2015. Tom 56. № 6

Ноябрь – декабрь

C. 1116 - 1122

УДК 546.831'832.4'161'185:543.429.23

ИССЛЕДОВАНИЕ СТРОЕНИЯ ГИДРАТИРОВАННЫХ ФТОРОФОСФАТОЦИРКОНАТОВ (ГАФНАТОВ) МЕТОДОМ ЯМР

А.Б. Слободюк¹, Н.А. Диденко¹, М.М. Годнева²

¹Институт химии ДВО РАН, Владивосток, Россия

E-mail: ampv@ich.dvo.ru

²Институт химии и технологии редких элементов и минерального сырья КНЦ РАН, Апатиты, Россия E-mail: motov@chemy.kolasc.net.ru

Статья поступила 31 июля 2014 г.

С доработки — 20 января 2015 г.

Методом ЯМР 31 P, 19 F, 1 H исследованы фторофосфатометаллаты состава МНfF $_2$ PO $_4$ · 0 0,5H $_2$ O (M = Rb, Cs) и CsMe $_2$ F $_6$ PO $_4$ · 0 4H $_2$ O (Me = Zr, Hf). Полученные данные указывают на изоструктурность соединений в каждой их двух групп. Проведено отнесение линий в спектрах ЯМР. Высказаны предположения о характере связи PO $_4$ -групп и атомов F с Ме и предложены схемы кристаллического строения фторофосфатометаллатов. Установлено наличие нескольких типов кристаллизационной воды, характеризующихся разной прочностью связывания и величиной энергетического барьера диффузионного движения.

DOI: 10.15372/JSC20150606

Ключевые слова: фторофосфатоцирконаты, фторофосфатогафнаты, ЯМР, диффузионная подвижность, кристаллическое строение.

Ранее был выделен ряд фторофосфатоцирконатов (гафнатов) (ФФМе) щелочных металлов [1—7]. Некоторые из них являются потенциальными люминофорами [8], а фторофосфаты переходных металлов и лития (LiMPO₄F и Li₂MPO₄F, M = Fe, Co, V) используются в качестве катодных материалов [9]. Практически важные свойства соединений во многом определяются их структурой, однако в случае ФФМе определение структуры методами РСА затруднено в связи с малыми размерами кристаллов. Информацию о строении и истинных формулах ФФМе можно получить при помощи комбинации других методов, таких как ИК спектроскопия [2—5, 7] и ЯМР. Для ЯМР 19 F данные соединения представляют особенный интерес, так как по сравнению с фторидами металлов являются магнитно-разбавленными, что уменьшает число межъядерных взаимодействий и повышает информативность спектров. Некоторые из фосфатометаллатов, например МZr₂(PO₄)₃ (M = Li, Na), являются ионными проводниками [10], поэтому актуальным и перспективным является исследование ионных движений в ФФМе с помощью ЯМР.

МЕТОДИКА ЭКСПЕРИМЕНТА

Спектры ЯМР (³¹P, ¹⁹F, ¹H) записывали на спектрометре Bruker Avance AV-300 в магнитном поле 7,05 Тл. Для регистрации спектров высокого разрешения использовали вращение образца под магическим углом (ВМУ) в роторе диаметром 4 мм с частотой 12—18 кГц и методику спинового эха Хана, синхронизированного с периодом вращения образца. Изотропные сиг-

__

[©] Слободюк А.Б., Диденко Н.А., Годнева М.М., 2015

 $Puc.\ 1.$ Спектры ЯМР ВМУ ³¹Р соединений RbHfF₂PO₄·0,5H₂O (I), $CsHfF_2PO_4 \cdot 0.5H_2O(II)$, $CsZr_2F_6PO_4 \cdot 4H_2O(III)$, $CsHf_2F_6PO_4 \cdot 4H_2O(IV)$

налы ЯМР ¹⁹ F выделяли сопоставлением спектров, полученных при различных частотах вращения. В качестве эталона химического сдвига (XC) 19 F использовали CFCl₃, 1 H — тетраметилсилан, ³¹Р — 1М водный раствор Н₃РО₄. Уменьшению значений химических сдвигов соответствует возрастание напряженности магнитного поля (шкала δ). Определение компонент тензора магнитного экранирования осуществляли подгонкой экспериментальной резонансной линии к теоретической кривой по методу наименьших квадратов, проводившейся в самостоятельно разработанной программе. Ошибка определения сдвига по спектрам ЯМР ВМУ 19 F составляла 1 м.д., 31 P — 0,2 м.д., компонент тензора магнитного экранирования — 5 м.д., формы спектральной линии — 10 % от ее площади.

Соединение

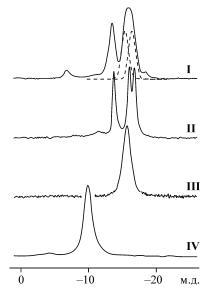


Таблица 1

-10.0

96,5

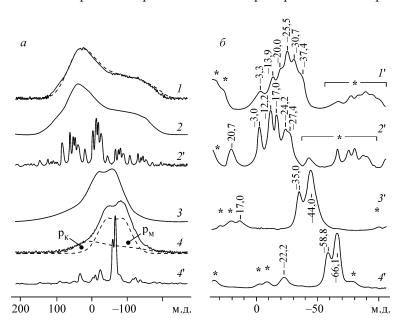
ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Магнитный резонанс на ядрах ³¹P широко используется для исследования строения соединений различных классов. ХС сигналов ЯМР ³¹Р фосфатных и гидрофосфатных анионов в комплексных соединениях определяются главным образом природой (электроотрицательностью) металла, в координацию которого входят фосфат-ионы [11, 12]. Хотя работы, включающие ЯМР ³¹Р фосфатогафнатов, немногочисленны, можно заметить, что для этих соединений характерно расположение сигналов в более слабом поле по сравнению с их циркониевыми аналогами, эффект обратный тому, что имеется в ЯМР ¹⁹ F. Например, единственный резонансный сигнал ЯМР 31 Р в CuZr₂(PO₄)₃ имеет XC –24,2 м.д., тогда как в CuHf₂(PO₄)₃ XC равен –16,81 м.д. [13]. Спектры ЯМР ВМУ ³¹Р RbHfF₂PO₄·0,5H₂O (**I**), CsHfF₂PO₄·0,5H₂O (**II**) (рис. 1) содержат несколько сигналов (табл. 1) в области, характерной для фосфатогафнатов. Учитывая изоструктурность соединений І и ІІ, установленную на основании данных РФА и ИК спектроскопии [2, 4], следует заключить, что широкая линия нелоренцевой формы в области сильного поля спектра соединения І представляет собой неразрешенный дублет, и спектры содержат по три сигнала от основной фазы. Разрешение спектра ІІ выше, чем у І, возможно, за счет большей степени кристалличности образца.

По данным PCA структура ФФМе образована из полиэдров Zr(Hf)O₃F₃ и тетраэдров PO₄групп [14, 15]. Наблюдаемое взаимное расположение сигналов очень похоже на то, которое

Данные ЯМР ВМУ ³¹Р

I, % *I*, % Соединение δ_{mas} , м.д. δ_{mas} , м.д. -6,95,2 1,5 RbHfF₂PO₄·0,5H₂O CsHfF₂PO₄·0,5H₂O -8,1-13,529,9 -11.67,3 -15,531,9 -13.829,8 29,9 -16,5-16,130,5 -18,43,1 -16,930,9 $CsZr_2F_6PO_4 \cdot 4H_2O$ -15,7100,0 CsHf₂F₆PO₄·4H₂O -4,33,5


П р и м е ч а н и е. δ_{mas} — XC, определенные по данным ЯМР ВМУ; I — относительные интегральные интенсивности компонент.

наблюдалось в спектрах ЯМР ³¹Р низкотемпературной (триклинной) модификации соединения LiZr₂(PO₄)₃, относящегося к типу NASICON [16]. В то же время, принимая во внимание состав соединений I и II, можно заключить, что их структура может быть близка к структуре ZrPO₄F(CH₃)₂SO [15]. В обоих приведенных соединениях фосфатный ион связан с четырьмя различными атомами циркония через кислородные мостики. Кроме линий от основной фазы в спектрах I и II можно отметить наличие малоинтенсивных пиков от примесей или дефектных областей. Сигналы в спектрах гафнатов І и ІІ расположены в более слабом поле по сравнению с $LiZr_2(PO_4)_3$, где они имеют XC-25,5,-25,0 и -23,7 м.д., что отвечает упомянутой выше закономерности. Соответствующие боковые линии от вращения образца имеют равную интенсивность, что свидетельствует о низкой анизотропии экранирования ядра фосфора. Следовательно, химические связи, образуемые атомами кислорода иона PO_4^{3-} , равнозначны и структурная роль фосфатных анионов в соединениях I и II аналогична той, которую они играют в LiZr₂(PO₄)₃. Магнитная неэквивалентность атомов фосфора может быть вызвана существенным различием в величинах углов Р—О—Нf и длинах связей О—Hf за счет нарушения регулярности фосфатнометаллатной сетки катионами и молекулами воды. ИК спектры полугидратов [2, 4] также содержат по три полосы, расположенные в области валентных колебаний уз(РО4), что подтверждает наличие искаженных тетраэдров РО₄-групп.

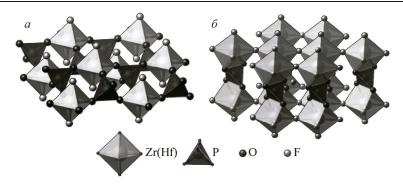
В диапазоне температур 150—320 К спектры ЯМР ¹⁹F соединений **I**, **II**, $CsZr_2F_6PO_4\cdot 4H_2O$ (**III**) и $CsHf_2F_6PO_4\cdot 4H_2O$ (**IV**) остаются практически неизменными, что говорит об отсутствии ионных движений фтора с корреляционной частотой выше 10^4 Гц. ХС сигналов соответствуют ионам фтора, входящим в координацию циркония или гафния [17—19]. Форма спектров ЯМР ¹⁹F соединений **I** и **II** в первом приближении определяется аксиально-симметричным тензором магнитного экранирования в отсутствие значительных диполь-дипольных взаимодействий ядер атомов фтора (рис. 2, *a*) и соответствует функции Бломбергена—Роуланда с параметром асимметрии η равным нулю:

$$g(\delta) = 1/2\sqrt{(\delta_{\perp} - \delta_{\parallel})(\delta_{\perp} - \delta)}, \tag{1}$$

где величины $\delta_{\parallel} \leq \delta < \delta_{\perp}$ — резонансные сдвиги при параллельной, искомой и перпендикулярной ориентации оси симметрии тензора магнитного экранирования к направлению внешнего

Puc. 2. Спектры ЯМР ¹⁹F, статические (*1*—*4*), ВМУ (*1′*—*4′*) (звездочками помечены боковые линии от вращения образца): RbHfF₂PO₄·0,5H₂O (**I**, *1′*), CsHfF₂PO₄·0,5H₂O (**II**, *2′*), CsZr₂F₆PO₄·4H₂O (**III**, *3′*), CsHf₂F₆PO₄·4H₂O (**IV**, *4′*)

магнитного поля; $g(\delta)$ — интенсивность резонансной линии. Взаимодействие резонирующего ядра с другими магнитными ядрами имеет изотропный характер и моделируется при помощи свертки функции (1) с гауссовой функцией [20]. Как показывают имеющиеся экспериментальные данные [17, 18], значительная анизотропия экранирования во фтороцирконатах обычно наблюдается для концевых атомов фтора, поэтому, учитывая состав соединений, следует сделать вывод, что атомы фтора в описываемых соединениях являются концевыми. Отличие формы спектра от указанной функции, показанной на рис. 2, a (кривая l) пунктиром, вызвано разбросом величин компонент тензора магнитного экранирования для неэквивалентных позиций атомов фтора и отклонением симметрии тензоров от аксиальной. Не исключено также, что на форму линии оказывают влияние диполь-дипольные взаимодействия фтор-лигандов в координационном полиэдре гафния в случае их u

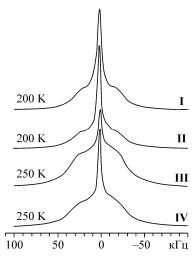

Спектры ЯМР ВМУ 19 F (см. рис. 2, б) содержат не менее шести перекрывающихся сигналов в области (-3,3)—(-37,4) м.д. для соединения **I** и в области (-20,7)—(-27,4) м.д. для соединения II. Спектральные линии ФФМе II имеют более высокое разрешение, а сигнал, находящийся в наиболее слабом поле, отстоит от основной группы сигналов на большее расстояние. Анизотропия экранирования всех позиций фтора достаточно велика, что проявляется в различной интенсивности соответствующих боковых линий (см. рис. 2, a, кривая 2') и приводит к увеличению интенсивности плеча в области 110 м.д. у статического (без ВМУ) спектра ФФМе II. Величины компонент тензора магнитного экранирования фтора $(\delta_{\parallel}, \delta_{\parallel})$, химических сдвигов, определенных по данным ЯМР ВМУ 19 F (δ_{mas}), приведены в табл. 2. Для соединения цезия в сравнении с аналогом рубидия характерно смещение спектра в область слабого магнитного поля в соответствии с электроотрицательностью катиона (шкала Гутовского и Гофмана [21]). Непропорционально смещенный в слабое поле сигнал с XC –20,7 м.д. может свидетельствовать о парамагнитном вкладе в экранирование за счет деформации электронных оболочек фтора изза увеличившегося размера находящегося в контакте катиона. Полученные данные ЯМР позволяют предположить, что структура I и II слоистая и соответствует варианту, изображенному на рис. 3, а. Морфология кристаллов [7] также подтверждает наличие в структуре соединений слоев, вероятно, связанных водородными связями.

Спектры ЯМР ¹Н соединений **I** и **II** (рис. 4) могут быть разложены на две компоненты — пейковский дублет, являющийся характерной формой спектра ЯМР ¹Н кристаллизационных молекул воды, и узкую компоненту с полушириной 2—3 кГц при 200—350 К. Узкая компонента соответствует молекулам, характеризующимся высокой диффузионной подвижностью и/или наличием межмолекулярного протонного обмена. Конкретизировать вид движений на основании имеющихся данных представляется затруднительным. Относительная интегральная интенсивность узкой компоненты мало зависит от температуры, составляя 40—50 % от общей площади спектра. Ниже 200 К ширина компоненты увеличивается, однако при 150 К спектр все еще не соответствует жесткой решетке (в терминах ЯМР).

 $\label{eq:Tadiana} T\, a\, \delta\, \pi\, u\, u\, a\, 2$ Параметры спектров ЯМР $^{19} F\, \Phi \Phi Me$

Соединение	Компонента рк				Компонента рм			
	δ _{mas} , м.д.	δ_{\perp} , м.д.	δ_{\parallel} , м.д.	I, %	δ _{mas} , м.д.	δ_{iso} , м.д.	Δν, κΓц	I, %
RbHfF ₂ PO ₄ ⋅0.5H ₂ O	-3	49	-174	100	_			_
$CsHfF_2PO_4 \cdot 0.5H_2O$	2127	62	-172	100	_	_	_	_
$CsZr_2F_6PO_4\cdot 4H_2O$	17	79	-140	41	-35, -45	-41	19	59
$CsHf_2F_6PO_4 \cdot 4H_2O$	-22	31	-152	34	-66, -59	-64	20	66

 Π р и м е ч а н и е. δ_{\perp} , δ_{\parallel} — перпендикулярная и параллельная компоненты тензора магнитного экранирования фтора; $\delta_{\rm mas}$ — XC, определенные по данным ЯМР ВМУ; $\Delta \nu$ — дублетное расщепление; I — относительные интегральные интенсивности компонент.


Puc.~3.~ Схемы структурных фрагментов MHfF₂PO₄·0,5H₂O (a) и CsMe₂F₆PO₄·4H₂O (б)

Таким образом, структура ФФМе I и II согласно составу, ЯМР и литературным данным состоит из слоев, состоящих из атомов Ме, соединенных атомами кислорода фосфатных групп, причем каждый тетраэдр PO_4 -группы связан с четырьмя атомами Ме вершинами. К каждому атому Ме может быть присоединено по два концевых атома фтора как в *цис*-, так и в *транс*-положениях. Слои связаны водородными связями, при этом КЧ Ме равно шести, а Ме образует полиэдр $Zr(Hf)O_4F_2^{6-}$ (см. рис. 3, a).

Спектры ЯМР ВМУ 31 Р соединений **III** и **IV** (см. рис. 1) содержат по одному пику, смещенному в область более слабого магнитного поля по сравнению с приводившимися выше литературными данными для цирконатов и гафнатов соответственно. Вероятно, особенности магнитного экранирования фосфора в данных соединениях вызваны влиянием ионов фтора (оттягиванием электронной плотности с центрального атома). Анизотропия магнитного экранирования ядер фосфора, как и в случае $\Phi\Phi$ Ме **I** и **II**, невелика, из чего следует, что фосфатные ионы связывают атомы переходного металла по двум симметричным ребрам, т.е. все атомы кислорода являются мостиковыми.

Соединения **III** и **IV** по данным РФА изоструктурны [3, 4]. В их ИК спектрах имеет место также только одна полоса валентных колебаний $v_3(PO_4)$ с небольшим расщеплением [3, 5, 7]. Такой характер спектров свидетельствует о существовании практически неискаженных симметричных тетраэдров PO_4 -групп. Учитывая их симметричность, мостиковый характер и состав соединений, полагаем, что фосфатные ионы связывают атомы переходного металла по двум ребрам, образуя димеры.

В спектрах ЯМР ВМУ 19 F соединений **III** и **IV** (см. рис. 2, δ) наблюдается по три сигнала, соответствующие сдвиги приведены в табл. 2. Изменения формы статических спектров ЯМР 19 F этих образцов в диапазоне температур 150—350 K незначительны и, вероятно, вызваны изменениями вклада диполь-дипольных взаимодействий с подвижными протонами. Спектры могут

быть представлены в виде суммы трех компонент. Компонента, форма которой описывается функцией (1), соответствует концевым атомам фтора. Максимумы спектральной линии при -20 и -56 м.д. в соединении циркония и -43 и -78 м.д. в гафниевом аналоге (см. рис. 2, a, кривые 3 и 4) соответствуют атомам фтора, химическое экранирование которого близко к изотропному, т.е. мостиковым. Отклонение максимумов спектральной линии от величин изотропных сдвигов, полученных из ЯМР ВМУ, определяется диполь-дипольными взаимодействиями ядер фтора. Расстояние фтор—фтор (r), вычисленное по формуле $\alpha = 3\gamma\hbar/4r^3$ [22] из величины дублетного расщепления α ($\alpha = 2,4$ Γ c) равно

Puc. 4. Спектры ЯМР ¹H: RbHfF₂PO₄·0,5H₂O (**I**), CsHfF₂PO₄·0,5H₂O (**II**), CsZr₂F₆PO₄·4H₂O (**III**), CsHf₂F₆PO₄·4H₂O (**IV**)

2,56 Å. Предлагаемая интерпретация спектра ЯМР 19 F приведена на рис. 2, a, кривая 4. Компоненте статического спектра ЯМР p_{κ} (концевым атомам) соответствует сигнал ЯМР ВМУ с ХС -2 м.д. для соединения IV, а компонентам p_{κ} (мостиковым атомам) — сигналы -66 и -59 м.д. Центры тяжести компонент p_{κ} и p_{κ} хорошо соответствуют ХС сигналов ЯМР ВМУ. Форма огибающей боковых линий (см. рис. 2, a, кривая 4') также свидетельствует о значительной величине анизотропии экранирования концевых атомов фтора, относящихся к компоненте p_{κ} и изотропном экранировании мостикового фтора в позициях p_{κ} .

Величины компонент тензора магнитного экранирования фтора (δ_{\perp} , δ_{\parallel}), химических сдвигов, определенных по данным ЯМР ВМУ ¹⁹F (δ_{mas}), дублетного расщепления ($\Delta \nu$) и относительных интегральных интенсивностей компонент, определенных из статических спектров ЯМР ¹⁹F, приведены в табл. 2. Как можно видеть из таблицы, составляющая δ_{\perp} компоненты p_{κ} и изотропный сдвиг компоненты p_{κ} для соединения гафния находятся в области более сильного магнитного поля по сравнению с величинами, полученными для соединений циркония. Соотношение интегральных интенсивностей компонент, близкое к 1:2, соответствует отношению числа концевых атомов фтора в структуре соединений к числу мостиковых, что отражено на рис. 3, δ .

Спектры ЯМР ¹Н соединений **III** и **IV** при температуре 150 К представляют собой пейковский дублет с расщеплением 2 α , равным 52 кГц (см. рис. 4). При более высокой температуре в спектре появляется узкая компонента, интегральная интенсивность которой монотонно возрастает. Полуширина этой компоненты (3—5 кГц) позволяет отнести ее к резонансу протонов или молекул воды, характеризующихся высокой диффузионной подвижностью. При температуре 350 К интенсивность узкой компоненты для обоих соединений составляет 75 % от общей площади спектра. Растянутый по температуре переход линии ЯМР к диффузионному сужению объясняется, по-видимому, структурной неэквивалентностью (формированием водородных связей различной прочности) и, как следствие, различной энергией активации диффузии.

Основываясь на известных и полученных экспериментальных данных можно предположить, что структура $\Phi\Phi$ Ме III и IV состоит из димеров, образованных атомами четырехвалентного металла и фосфатной группы и соединенных двойными мостиками фтора в бесконечные слои (см. рис. 3, δ). КЧ Ме равно семи, а его координационный полиэдр имеет вид $\text{МеO}_2\text{F}_5^{5-}$. Слои связаны в трехмерный каркас ионами цезия и молекулами воды, образующих водородную связь О—Н...F с концевыми атомами фтора. Отсутствие молекул воды, координированных к цирконию, и наличие водородных связей воды с фтором подтверждается данными ИКС [6]. Все атомы кислорода являются мостиковыми, соединяя атомы фосфора и переходного металла.

ЗАКЛЮЧЕНИЕ

Проведенное ЯМР исследование позволило сделать обоснованные предположения о строении фторофосфатометаллатов $MHfF_2PO_4\cdot 0,5H_2O$ (M=Rb, Cs) и $CsMe_2F_6PO_4\cdot 4H_2O$ (M=Zr, Hf). Структура соединений образована полиэдрами $MeO_4F_2^{6-}$ (I, II) и $MeO_2F_5^{5-}$ (III, IV), объединенными между собой фосфатными анионами, причем все атомы кислорода фосфатных групп являются мостиковыми. В $\Phi\Phi Me$ I и II все атомы фтора концевые. В $\Phi\Phi Me$ III и IV мостиковыми являются 2/3 атомов фтора, одну треть составляют концевые атомы. Сходство спектров ЯМР ^{31}P , ^{19}F , ^{1}H каждой пары соединений подтверждает данные $P\Phi A$ и V и V спектроскопии относительно их изоструктурности. Установлено наличие нескольких типов кристаллизационной воды, часть из которых характеризуется высокой диффузионной подвижностью и/или наличием межмолекулярного протонного обмена.

Авторы выражают благодарность С.П. Габуде за идею проведения настоящего исследования.

СПИСОК ЛИТЕРАТУРЫ

- 1. Годнева М.М., Мотов Д.Л., Кузнецов В.Я., Щур Т.Е. // Журн. неорган. химии. 2012. **57**, № 4. С. 554.
- 2. Годнева М.М., Михайлова Н.Л. // Журн. неорган. химии. 2012. 57, № 6. С. 949.
- 3. Годнева М.М., Мотов Д.Л., Рыськина М.П., Пахомовский Я.А. // Журн. неорган. химии. 2012. **57**, № 7. С. 1107.
- 4. Годнева М.М., Беляевский А.Т., Залкинд О.А. // Журн. неорган. химии. 2012. 57, № 12. С. 1709.
- 5. Годнева М.М., Борозновская Н.Н., Михайлова Н.Л. // Журн. неорган. химии. 2013. 58, № 5. С. 571.
- 6. Годнева М.М., Борозновская Н.Н., Михайлова Н.Л., Залкинд О.А. // Журн. неорган. химии. 2013. **58**, № 7. С. 1.
- 7. Годнева М.М., Залкинд О.А., Беляевский А.Т. // Журн. структур. химии. 2013. 54, № 4. С. 651.
- 8. Годнева М.М., Борозновская Н.Н. // Перспективные материалы. 2014. № 6. С. 32.
- 9. Amatucci G.G., Pereira N. // J. Fluor. Chem. 2007. 128. P. 243.
- 10. *Иванов-Шиц А.К., Мурин И.В.* Ионика твердого тела: в 2 т. СПб.: изд-во С.-Петерб. ун-та, 2000. Т. 1.
- 11. Mudrakovskii I.L., Shmachkova V.P., Kotsarenko N.S., Mastikhin V.M. // J. Phys. Chem. Sol. 1986. 47. P. 335.
- 12. Turner G.L., Smith K.A., Kirkpatrick R.J., Oldfieldt E. // J. Magn. Res. 1986. 70. P. 408.
- 13. Ahmamouch R., Arsalane S., Kacimi M., Ziyad M. // Mater. Res. Bull. 1997. 32. P. 755.
- 14. *Wloka M., Troyanov S.I., Kemnitz E. //* J. Solid State Chem. 2000. **149**. P. 21.
- 15. Vivani R., Alberti G., Costantino F., Nocchetti M. // Micropor. Mesopor. Materials. 2008. 107. P. 58.
- 16. *Сафронов Д.В., Стенина И.А., Максимычев А.В., Шестаков С.Л., Ярославцев А.Б.* // Журн. неорган. химии. 2009. **54**, № 11. С. 1776.
- 17. Youngman R.E., Sen S. // Solid State Nucl. Magn. Res. 2005. 27. P. 77.
- 18. *Гайворонская К.А., Герасименко А.В., Диденко Н.А., Слободюк А.Б., Кавун В.Я.* // Журн. неорган. химии. 2013. **58**, № 2. С. 226.
- 19. *Кавун В.Я., Сергиенко В.И.* Диффузионная подвижность и ионный транспорт в кристаллических и аморфных фторидах элементов IV группы и сурьмы(III). Владивосток: Дальнаука, 2004.
- 20. Зеер Э.П., Зобов В.Е., Фалалеев О.В. Новые эффекты в ЯМР поликристаллов. Новосибирск: Наука, 1991.
- 21. Габуда С.П., Земсков С.В. Ядерный магнитный резонанс в комплексных соединениях. Новосибирск: Наука, 1976.
- 22. Абрагам А. Ядерный магнетизм. М.: Иностр. лит-ра, 1963.