УДК 544.723.23: 661.642.5,661.875.27 DOI: 10.15372/KhUR20180115

Адсорбция арсенит- и бихромат-ионов почвами Удмуртии

М. А. ШУМИЛОВА, В. Г. ПЕТРОВ

Удмуртский Федеральный исследовательский центр Уральского отделения РАН, Ижевск, Россия

E-mail: mashumilova@mail.ru

(Поступила 25.05.17; после доработки 22.01.18)

Аннотация

На примере четырех типов почв Удмуртии рассмотрен процесс сорбции ими анионов мышьяка и хрома в особо токсичных формах. На основе полученных экспериментальных данных построены изотермы Лэнгмюра и Фрейндлиха; определены константы, указывающие на слабую поглотительную способность почв Нечерноземья по отношению к данным анионам. Высокая растворимость соединений мышьяка и хрома на фоне слабой сорбционной способности почв определяет экологические риски активной миграции анионов As(III) и Cr(VI) по почвенному профилю. Их мобильность необходимо учитывать при проведении экологического мониторинга.

Ключевые слова: арсенит-ион, бихромат-ион, адсорбция, изотерма Лэнгмюра, изотерма Фрейндлиха, константы адсорбции

введение

Химическое загрязнение окружающей среды – один из наиболее значимых факторов разрушения биосферы; в частности, среди ксенобиотиков особую угрозу представляют тяжелые металлы. Известно, что анионные формы хрома и мышьяка являются опасными токсикантами. Возможное загрязнение окружающей среды Удмуртии мышьяксодержащими веществами связано с уничтожением химического оружия, в частности, люизита; с другой стороны, на территории республики функционирует большое число предприятий металлургической отрасли – потенциальных источников поступлений соединений хрома в природные объекты. В России мышьяк относится к первому классу опасности, а хром ко второму; токсичность обоих элементов зависит от степени их окисления: хром наиболее токсичен в высшей степени окисления

© Шумилова М. А., Петров В. Г., 2018

(VI), а мышьяк – в низшей (III). Предельно допустимая концентрация (ПДК) для наиболее токсичных форм исследуемых элементов составляет 2.0 мг/кг почвы для мышьяка и 0.05 мг/кг почвы для хрома (VI), при этом оба элемента присутствуют в виде легкорастворимых соединений [1, 2]. Высокая растворимость соединений способствует их миграции по почвенному профилю, что может привести к загрязнению подземных вод и открытых водоемов. Надежные оценки экологических рисков могут быть получены только на основе точного представления о процессах, происходящих с загрязняющими веществами в природной среде. Исследование процессов адсорбции анионов мышьяка и хрома распространенными типами почв Удмуртии имеет актуальное значение для выработки мероприятия по предотвращению распространения поллютантов в природных средах.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В лабораторных условиях изучены сорбционные процессы анионов мышьяка (III) и хрома (VI) на горизонтах A₀ наиболее распространенных типов почв Удмуртии: дерновосильноподзолистой слабосмытой, дерново-карбонатной выщелоченной слабосмытой, серой лесной оподзоленной. Агрохимические характеристики почв приведены в табл. 1. Отбор, транспортировка и хранение почвенных образцов для экоаналитических исследований осуществлялись согласно стандартам [3, 4]. Пробоподготовку почвенных образцов и определение таких агрохимических показателей, как гигроскопическая влажность, рН водной и солевой вытяжки, содержание гумуса, проводили по стандартным методам [5]. Значение рН почвенной вытяжки устанавливали потенциометрическим методом с помощью иономера И-160 МИ.

Для изучения сорбционных процессов исходные растворы арсенит-иона с содержанием металла 60.0 мг/дм³ и бихромат-иона с содержанием металла 0.7 мг/дм³ готовили растворением навесок соответствующих солей NaAsO₂ и K₂Cr₂O₇ квалификации "ч. д. а.", точную концентрацию устанавливали спектроскопически. Изотермы адсорбции получены варьированием исходных концентраций в суспензиях арсенит-иона от 2.95 до 58.99 мг/дм³ и бихромат-иона – от 0.036 до 0.720 мг/дм³. К воздушно-сухим почвенным образцам приливали раствор соответствующей соли металла различной концентрации в соотношении 1:9, затем фазы перемешивали гомогенизатором в течение нескольких суток до установления равновесия. По разности концентраций иона в исходном растворе и в фильтрате определяли поглощенное количество металла, отнесенное к единице почвы. Концентрацию анионов в фильтратах устанавливали методом атомно-абсорбционной спектрофотометрии с электротермической атомизацией на приборе Shimadzu-AA7000 (Япония) по стандартной методике М-02-902-125-2005 [6]. Все эксперименты проводили в трех повторностях, определяли средние значения с границей относительной погрешности ± 11 % (при P = 0.95). Для спектрального анализа использовались реагенты квалификации "ос. ч.".

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Химическая поглотительная способность – это способность почвы поглощать и обменивать ионы, находящиеся на поверхности коллоидных частиц (в диффузном слое), на ионы почвенного раствора. Сорбция играет важную роль в закреплении почвами анионов поливалентных металлов. На степень химического поглощения существенное влияние оказывают природа аниона, состав коллоидов и реакция среды: чем больше в почве амфолитоидов и чем кислее реакция среды, тем сильнее выражено химическое поглощение аниона; гумусовые вещества снижают интенсивность поглощения анионов.

Сорбция устанавливает распределение вещества между фазами почвы в зависимости от содержания ксенобиотика в системе. Важнейшей сорбционной характеристикой является изотерма адсорбции.

Для изучения адсорбционного процесса полученные экспериментальные данные рассчитывались на соответствие изотермам Лэнгмю-

ТАБЛИЦА 1

Основные агрохимические параметры почвенных образцов

Тип почвы	Грануломет-	Гигроскопическая	Гумус, %	pH		ΔpH
	рический состав	влажность		H_2O	KCl	_
Дерново-сильноподзолистая супесчаная	Супесчаная	2.65	7.69	6.22	5.58	-0.64
Дерново-сильноподзолистая слабосмытая	оподзолистая Тяжело- суглинистая		1.58	6.23	5.22	-1.01
Дерново-карбонатная выщелоченная слабосмытая	То же	2.51	3.28	6.63	5.57	-1.06
Серая лесная оподзоленная	«	2.49	4.74	6.41	5.37	-1.04

Рис. 1. Изотермы Лэнгмюра сорбции арсенит- (*a*-*г*) и бихромат-иона (*д*-з) А₀ горизонтами дерново-сильноподзолистой супесчаной (*a*, *д*), дерново-сильноподзолистой слабосмытой (*б*, *e*), дерново-карбонатной выщелоченной слабосмытой (*в*, *ж*), серой лесной оподзоленной (*г*, з).

Рис. 2. Изотермы Фрейндлиха сорбции арсенит- (*a*-*г*) и бихромат-иона (*d*-*з*) A₀ горизонтами дерново-сильноподзолистой супесчаной (*a*, *d*), дерново-сильноподзолистой слабосмытой (*б*, *e*), дерново-карбонатной выщелоченной слабосмытой (*в*, *ж*), серой лесной оподзоленной (*г*, *з*).

ра или Фрейндлиха. Модель Лэнгмюра предполагает, что адсорбция происходит на определенных однородных участках, расположенных на поверхности адсорбента. Ее уравнение имеет следующий вид:

$$C_{\rm cop6} = Q_{\rm max} \frac{K_{\rm L}C}{1 + K_{\rm L}C}$$
(1)

или в линеаризованной форме:

 $1/C_{\rm copf} = 1/Q_{\rm max} + 1/Q_{\rm max}K_{\rm L}C$ (2) где $C_{\rm copf}$ – количество компонента, адсорбированного твердой фазой, отнесенной к ее массе; C – равновесная концентрация компонента в растворе; $K_{\rm L}$ – эмпирический коэффициент адсорбции, или коэффициент Лэнгмюра, характеризующий прочность связи между элементом и сорбционными участками и энергию их взаимодействия; $Q_{\rm max}$ – максимум адсорбции, или емкость монослоя Лэнгмюра.

Когда изотерма Лэнгмюра не соответствует имеющимся экспериментальным данным, часто используют модель адсорбции Фрейндлиха, которая лучше описывает поведение слабоокристализованных или аморфных адсорбентов с практически непрерывным распределением поверхностных участков по энергии адсорбции (неоднородная поверхность). Уравнение изотермы адсорбции на гетерогенной поверхности в несколько слоев имеет вид $C_{\rm copf} = K_{\rm F} {\rm C}^{1/n}$ (3) или в линеаризованной форме:

 $\lg C_{\rm copf} = \lg K_{\rm F} + 1/n \lg C \tag{4}$

где $K_{\rm F}$ – коэффициент адсорбции Фрейндлиха, характеризующий общую сорбционную способность твердой фазы; 1/n – эмпирический показатель степени в уравнении Фрейндлиха, обычно n > 1.

Для описания сорбции As(III) и Cr(VI) четырьмя типами почв Удмуртии использована линеаризация уравнений Лэнгмюра и Фрейндлиха. Обнаружено, что в зависимости от ряда факторов изотермы адсорбции каждого элемента могут различаться (рис. 1, 2). Например, адсорбция мышьяка почвами практически соответствует линеаризованному уравнению Лэнгмюра (см. рис. 1, а-г), при этом в варианте с дерново-сильноподзолистой слабосмытой почвой (см. рис. 1, б) удовлетворительное соответствие модели наблюдается только в области малых концентраций поллютанта; с увеличением содержания As(III) (>25 $Mr/дm^3$) данное уравнение не применимо. Низкие значения концентрационной константы адсорбционного равновесия К. (табл. 2), которая характеризует интенсивность процесса и по сути является коэффициентом распределения иона между твердой фазой и раствором, свидетельствуют о том, что исследуемые типы почв не способны удерживать арсенит-ионы. В лабораторных условиях наиболее высокое сродство к арсенит-иону зафиксировано для дерново-сильноподзолистой супесчаной почвы; далее по уменьшению прочности связи между ионом металла и сорбционными участками располагаются серая лесная оподзоленная и дерново-карбонатная выщелоченная слабосмытая почва. Вычисленная максимальная емкость монослоя Лэнгмюра почвенного поглощающего комплекса (ППК) (см. табл. 2) наблюдается для дерново-карбонатной выщелоченной слабосмытой почвы, которая задействуется очень незначительно.

Полученные экспериментальные данные по поглотительной способности почв в отноше-

ТАБЛИЦА 2

Параметры Ләнгмюра и Фрейндлиха для адсорбции арсенит- и бихромат-ионов почвами Удмуртии

Арсенит-ион				Бихромат-ион				
$\overline{Q_{\max}}$, мг/кг	$K_{ m L}$, дм $^3/$ мг	$K_{\rm F}$	1/n	$Q_{ m max}$, мг/кг	$K_{ m L}$, дм $^3/$ мг	K _F	1/n	
		Дерно	во-сильноп	юдзолистая супесч	аная			
58.82	0.95	26.92	0.29	4.03	-6.7	1.57	1.36	
		Дернов	зо-сильноп	одзолистая слабосм	ытая			
0.13	-0.69	14.79	0.25	11.76	-0.1	1.90	0.88	
		Дерново	-карбонатн	ая выщелоченная	слабосмытая			
125.00	0.15	17.78	0.54	1.09	-0.5	-5.08	1.19	
		C	ерая лесна	я оподзоленная				
71.43	0.19	18.62	0.44	208.33	-0.31	-3.29	1.48	

нии Cr(VI) удовлетворительно согласуются с линеаризованной формой изотермы Лэнгмюра (см. рис. 1, д-ж). Определенный коэффициент адсорбции для бихромат-иона (см. табл. 2) существенно меньше аналогичного показателя для арсенита и свидетельствует о практически отсутствии взаимодействия между анионом хрома и сорбционными участками почвы. Невозможность образования прочной связи между ППК и анионами можно объяснить отрицательным зарядом почвенных коллоидов [7]: $\mathrm{pH}_{\mathrm{KCl}}$ – $\mathrm{pH}_{\mathrm{H_2O}}\approx$ –1.0 (см. табл. 1), что препятствует сорбции одноименно заряженных ионов мышьяка и хрома; при этом из-за более отрицательного заряда бихромат-иона его закрепление в почве практически невозможно. Таким образом, слабая энергия взаимодействия между арсенит- и бихромат-ионами и почвенными коллоидами обусловливает достаточно легкое вымывание анионов из почвы.

Не все экспериментальные данные по сорбции Cr(VI) соответствовали изотерме Лэнгмюра (см. рис. 1, 3), поэтому для описания сорбции почвами As(III) и Cr(VI) мы использовали также линеаризованную форму уравнения Фрейндлиха (см. рис. 2, а-з). Экспериментальные точки располагаются вблизи прямой при высоком содержании арсенита (>3.0 мг/дм³) в исследуемых образцах почвы (см. рис. 2, а-в), следовательно, данная модель пригодна для описания адсорбции мышьяка почвами; значения K_F варьируют в интервале 14.79-26.92 (см. табл. 2). Как и в случае с константами Лэнгмюра, константы Фрейндлиха подтвердили более высокое сродство к арсенитиону у дерново-сильноподзолистой супесчаной почвы, затем по убыванию общей сорбционной способности твердой фазы по отношению к арсенит-иону располагаются дерновокарбонатная выщелоченная слабосмытая и дерново-сильноподзолистая слабосмытая почва. По сравнению с остальными исследуемыми образцами дерново-сильноподзолистая супесчаная почва характеризуется (см. табл. 1) минимальным (по абсолютной величине) отрицательным зарядом поверхности адсорбента (практически в 2 раза по сравнению с другими) и максимальным содержанием гумуса. Согласно гранулометрическому составу, она характеризуется самыми малыми размерами частиц и, соответственно, самой большой

удельной поверхностью, а, значит, и большей поглотительной способностью. Подобные закономерности влияния физических и химических свойств трех калифорнийских почв на адсорбцию ими арсенит-иона установлены авторами [8], которые также констатировали слабую удерживающую способность почв по отношению к данному аниону.

Изотермы адсорбции Cr(VI) исследуемыми почвами показали различное фрейндлиховское поведение иона (см. рис. 2, д-з). Экспериментальные данные проверяли на соответствие линеаризованной форме модели изотермы Фрейндлиха, которая в целом неплохо описывает сорбционные процессы исследуемыми образцами по отношению к бихроматиону (см. рис. 2, $\partial - \omega$), что позволило рассчитать соответствующие константы (см. табл. 2). Часть точек, рассчитанных для серой лесной почвы, как по отношению к хрому (см. рис. 2, 3), так и к мышьяку (см. рис. 2, г), в большей или меньшей степени удалены от линии изотермы, что свидетельствует о неполном соответствии процесса уравнению Фрейндлиха. Значения *K*_F для бихромат-иона варьируют в пределах от -5.08 до 1.90 для почвенного горизонта А. Отрицательные параметры сорбции анионов трактуются Гедройцем [9] как отрицательное поглощение веществ. Отрицательная сорбция обусловлена снижением концентрации анионов во внутренней части сорбционной пленки. Как следствие, их концентрация в диффузных и, следовательно, в более подвижных слоях водной пленки растет, что усиливает процессы вымывания анионов из почвы и миграции в водоемы. Низкие значения констант для дерново-сильноподзолистых почв (см. табл. 2) также свидетельствуют об их слабой удерживающей способности по отношению к Cr(VI), гораздо меньшей по сравнению с адсорбцией арсенит-иона. Таким образом, сорбционная способность почвы зависит и от величины заряда аниона: с ростом его абсолютной величины адсорбция снижается. Согласно экспериментальным данным (см. табл. 1, 2), количество гумуса в почве не влияет на степень адсорбции хромата, в частности, серая лесная почва обладает весьма слабой сорбционной способностью по отношению к обоим анионам.

Вычисленные константы Фрейндлиха находятся в полном соответствии с полученными нами ранее данными по периодам полувыведения для анионов. Так, максимальной величине $K_{\rm F} = 1.90$ для дерново-сильноподзолистой слабосмытой почвы соответствует период полувыведения в 1.01 лет [10], в то время как у арсенит-иона для данного типа почвы период полувыведения равняется 3.01 года [11]. С другой стороны, загрязняющие вещества в форме катионов тяжелых металлов обладают периодом полувыведения в несколько десятков и сотен лет, например, у катиона хрома (3+) период полувыведения равняется 51 году [12].

ЗАКЛЮЧЕНИЕ

Интенсивность сорбции поллютантов почвой определяет объемы поступления загрязняющих веществ в почвенно-грунтовые воды при химическом загрязнении. Полученные нами результаты свидетельствуют о слабой сорбционной способности почв по отношению к анионам мышьяка и хрома. При этом с ростом величины заряда аниона поллютанта (AsO₂⁻ и Cr₂O₇²⁻) поглощающая способность адсорбента резко уменьшается и увеличивается скорость вымывания металла. Неспособность типичных для Удмуртии почв к проч-

ному закреплению поллютантов в анионной форме необходимо учитывать при организации мероприятий по предотвращению их распространения в природных средах.

СПИСОК ЛИТЕРАТУРЫ

- 1 Умяров И. А., Кузнецов Б. А., Кротович И. Н., Холстов В. И., Соловьев В. К. // Рос. хим. журн. 1993. Т. 37, № 3. С. 25–29.
- 2 Вредные химические вещества. Неорганические соединения V–VIII групп: Справ. изд. Л.: Химия, 1989. 592 с.
- 3 ГОСТ 17.4.3.01-83 Охрана природы. Почвы. Общие требования к отбору проб. М.: ИПК Изд-во Стандартов, 2004. 4 с.
- 4 ГОСТ 28168-89 Отбор проб. М.: Стандартинформ, 2008. 7 с.
- 5 Аринушкина Е. В. Руководство по химическому анализу почв. М.: Изд-во МГУ, 1970. 487 с.
- 6 Методика количественного химического анализа. Определение металлов в питьевой, минеральной, природной, сточной воде и в атмосферных осадках атомно-абсорбционным методом. М-03-505-119-03. С-Пб., 2005. 28 с.
- 7 Воробьева Л. А., Ладонин Д. В., Лопухина О. В., Рудакова Т. А., Кирюшин А. В., Химический анализ почв. Вопросы и ответы. М.: Изд-во Россельхозакадемии, 2012. 186 с.
- 8 Manning B. A., Goldberg S. // Soil Science. 1997. Vol. 162, No. 12. P. 886-895.
- 9 Вальков В. Ф., Казеев К. Ш., Колесников С. И. Почвоведение: Учебн. для вузов. Москва: МарТ, 2004. 496 с.
- 10 Петров В. Г., Шумилова М. А., Новикова Н. В. // Хим. физика и мезоскопия. 2016. Т. 18, № 2. С. 289–295.
- 11 Шумилова М. А., Петров В. Г., Набокова О. С. // Хим. физика и мезоскопия. 2012. Т. 4. С. 626–632.
- 12 Петров В. Г., Шумилова М. А., Набокова О. С., Лебедева М. Г. // Теор. и прикл. экология. 2012. № 4. С. 71–74.