - 3 v_1, \quad a_2 = 1 - v_1, \quad v_1 = \beta_2 (1 - \beta_2) K_{1.2}, \]
\[a_3 = 1 + 2 \beta_2 x_N K_{1.2}^{-1} - v_1, \quad a_4 = 1 + K_{1.2} (x_N^{-1} + 3 \beta_2 K_{1.2}^{-1}), \]
где функция \(F(g, \psi) \) выражается в параметрическом виде
\[F = \left[1 + \gamma \psi (g - \psi) \right]^{-1} \left[1 + (1 + \ln \psi) / \psi \right], \]
\[\gamma = \frac{(g - \psi)^2}{\ln \psi} \quad \text{при} \quad \psi \ll 1. \]
Выражение (4) получено в предположении \(e_3 (0) \gg e_1^*. \)
На рис. 1 изображен график функции \(F(g, \psi) \) (\(\psi = 0; 0,02; 0,04; 0,1; 0,2; 0,5; 1 \) — красный \(I - \gamma \) соответственно). Из графика видно, что при значении \(F \) для \(\gamma \) тем выше, чем меньше \(\psi \). При \(f = 1, \gamma = 0 \) выражение (4) переходит в (2). Это связано с тем, что в отсутствие колебательной релаксации верхнего лазерного уровня и азота \(K_{1.2} = 0, K_3 = 0 \) эффективность резонатора возрастает с ростом \(L \), при этом \(I \) уменьшается и четырехтемпературная модель становится эквивалентной двухтемпературной. Беллина \(\gamma \) является функцией температуры и концентрации компонентов смеси. Заметим, что при изменении \(x_C \) из-
меняется также значение η. На фиг. 2 показана зависимость γ от x_C и x_N при температуре 350 К (γ = 0,04; 0,05; 0,075; 0,1; 0,125; 0,15; 0,175; 1 — кривые 1—8 соответственно).

Для вычисления констант K_1, K_{1,2}, K_2 при этой температуре использовались данные работ [3—5]:

\[K_3 = 1,4 \cdot 10^{-2}, \]
\[K_1 = 2,0 \cdot 10^{-2}x_C + 1,2 \cdot 10^{-2}x_N + 2\eta x_N, \]
\[K_{1,2} = 2,6 \cdot 10^{-2}x_C + 0,7 \cdot 10^{-2}x_N + 2,0x_N. \]

Зависимость функции f от состава рабочего газа представлена на фиг. 3 (f = 0; 0,9; 0,95; 0,97; 0,98; 0,99 — кривые 1—6 соответственно). Из графиков видно, что при фиксированных значениях поступательной и колебательных температуры на входе в резонатор, а также отношения d/ds с ростом x_C, а следовательно, с ростом η при оптимальном выборе x_N эффективность резонатора увеличивается. Однако этот рост происходит медленнее и режим, близкий к насыщению, наступает при более высоких значениях x_C, чем это следует из рассмотрения двухтемпературной модели без учета релаксации верхнего уровня. Зависимость эффективности систем, создающих активную среду, от состава газа и температуры носит иной характер: эффективность, как правило, убывает с увеличением x_C, поэтому оптимизация параметров ГДЛ в целом должна проводиться с учетом их влияния на эффективность всех элементов генератора. Формула (4) может быть применена при постановке таких задач.

Поступила II VIII 1981

ЛИТЕРАТУРА

2. Ведеров А. А., Ващарович А. П. Теория быстропроточного лазера.— ТВТ, 1974, т. 12, № 5.