2015. Том 56, № 8

Декабрь

C. 1581 – 1587

УДК 541.49:538.214:548.736

## СПИН-КРОССОВЕР В КООРДИНАЦИОННЫХ СОЕДИНЕНИЯХ ЖЕЛЕЗА(II) С *ТРИС*(ПИРАЗОЛ-1-ИЛ)МЕТАНОМ И КЛАСТЕРНЫМИ АНИОНАМИ

О.Г. Шакирова<sup>1</sup>, Л.Г. Лавренова<sup>2,3</sup>, Е.В. Коротаев<sup>2</sup>, Л.А. Шелудякова<sup>2,3</sup>, В.А. Варнек<sup>2</sup>, М.А. Шестопалов<sup>2,3</sup>, Ю.В. Миронов<sup>2,3</sup>

<sup>1</sup>Комсомольский-на-Амуре государственный технический университет, Россия E-mail: Shakirova Olga@mail.ru

<sup>2</sup>Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия E-mail: ludm@niic.nsc.ru

<sup>3</sup>Новосибирский национальный исследовательский государственный университет, Россия

Статья поступила 21 марта 2015 г.

Разработаны методики синтеза новых координационных соединений железа(II) с *трис*(пиразол-1-ил)метаном (HC(pz)<sub>3</sub>), содержащих кластерные анионы во внешней сфере, состава [Fe{HC(pz)<sub>3</sub>}<sub>2</sub>][Mo<sub>6</sub>Cl<sub>14</sub>]·2H<sub>2</sub>O (I), [Fe{HC(pz)<sub>3</sub>}<sub>2</sub>][Mo<sub>6</sub>Br<sub>14</sub>]·H<sub>2</sub>O (II) и [Fe{HC(pz)<sub>3</sub>}<sub>2</sub>]<sub>2</sub>[Re<sub>6</sub>S<sub>8</sub>(CN)<sub>6</sub>]·2H<sub>2</sub>O (III). Соединения изучены с помощью методов статической магнитной восприимчивости, электронной, ИК и мессбауэровской спектроскопии. Магнетохимическое исследование показало, что в поликристаллических фазах всех соединений наблюдается спин-кроссовер (CKO)  ${}^{1}A_{1} \Leftrightarrow {}^{5}T_{2}$ , который сопровождается термохромизмом.

DOI: 10.15372/JSC20150809

Ключевые слова: координационные соединения, железо(II), *mpuc*(пиразол-1-ил)метан, октаэдрические кластерные комплексы, спин-кроссовер, термохромизм.

Спин-кроссовер (СКО) в координационных соединениях 3*d*-металлов с электронной конфигурацией  $d^4 - d^7$  привлекает неизменное внимание исследователей. Этой теме посвящены монографии [1, 2] и ряд обзоров [3-5]. Спин-кроссовер (спиновый переход) наблюдается в октаэдрических или псевдооктаэдрических комплексах с лигандами, имеющими определенную силу поля. Изменение спиновой мультиплетности происходит под влиянием температуры, давления или облучения светом определенной длины волны. Такие комплексы представляют интерес для практического применения, в частности, как материалы для создания дисплеев и систем памяти [6-11]. Особый интерес представляют комплексы железа(II) с полиазотсодержащими лигандами, в которых СКО сопровождается термохромизмом, так как это явление имеет самостоятельное практическое значение. Такие соединения могут применяться в качестве термоиндикаторов, термохромных меток, температурно-чувствительных материалов в магнитно-резонансной томографии [12, 13] и т.д.

*Трис*(пиразол-1-ил)метаны представляют собой класс лигандов, перспективный для синтеза комплексов, обладающих СКО [5, 14—17]. Показано, что *трис*(пиразол-1-ил)метан координируется к ионам металла тремя атомами N(2) трех пиразольных колец по тридентатно-циклическому типу [16] (см. схему).

<sup>©</sup> Шакирова О.Г., Лавренова Л.Г., Коротаев Е.В., Шелудякова Л.А., Варнек В.А., Шестопалов М.А., Миронов Ю.В., 2015





*Рис.* 1. Структуры кластерных анионных комплексов  $[Mo_6X_{14}]^{2-}(a)$  и  $[Re_6S_8(CN)_6]^{4-}(\delta)$ 

Такой способ координации лиганда приводит к образованию октаэдрического полиэдра с координационным узлом FeN<sub>6</sub>. Для комплексов железа это является предпосылкой реализации СКО. Спин-кроссовер в комплексах железа(II) с *mpuc*(пиразол-1-ил)метаном наблюдается, как правило, при высоких температурах в интервале 310—470 К [5]. В ряде случаев это препятствует выходу кривой зависимости  $\mu_{эф\phi}(T)$  на плато. Известно, что температура СКО ( $T_c$ ) существенно зависит от состава соединения, природы лиганда и внешнесферного аниона, присутствия и числа молекул кристаллизационной воды. Нами получен представительный ряд комплексов железа(II) с *mpuc*(пиразол-1-ил)метаном, в том числе с рядом клозо-боратов и карборанов в качестве внешнесферных анионов [5, 18—20]. Большинство из них обладают СКО, который сопровождается термохромизмом: изменение цвета малиновый (розовый)  $\Leftrightarrow$  белый. Представлялось целесообразным продолжить исследования соединений железа(II) с HC(Pz)<sub>3</sub>, расширить группу комплексов Fe(II), синтезированных с данным лигандом, путем введения во внешнюю сферу новых анионов, в частности, кластерных анионов [ $Mo_6Cl_{14}$ ]<sup>2–</sup>, [ $Mo_6Br_{14}$ ]<sup>2–</sup> и [ $Re_6S_8(CN)_6$ ]<sup>4–</sup>.

Данные анионы являются типичными представителями семейства кластерных комплексов  $[\{M_6(\mu_3-X)_8\}L_6]$  с октаэдрическим кластерным ядром  $\{M_6(\mu_3-X)_8\}^{n+}$ , где M = Mo, X = Cl, Br, n = 4+ или M = Re, X = S, n = 2+. Такие комплексы представляют собой октаэдр из шести атомов металла, вписанный в куб из восьми атомов X таким образом, что каждый атом X находится над треугольными гранями октаэдра  $M_6$ . Каждый атом металла дополнительно координирован терминальным лигандом L — атомом Cl или Br для M = Mo, или CN лигандом в случае M = Re (рис. 1).

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза использовали FeSO<sub>4</sub>·7H<sub>2</sub>O "ч", перекристаллизованный из подкисленного водного раствора; аскорбиновую кислоту квалификации "мед". *Трис*(пиразол-1-ил)метан синтезировали по методике, приведенной в [16]. (Bu<sub>4</sub>N)<sub>2</sub>[Mo<sub>6</sub>Cl<sub>14</sub>], (Bu<sub>4</sub>N)<sub>2</sub>[Mo<sub>6</sub>Br<sub>14</sub>], K<sub>4</sub>[Re<sub>6</sub>S<sub>8</sub>(CN)<sub>6</sub>] получали по методикам, приведенным в [21—23].

Синтез [Fe(HC(pz)<sub>3</sub>)<sub>2</sub>][Mo<sub>6</sub>Cl<sub>14</sub>]·2H<sub>2</sub>O (I) и [Fe(HC(pz)<sub>3</sub>)<sub>2</sub>][Mo<sub>6</sub>Br<sub>14</sub>]·H<sub>2</sub>O (II). Навеску 28,7 мг, 0,1 ммоля соли FeSO<sub>4</sub>·7H<sub>2</sub>O растворяли в 0,5 мл дистиллированной воды, подкисленной 0,01 г аскорбиновой кислоты. К полученному раствору медленно, при перемешивании прибавляли раствор 42,8 мг, 0,2 ммолей HC(pz)<sub>3</sub> в 0,5 мл воды, а затем раствор 0,1 ммоля, 155,7 мг [Bu<sub>4</sub>N]<sub>2</sub>[Mo<sub>6</sub>Cl<sub>14</sub>] или 217,9 мг [Bu<sub>4</sub>N]<sub>2</sub>[Mo<sub>6</sub>Br<sub>14</sub>] в 2 мл ацетона. Сразу после смешивания из темно-малинового раствора выпадал светло-желтый (I) или желтый (II) осадок, который выдерживали в растворе при перемешивании на магнитной мешалке в течение получаса. Осадки отфильтровывали, промывали 3 раза по 1 мл ацетона, высушивали на воздухе.

Для I найдено, %: С 15,2, Н 1,5, N 10,1. Для С<sub>20</sub>H<sub>24</sub>Cl<sub>14</sub>FeMo<sub>6</sub>N<sub>12</sub>O<sub>2</sub> вычислено, %: С 15,1, Н 1,5, N 10,6.

Для II найдено, %: С 11,2, Н 1,1, N 7,3. С<sub>20</sub>Н<sub>22</sub>Вг<sub>14</sub>FeMo<sub>6</sub>N<sub>12</sub>О вычислено, %: С 10,9, Н 1,0, N 7,7.

Синтез [Fe(HC(pz)<sub>3</sub>)<sub>2</sub>]<sub>2</sub>[Re<sub>6</sub>S<sub>8</sub>(CN)<sub>6</sub>]·2H<sub>2</sub>O (III). Навеску 0,14 г, 0,5 ммолей FeSO<sub>4</sub>·7H<sub>2</sub>O растворяли в 2 мл дистиллированной воды, подкисленной 0,05 г аскорбиновой кислоты. К полученному раствору медленно прибавляли раствор 0,22 г, 1 ммоля HC(pz)<sub>3</sub> в 3 мл воды, раствор приобретал малиновый цвет вследствие образования комплекса [Fe(HC(pz)<sub>3</sub>)<sub>2</sub>]SO<sub>4</sub>. К этому раствору прибавляли 0,42 г, 0,25 ммолей K<sub>4</sub>[Re<sub>6</sub>S<sub>8</sub>(CN)<sub>6</sub>] в 10 мл воды. Сразу после смешивания из темно-малинового раствора выпадал розово-бежевый осадок, который выдерживали в растворе при перемешивании на магнитной мешалке в течение получаса. Осадок отфильтровывали, промывали несколько раз водой и горячим гексаном, высушивали на воздухе.

Для III найдено, %: С 21,7, Н 1,8, N 16,1, Fe 10,1. Для C<sub>46</sub>H<sub>44</sub>Fe<sub>2</sub>N<sub>30</sub>O<sub>2</sub>Re<sub>6</sub>S<sub>8</sub> вычислено, %: С 21,8, Н 1,8, N 16,6, Fe 10,1.

Выход соединений I, II и III составлял 97, 89 и 63 % соответственно.

При охлаждении в жидком азоте соединения проявляют термохромизм, изменение окраски желтый ⇔ розовый (I), желтый ⇔ оранжевый (II), бежевый ⇔ оранжевый (III).

Элементный анализ на C, H, N выполнен в аналитической лаборатории ИНХ СО РАН на приборе EURO EA 3000 фирмы EuroVector (Италия). Анализ на содержание железа в комплексе III проводили трилонометрически после разложения проб комплексов при нагревании в смеси концентрированной  $H_2SO_4$  и HClO<sub>4</sub> (1:2).

Дифрактометрическое исследование поликристаллов соединений выполнено на дифрактометре Shimadzu XRD 7000 при комнатной температуре с использованием Cu $K_{\alpha}$ -излучения.

Статическую магнитную восприимчивость поликристаллических образцов измеряли методом Фарадея в интервале температур 80—500 К при напряженности внешнего магнитного поля до 9 кЭ. Скорость нагрева (охлаждения) в области СКО составляла 0,5 град./мин. Температуры прямого ( $T_c$ ) и обратного ( $T_c$ ) переходов определяли исходя из условия  $d^2(\chi T)/dT^2 = 0$ .

ИК спектры поглощения снимали на ИК—Фурье спектрометрах Scimitar FTS 2000 в области 400—4000 см<sup>-1</sup> и Vertex 80 в области 100—400 см<sup>-1</sup> при комнатной температуре. Образцы готовили в виде суспензий в вазелиновом и фторированном маслах. Основные характеристические частоты в ИК спектрах лиганда, солей анионов и комплексов представлены в табл. 1. Спектры диффузного отражения (СДО) регистрировали на сканирующем спектрометре UV-3101 PC фирмы Shimadzu при комнатной температуре.

Мессбауэровские спектры комплексов измеряли при 78 К на спектрометре NP-610 с источником <sup>57</sup>Co (Rh). Из-за тяжелой матрицы образцов данные комплексы оказались исключительно сложными объектами исследований, в результате чего время измерения одного спектра составило примерно двое суток. При этом величина эффекта резонансного поглощения для отдельных линий спектров не превышала 1 % (это обстоятельство затруднило съемку спектров

при 295 К и более высоких температурах). Обработку спектров проводили путем их разложения на два квадрупольных дублета, один из которых относился к низкоспиновому  ${}^{1}A_{1}$  состоянию (HC), а другой — к высокоспиновому  ${}^{5}T_{2}$  состоянию (ВС). В результате обработки спектров находили изомерный сдвиг δ (относительно α-Fe), квадрупольное расщепление є и ширину линий дублетов Г<sub>1.2</sub>. Из отношения площадей линий дублетов к суммарной площади спектров определяли также относительное содержание атомов железа в низко- и высокоспиновом состоянии (%), в предположении равенства вероятностей эффекта Мессбауэра для атомов железа в НС и ВС состояниях, что является вполне удовлетворительным предположением для спектров, измеренных при 78 К.

 Основные колебательные частоты (см<sup>-1</sup>)

 в спектрах HC(Pz)<sub>3</sub> и комплексов I—III

 Отнесение
 HC(Pz)<sub>3</sub>
 I
 II
 III

 v(O—H)
 3553
 3429
 3401

 v(C—H)
 3117
 3129
 3126
 3118

Таблица

| ,(0 11)   |      |      |      |      |
|-----------|------|------|------|------|
|           | 2983 | 2959 | 2955 | 2969 |
|           |      | 2932 | 2930 | 2926 |
| R(Pz)     | 1604 | 1618 | 1619 | 1567 |
|           | 1574 | 1520 | 1518 | 1518 |
|           | 1517 |      |      |      |
| v(Fe—N)   |      | 270  | 296  | 285  |
| v(Mo—Hal) |      | 331  | 243  |      |

## РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Комплексы железа(II) с *трис*(пиразол-1-ил)метаном и кластерными внешнесферными анионами выделены при мольном соотношении Fe:HC(Pz)<sub>3</sub> = 1:2 из водно-ацетоновых (I, II) или водных (III) растворов. Во избежание окисления Fe(II) к растворам прибавляли аскорбиновую кислоту в качестве восстановителя и слабо подкисляющего реагента.

Данные РФА указывают на кристалличность полученных соединений, однако нам не удалось вырастить монокристалл, пригодный для РСА. Дифрактограммы I и II практически совпадают, что свидетельствует об изоструктурности этих комплексов.

В табл. 1 представлены основные колебательные частоты (см<sup>-1</sup>) в ИК спектрах  $HC(pz)_3$  и комплексов I—III. В высокочастотной области спектров наблюдаются широкие полосы (3560—3400 см<sup>-1</sup>), которые относятся к валентным колебаниям связи О—Н кристаллизационной воды. В области колебаний v(C-H) наблюдается смещение полос по сравнению со спектром  $HC(Pz)_3$ , что, по-видимому, связано с изменением геометрии алканового фрагмента лиганда при комплексообразовании. В спектре лиганда в интервале 1600—1400 см<sup>-1</sup> расположены полосы валентно-деформационных колебаний пиразольных колец, которые чувствительны к координации. В спектрах комплексов I—III эти полосы заметно смещены по сравнению со спектром лиганда, что свидетельствует о координации атомов азота пиразольных циклов лиганда к иону железа(II). Этот вывод подтверждается характером ИК спектров комплексов в низкочастотной области (600—100 см<sup>-1</sup>). В спектрах I—III при 270, 296, 285 см<sup>-1</sup> соответственно проявляются полосы, которые можно отнести к валентным колебаниям Fe—N. Полосы в спектрах I и II при 331 и 243 см<sup>-1</sup> относятся к валентным колебаниям Мо—Cl и Мо—Br соответственно.

В СДО комплексов I—III наблюдается по две широких полосы поглощения в видимой и ближней инфракрасной области. Полосы с максимумами при 835 (I), 840 (II) и 860 нм (III) можно отнести к d—d-переходу  ${}^{5}T_{2} \rightarrow {}^{5}E$  в слабом искаженно-октаэдрическом поле лигандов. Положение этих полос типично для спектров BC октаэдрических комплексов железа(II) с азотсодержащими лигандами [19]. Из этих данных легко рассчитать значения  $v = \Delta_{BC}$ , где  $\Delta_{BC}$  параметр расщепления в кристаллическом поле высокоспиновых комплексов Fe(II) (табл. 2). Значения параметров расщепления указывают на то, что в комплексах I—III теоретически возможен СКО при охлаждении, так как 11000  $\leq \Delta_{BC} \leq 12500$  см<sup>-1</sup> [24].

В области 450—550 нм в СДО **I**—**III** наблюдается полоса поглощения с максимумами при 570 (**I**, **II**) или 560 нм (**III**), которые можно отнести к *d*—*d*-переходу  ${}^{1}A_{1} \rightarrow {}^{1}T_{1}$  в сильном искаженно-октаэдрическом поле лигандов, хромофор FeN<sub>6</sub>. Используя приближения  $v = \Delta_{\rm HC} - C +$  $+ 86B^{2}/\Delta_{\rm HC}$  [25];  $\Delta_{\rm BC} \approx 19B$  [24]; C = 4,41B [26], мы рассчитали значения параметров расщепления для **I**—**III** (см. табл. 2). Отметим, что условие появления СКО при нагревании 19000  $\leq \Delta_{\rm HC} \leq 22000$  см<sup>-1</sup> [24] не является, по-видимому, строгим, в нашем случае оно выполняется в рамках 3 % относительной погрешности.

Отношение  $\Delta_{\rm HC}/\Delta_{\rm BC} = (r_{\rm BC}/r_{\rm HC})^{5+6} \cong 1,6+1,8$  [27] составляет 1,54+1,59. Это указывает на 8— 10% относительное удлинение связи Fe—N при СКО и хорошо согласуется с экспериментальными данными для серии комплексов железа(II) с *трис*(пиразол-1-ил)метаном [5].

Изучение зависимостей  $\chi T(T)$  для комплексов I, II проведено в диапазоне температур 80—400 К и в диапазоне 300—460 К для комплекса III. Обнаружено, что в комплексах I—III на-

| Т | а | б | Л | И | Ц | а | 2 |
|---|---|---|---|---|---|---|---|
|---|---|---|---|---|---|---|---|

| indpanentpol edo i in a pace sumanifice sin senar dige, dife a b (em ) |                                                  |                                       |                        |     |                        |                           |
|------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------|------------------------|-----|------------------------|---------------------------|
| Комплекс                                                               | $\lambda({}^{1}A_{1} = {}^{1}T_{1}), \text{ hm}$ | $\lambda({}^{5}T_{2} = {}^{5}E)$ , нм | $\Delta_{\mathrm{BC}}$ | В   | $\Delta_{\mathrm{HC}}$ | $\Delta_{HC}/\Delta_{BC}$ |
| I                                                                      | 570                                              | 835                                   | 11976                  | 630 | 18475                  | 1,54                      |
| II                                                                     | 570                                              | 840                                   | 11905                  | 627 | 18480                  | 1,55                      |
| III                                                                    | 560                                              | 860                                   | 11628                  | 612 | 18847                  | 1,59                      |

Параметры СДО **I—III** и рассчитанные значения  $\Delta_{BC}$ ,  $\Delta_{HC}$  и B (см<sup>-1</sup>)



*Рис.* 2. Температурная зависимость  $\chi T$  для комплексов [Fe{HC(pz)<sub>3</sub>}<sub>2</sub>][Mo<sub>6</sub>Cl<sub>14</sub>]·2H<sub>2</sub>O (*a*), [Fe{HC(pz)<sub>3</sub>}<sub>2</sub>][Mo<sub>6</sub>Br<sub>14</sub>] ( $\delta$ ) и [Fe{HC(pz)<sub>3</sub>}<sub>2</sub>]<sub>2</sub>[Re<sub>6</sub>S<sub>8</sub>(CN)<sub>6</sub>]·2H<sub>2</sub>O (*b*) ▲ — нагрев,  $\nabla$  — охлаждение

блюдается спин-кроссовер  ${}^{1}A_{1} \Leftrightarrow {}^{5}T_{2}$  с небольшим гистерезисом (рис. 2, *a—в*). Исследование зависимостей  $d^{2}(\chi T)/dT^{2}$  (вставки на рис. 2, *a—в*) позволило оценить температуру переходов. В комплексе I прямой переход, при нагревании, происходит при  $T_{c}\uparrow = 271$  K, обратный, при охлаждении, при  $T_{c}\downarrow = 268$  K. Для комплекса II  $T_{c}\uparrow = 270$  K,  $T_{c}\downarrow = 268$  K, для комплекса III  $T_{c}\uparrow = 383$  K,  $T_{c}\downarrow = 379$  K. СКО в I—III сопровождается термохромизмом — изменением цвета желтый  $\Leftrightarrow$  розовый (I), желтый  $\Leftrightarrow$  оранжевый (II), бежевый  $\Leftrightarrow$  оранжевый (III).

Мессбауэровские спектры изученных комплексов приведены на рис. 3, где изображены также парциальные спектры HC и BC форм. Параметры спектров и доля атомов железа для каждой из этих форм даны в табл. 3. Существенно то, что комплексы I—III содержат большую долю атомов железа в высокоспиновом состоянии. Доля BC состояния в комплексах II и III представляется явно завышенной в сравнении с оценкой, полученной из анализа кривых  $\chi T(T)$ . Причину такого несоответствия мы связываем предварительно с тем, что под воздействием высокоэнергетического излучения с энергией 122 кЭв во время длительной съемки мессбауэровских спектров комплексов наблюдаются необратимые переходы из HC в BC состояние. Такую гипотезу подтверждает то, что в комплексах II и III, которые длительное время находились под действием излучения при получении спектров в предварительных опытах при 295 K, доля BC форм существенно выше, чем в комплексе I, с которым подобных опытов не проводили. Для выяснения природы обнаруженного эффекта предполагается провести дальнейшие исследования.



Рис. 3. Мессбауэровские спектры комплексов I—III

Таблица 3

| Комплекс                                        | Форма | %* | δ, мм/с | ε, мм/с | Г <sub>1,2</sub> , мм/с |
|-------------------------------------------------|-------|----|---------|---------|-------------------------|
| $[Fe{HC(pz)_3}_2][Mo_6Cl_{14}] \cdot 2H_2O$     | HC    | 85 | 0,500   | 0,341   | 0,275                   |
|                                                 | BC    | 15 | 1,395   | 3,570   | 0,340                   |
| $[Fe{HC(pz)_3}_2][Mo_6Br_{14}] \cdot H_2O$      | HC    | 44 | 0,476   | 0,279   | 0,226                   |
|                                                 | BC    | 56 | 1,363   | 3,383   | 0,365                   |
| $[Fe{HC(pz)_3}_2]_2[Re_6S_8(CN)_6] \cdot 2H_2O$ | HC    | 43 | 0,486   | 0,323   | 0,285                   |
|                                                 | BC    | 57 | 1,197   | 3,201   | 0,523                   |
|                                                 |       | ±5 | ±0,010  | ±0,020  | ±0,030                  |

Параметры мессбауэровских спектров комплексов I—III

\* Доля НС и ВС форм в образце.

Таким образом, синтезированы и исследованы три новых комплекса железа(II) с *mpuc*(пиразол-1-ил)метаном, содержащих во внешней сфере кластерные ионы, обладающие спин-кроссовером и термохромизмом.

Авторы выражают благодарность Н.П. Короткевич (ИНХ СО РАН) за съемку дифрактограмм, И.В. Юшиной (ИНХ СО РАН) за съемку спектров диффузного отражения и С.А. Петрову (ИХТТиМ СО РАН) за измерения мессбауэровских спектров.

Исследования выполнялись в рамках гранта Российского фонда фундаментальных исследований № 14-03-90006 Бел\_а. Авторы признательны за оказанную финансовую поддержку.

## СПИСОК ЛИТЕРАТУРЫ

- 1. Gütlich P., Goodwin H. // Top Curr. Chem. 2004. 233. P. 1 47.
- 2. Halcrow M.A. Spin-crossover Materials Properties and Applications. U.K.: J. Wiley&Sons Ltd, 2013.
- 3. Boussecsou A., Molnár G., Salmon L., Nicolazzi W. // Chem. Soc. Rev. 2011. 40. P. 3313 3335.
- 4. Aromi G., Barrios L.A., Roubeau O., Gamez P. // Coord. Chem Rev. 2011. 255. P. 485 546.
- 5. Lavrenova L.G., Shakirova O.G. // Eur. J. Inorg. Chem. 2013. P. 670 682.
- 6. Kahn O., Kröber J., Jay C. // Adv. Mater. 1992. 4. P. 718 728.
- 7. Gamez P., Costa J.S., Quesada M., Aromí G. // J. Chem. Soc. Dalton Trans. 2009. N 38. P. 78457853.
- 8. Bousseksou A., Vieu C., Letard J.-F., Demont P., Tuchagues J.-P., Malaquin L., Menegotto J., Salmon L. Patent EU1430552, 2004.
- 9. Torin K., Takehiko F., Takuzo A. Patent JP2005187413, 2005.
- 10. Hoon J.S., Il J.J. Patent KR20070081923, 2007.
- 11. Letard J.-F., Daro N., Aymonier C., Cansell F., Saint-Martin S. Patent EP2391631, 2011.
- 12. Muller R.N., Elst V., Laurent S. // J. Am. Chem. Soc. 2003. 125. P. 8405 8407.
- 13. Letard J.-F., Nguyen O., Daro N. Patent FR2894581, 2007.
- 14. Reger D.L., Little C.A., Rheingold A.L., Lam M., Liable-Sands L.M., Rhagitan B., Concolino T., Mohan A., Long G.J., Briois V. // Inorg. Chem. 2001. 40. P. 1508 1520.
- 15. Paulsen H., Duelund L., Zimmermann A., Averseng F., Gerdan M., Winkler H., Toftlund H., Trautwein A.X. // Monatsh. Chemie. 2003. **134**. P. 295 306.
- 16. Шакирова О.Г., Лавренова Л.Г., Куратьева Н.В., Наумов Д.Ю., Далецкий В.А., Шелудякова Л.А., Логвиненко В.А., Василевский С.Ф. // Координац. химия. – 2010. – **36**. – С. 275 – 283.
- 17. Shakirova O.G., Lavrenova L.G., Daletsky V.A., Shusharina E.A., Griaznova T.P., Katsyuba S.A., Syakaev V.V., Skripacheva V.V., Mustafina A.R., Soloveva S.E. // Inorg. Chim. Acta. – 2010. – **363**. – P. 4059 – 4064.
- 18. Шакирова О.Г., Далецкий В.А., Лавренова Л.Г., Трубина С.В., Эренбург С.Б., Жижин К.Ю., Кузнецов Н.Т. // Журн. неорган. химии. – 2013. – **58**, № 6. – С. 739 – 745.
- 19. Шакирова О.Г., Лавренова Л.Г., Богомяков А.С., Жижин К.Ю., Кузнецов Н.Т. // Журн. неорган. химии. – 2015. – **60**, № 7. – С. 786 – 789.
- 20. Шакирова О.Г., Далецкий В.А., Лавренова Л.Г., Варнек В.А., Рудаков Д.А., Поткин В.И. // Журн. неорган. химии. – 2014. – **55**, № 1. – С. 50 – 57.
- 21. Preetz W., Harder K. // J. Alloys Compd. 1992. 183. P. 413 429.
- 22. Kirakci K., Cordier S., Perrin C. // Z. Anorg. Allg. Chem. 2005. 631. P. 411 416.
- 23. Naumov N.G., Virovets A.V., Mironov Y.I., Artemkina S.B., Fedorov V.E. // Ukr. Khim. Zh. 1999. 65. P. 21 27.
- 24. *Hauser A.* // Top Curr. Chem. 2004. 233. P. 49 58.
- 25. Ливер Э. Электронная спектроскопия неорганических соединений. М.: Мир, 1987.
- 26. Sugano S., Tanabe Y., Kamimura H. Multiplets of transition metal ions in crystals. N.Y. & London: Academic Press Pure and Applied Physics. 1970. **33**. 331 p.
- 27. Figgis B.N., Hitchman M.A. Ligand field theory and its application. N.Y.: Wiley-VCH, Jan. 2000.