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В статье представлены результаты теоретического исследования характеристик сжимаемого погранич-

ного слоя в условиях полета в атмосфере возвращаемых космических аппаратов при числах Маха набегающего 

потока 6  M  10 при сублимации материала поверхности плоской пластины. В качестве вещества сублими-

рующего покрытия принят углерод в виде графита. В силу того, что увеличение скорости полета приводит 

к повышению температуры поверхности, возрастает скорость уноса массы углерода, а температура стенки 

в результате испарения материала снижается в сравнении со случаем обтекания пластины без сублимации. Это 

приводит к повышению плотности газовой смеси в облаке паров сублимирующего вещества вблизи стенки, 

благодаря чему устойчивость высокоскоростного пограничного слоя по отношению к возмущениям первой 

моды повышается. Что касается второй моды, то уменьшение скорости ее пространственного нарастания 

при увеличении числа Маха набегающего потока замедляется за счет сублимации материала поверхности. 

Для оценки положения ламинарно-турбулентного перехода проводились расчеты по методу eN. Расчеты пока-

зали, что при числе Маха M = 6 сублимация поверхности не влияет на переход, который определяется ростом 

трехмерных возмущений первой моды. Повышение числа Маха до M = 8 и выше приводит к тому, что темп 

роста возмущений вниз по потоку уменьшается, доминировать в переходе начинает двумерная вторая мода 

неустойчивости. Сублимация графитового покрытия оказывает дестабилизирующее влияние относительно 

возмущений второй моды, ускоряя тем самым переход пограничного слоя в турбулентное состояние.  

Ключевые слова: высокоскоростной пограничный слой, гидродинамическая устойчивость, ламинарно-

турбулентный переход, бинарная газовая смесь, сублимация.  

Введение 

Необходимость исследования пограничного слоя в условиях уноса массы с обтека-

емой поверхности стимулируется практическим требованием тепловой защиты элемен-

тов конструкции летательных аппаратов путем использования разрушаемых покрытий. 

Важность таких исследований, в частности, подчеркивалась в монографии [1], где 

отмечалось, что тепловая защита первых космических аппаратов была существенно 
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преувеличена из-за недостаточности знаний ряда проблем аэротермодинамики. Одной 

из таких проблем является ламинарно-турбулентный переход пограничного слоя (ПС).  

Вопросам ламинарно-турбулентного перехода уделяется большое внимание во всем 

мире. Общепринятым считается, что, по крайней мере, при малых внешних возмущениях 

ламинарно-турбулентный переход определяется неустойчивостью пограничного слоя. 

Основы теории устойчивости сверхзвуковых пограничных слоев были заложены еще 

в конце 40-х – начале 50-х годов прошлого столетия [2]. Последующие исследования ус-

тойчивости сверхзвуковых пограничных слоев подробно анализировались в работах [3 – 5]. 

Все эти исследования касались пограничных слоев однокомпонентного газа. Однако 

устойчивость и ламинарно-турбулентный переход в условиях абляции почти не изуча-

лись. На сегодняшний день по устойчивости высокоскоростного пограничного слоя 

конуса в условиях уноса массы с обтекаемой поверхности авторам известны только ра-

боты [6, 7]. В них рассматривался случай двумерных возмущений при числах Маха  

М = 16 и 20.  

Многочисленные аналитические и численные исследования указывают на возмож-

ность качественного предсказания устойчивости и ламинарно-турбулентного перехода 

на основе простых свойств о распределении скорости и температуры в пограничном 

слое. Поэтому в качестве первого шага в настоящей работе проводятся исследования 

по влиянию сублимации материала пластины на параметры среднего течения в высоко-

скоростном пограничном слое. Полученные при этом результаты используются в расче-

тах характеристик устойчивости.  

В результате абляции в ПС обтекаемой потоком воздуха модели впрыскиваются 

пары́ вещества поверхности в результате его испарения. В силу этого ПС уже не являет-

ся однокомпонентным. Следовательно, необходимо рассматривать течение многокомпо-

нентной смеси газов, в простейшем случае — бинарную смесь двух газов с различными 

теплофизическими свойствами. Уравнения ПС такой бинарной смеси в приближении 

локальной автомодельности были получены в работе [8] (см. также [9]) в рамках реше-

ния задачи о распределенной инжекции в ПС инородных газов через проницаемую по-

верхность. Эта система уравнений учитывает эффекты диффузии и термодиффузии 

примеси. В дальнейшем система была обобщена для учета испарения вещества поверх-

ности в результате его сублимации [10]. При этом учитывались потери энергии потока 

на испарение.  

Уравнения линейной устойчивости пограничного слоя бинарной газовой смеси 

были получены в работе [11] (см. также [9, 10]) в рамках решения задач о влиянии 

на устойчивость сверхзвуковых ПС распределенной инжекции тяжелых и легких газов 

и сублимации нафталинового покрытия. В представленной работе эти уравнения исполь-

зуются для исследования влияния испарения графитового теплозащитного покрытия 

на устойчивость и переход ПС в условиях высокоскоростного полета в атмосфере. Можно 

отметить, что рассматриваемая в настоящей работе задача является частью более общей 

проблемы о влиянии распределенного тепломассообмена на обтекаемой поверхности 

на устойчивость и переход пограничных слоев на возвращаемых космических аппаратах. 

В работе исследуется диапазон чисел Маха 6  M  10, соответствующих стандартной 

траектории спуска [12].  

Основные уравнения пограничного слоя 

Рассматривается пограничный слой на плоской пластине, поверхность которой пок-

рыта сублимирующим материалом. Пластина обтекается сверхзвуковым потоком 
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воздуха. С учетом сублимации в пограничном слое образуется бинарная смесь (воздух + 

+ пары́ сублимирующего вещества), течение которой при пренебрежении влиянием тер-

модиффузии описывается системой уравнений [13]:  
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Здесь U, V — скорости смеси в s- и y-направлениях, ρ — плотность, h — удельная 

энтальпия на единицу массы, P — давление, T — температура, q и 1j  — тепловой и мас-

совый потоки примеси в y-направлении, с1 — массовая концентрация примеси, R — 

универсальная газовая постоянная, , , D12 — коэффициенты динамической вязкости, 

теплопроводности и диффузии, индексом e здесь и далее обозначаются значения соот-

ветствующей переменной, взятые на внешней границе пограничного слоя.  

Предполагая процесс сублимирования достаточно медленным, будем считать фор-

му поверхности, обтекаемой модели неизменной. В отсутствии теплового потока к твер-

дому телу, с учетом уравнения Кнудсена – Ленгмюра [14] и теплового баланса [15] 

на поверхности, система (1) – (6) решается при следующих граничных условиях на стенке:  
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где Gw — массовый поток сублимирующего вещества с поверхности, а нижний индекс w 

указывает, что значение соответствующей величины берется на стенке при y = 0. Из (8) 

видно, что величина Gw определяется разностью давления насыщенных паров субли-

манта sat
1P  при температуре стенки wT  и парциального давления паров вещества 
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в пограничном слое непосредственно над поверхностью 1;P  1a  — безразмерный коэф-

фициент аккомодации сублиманта, 1m  — молекулярный вес сублимирующего вещества, 

sg wQ H G  — количество тепла, затрачиваемого на испарение вещества покрытия, sgH — 

энтальпия сублимации.  

Граничные условия на внешней границе пограничного слоя имеют вид:  

   e e, , ,U T U T   
1 0c   при .y                                  (11) 

Зависимость давления насыщенных паров от температуры сублимирующего покрытия 

 s s
1 1 wP P T  определяется уравнением Клапейрона – Клаузиуса [14]:  
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где TP,1,P  TP,1T  — давление и температура паров сублиманта в тройной точке. Парци-

альное давление испаряющегося материала определяется по формуле:  
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где P — давление вне пограничного слоя.  

Зависимость коэффициентов переноса — вязкости, теплопроводности — и диффу-

зия рассчитывались на основании кинетической теории в рамках потенциала Леннард –

 Джонса [16].  

Локально-автомодельные уравнения двумерного пограничного слоя 

Уравнения пограничного слоя (1) – (4) приводились к системе обыкновенных 

дифференциальных уравнений с использованием автомодельной координаты y y   

[8, 17], где e e ex U    — масштаб Блазиуса сжимаемого пограничного слоя:  
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ность ,  вязкость ,  энтальпия h  — безразмерные величины, отнесенные к соответ-

ствующим значениям вне пограничного слоя, Me — число Маха потока на внешней гра-

нице пограничного слоя. 

Граничные условия на поверхности (7) – (10) записываются в виде:  
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Можно видеть, что в граничных условиях (15) – (18) балансы массы и энергии на по-

верхности оказываются связанными, поскольку массовый расход паров сублиманта 

по нормали к стенке wG  зависит от температуры, а сам он включен в условие теплового 

баланса (17) и входит в выражение, связывающее концентрацию примеси 1c  с диффузи-

онным массовым потоком сублиманта (18).  

В настоящей работе уравнения (14) интегрировались численно с помощью метода 

Рунге – Кутты четвертого порядка точности. Для нахождения решения, удовлетворяю-

щего граничным условиям (11, 15 – 18), применялись метод стрельбы и итерационный 

алгоритм Ньютона.  

Линейная теория устойчивости 

Линейная теория устойчивости пограничного слоя бинарной смеси газов была раз-

работана ранее и представлена в работе [11] (см. также [9, 10]). Линеаризуя обезразме-

ренные уравнения движения вязкой теплопроводной бинарной газовой смеси для возму-
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в приближении локальной параллельности среднего течения (пренебрегая изменениями 

среднего движения в продольном направлении), получим следующую систему обыкно-

венных дифференциальных уравнений (ОДУ):  
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где  и  — продольное и трансверсальное (в x- и z-направлениях) волновые числа, 

*
e e2C U f U         — безразмерная частота возмущения, f — размерная час-

тота в герцах, связанная с безразмерным частотным параметром F посредством формулы 

6 2
e e e10 2 ;F f U    Pr pC   — число Прандтля, Cp — теплоемкость при посто-

янном давлении, 12Sm D   — число Шмидта. Искомый вектор возмущения 

   
T

, , , , ,u v w pq cy h  составлен из амплитуд пульсаций трех компонент скорости, дав-

ления, энтальпии и концентрации примеси (паров сублимирующего вещества).  

Система (19) редуцировалась затем к системе десяти однородных ОДУ первого по-

рядка для вектора    
TT

1 10 1, , , , , , , , , , , ,u u v p w w h h c j        где j  — возмущение 

диффузионного потока массы примеси, а штрихом обозначена производная по нормаль-

ной к поверхности координаты y. Полученная таким образом система ОДУ дополняется 

следующим набором из десяти однородных граничных условий на обтекаемой поверх-

ности и на внешней границе пограничного слоя:  

 

   

w w 12, , , , 0 ,

, , , .0,,

0,
dc

f c Du v w h

u v w h c

y
dy

y


 

  





 

                                   (20) 

Последнее условие для  1 0c  в (20) выводится из (10) для флуктуации концентра-

ции примеси.  

В настоящей работе исследуется пространственная задача устойчивости, поэтому  

и  предполагаются вещественными, а r ii     — комплексным числами. При этом 

мнимая часть продольного волнового числа определяет скорость пространственного 

изменения амплитуды волнового возмущения. При i 0   амплитуда растет вниз 

по потоку (течение неустойчиво), тогда как при i 0   волны затухают с ростом x 

(течение устойчиво).  

Уравнения (19) в совокупности с граничными условиями (20) описывают развитие 

волновых нарастающих возмущений вниз по потоку в пограничном слое. Система (19) 

является по сути расширением известной системы уравнений устойчивости Дана – Линя [4], 

которая используется для однокомпонентных течений, и разработана для случая погра-

ничного слоя бинарной смеси на сублимирующей поверхности. При этом система (19) 

отличается от системы Дана – Линя наличием дополнительного уравнения для концен-

трации испаряющегося материала (предпоследнее уравнение в (19)). Система (19) – (20) 

представляет собой задачу на собственные значения, которая в настоящей работе инте-

грировалась численно с помощью метода ортогонализаций [13]. При этом продольное 

волновое число r ii     определялось как собственное значение задачи (19) – (20).  

Сублимация графита 

В настоящей работе предполагается, что поверхность модели покрыта слоем веще-

ства, способного к чистой сублимации (фазовому переходу от состояния твердого тела 

в газообразное, минуя жидкую фазу) в отсутствие других осложняющих анализ явлений, 

таких как химические реакции, диссоциация и ионизация. А в качестве материала 
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теплозащитного покрытия был выбран поликристаллический графит [18]. Графит как 

материал для аблирующего теплозащитного покрытия используется в течение многих 

лет, и его теплофизические характеристики хорошо известны и задокументированы [19]. 

Углерод обладает наивысшей температурой плавления среди известных тугоплавких 

элементов, что в сочетании с хорошими термопрочностными характеристиками, малой 

плотностью и другими свойствами делает его весьма перспективным для использования 

в высокотемпературных устройствах современной техники [20].  

При сублимации графита в пограничный слой инжектируются полимерные моле-

кулы углерода от C1 до C16 [21, 22] и даже выше, в зависимости от температуры. В рабо-

те [23] отмечалось, что при давлении порядка 10
–6

 атм основными в этом процессе явля-

ются атомы углерода C1. С ростом давления вдоль линии сублимации последовательно 

увеличиваются вклады молекул C2, C3, C4, C5, C6, и C7 [24]. Для практических приложе-

ний важными являются только C1, C2 и C3 [18], среди которых молекула C3 доминирует 

в составе инжектируемых паров при T > 2000 K [24]. Поэтому в настоящей работе в ка-

честве первого приближения будем ограничиваться предположением о том, что облако 

паров углерода над сублимирующей поверхностью целиком состоит только из молекул C3. 

В этом случае газ углерода будет представлять собой вещество с молекулярным весом 

m1 = 312 = 36, что немного больше, чем у воздуха.  

Необходимые для аэродинамических расчетов параметры атмосферы задаются 

таблицей стандартной атмосферы. В этой таблице содержатся значения плотности, дав-

ления, температуры и некоторых других параметров в зависимости от высоты над по-

верхностью Земли. При решении задач, связанных с возвращением космического кораб-

ля на Землю, важны уточненные данные о параметрах атмосферы до 300 км. Такие дан-

ные приводились, например, в исследовании [25].  

В работе [12] была представлена высотная карта траекторий движения возвращае-

мых с орбиты аппаратов при их спуске в атмосфере Земли. На этой карте показано, что 

на высоте h = 40 км спускаемые аппараты движутся со скоростями, соответствующими 

диапазону чисел Маха 6 < M < 10. Поэтому в настоящей работе расчеты проводились 

для пограничного слоя на плоской пластине, обтекаемой потоком воздуха с числами 

Маха 6  M  10, при значениях статических температуры и давления потока, опреде-

ляемых по таблицам из публикации [25] для высоты h = 40 км.  

Табличные данные зависимостей теплоемкости, энтропии, энтальпии графита 

и компоненты паров углерода C3 от температуры можно найти в исследовании [26]. 

Аппроксимирующие аналитические зависимости для них, которые использовались 

в настоящей работе, были представлены в публикации [27].  

Силовые параметры потенциала Леннард – Джонса для молекул C3, необходимые 

для вычисления коэффициентов переноса, определялись на основании подхода [28]. 

В результате было получено, что диаметр столкновения молекул C3 составляет 

1 4,43   ангстрем, и 1 88,7k  K. Величина энтальпии сублимации молекул C3 

sg 201H   ккал/моль, а коэффициент аккомодации в (8) 1 0,023a   [21]. В настоящей ра-

боте давление пара C3 определялось не только по уравнению Клапейрона – Клаузиуса (12), 

а также при помощи приближенных формул, аппроксимирующих экспериментальные 

зависимости  1
sP T  [29].  
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Результаты. Средний поток 

Результаты расчетов представлены ниже в безразмерном виде: различные физиче-

ские величины отнесены к своим значениям на внешней границе пограничного слоя, 

а расстояние от стенки — к масштабу Блазиуса .  

На рис. 1а – 1e показано распределение основных параметров пограничного слоя — 

продольной скорости U, температуры T, концентрации примеси 1,c  плотности ,  теп-

лового потока q  и величины dU dy  поперек слоя (в зависимости от нормальной ко-

ординаты )y y   — рассчитанных для различных чисел Маха M набегающего потока 
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Рис. 1. Пограничный слой на адиабатической стенке при различных значениях числа Маха M  

и температуры торможения T0 : профили продольной скорости  U U y  [м/с] (а), 

температуры  T T y  [K] (b), концентрации примеси (паров углерода С3)  1 1c c y  (c), 

плотности  y   (d), теплового потока  q q y  (e), величины dU dy   (f). 

На графиках в качестве обозначений отдельных кривых приводятся соответствующие значения 

числа Маха M ; сплошные линии — теплоизолированная поверхность, 

штриховые — адиабатическая пластина с сублимацией графитового покрытия. 
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для условий полета на высоте h = 40 км. Сплошными линиями показаны результаты 

расчетов на несублимирующей поверхности, тогда как штриховые линии показывают 

рассчитанный пограничный слой на плоской пластине с графитовым покрытием. 

Обозначения кривых соответствуют числам Маха M = 6, 7, 8, 9, 10.  

На рис. 1а приведены распределения размерной продольной скорости поперек по-

граничного слоя  U U y  [км/с]. Видно, что увеличение скорости полета (числа M) 

в отсутствие сублимации поверхности приводит к увеличению температуры торможения 

потока и толщины пограничного слоя в безразмерных координатах. Сравнивая сплош-

ные и штриховые линии одного цвета на рис. 1а, можно видеть, что сублимация графи-

товой поверхности приводит к некоторому уменьшению толщины пограничного слоя.  

Рисунок 1b демонстрирует рассчитанные профили размерной температуры 

 T T y [K]. Видно, что в отсутствие сублимации (сплошные линии) рост числа M 

от 6 до 10 приводит к значительному увеличению температуры адиабатической стенки 

 w 0 :T T y   от 1800 до 4500 K. На графитовой пластине это повышение wT  оказыва-

ется не таким большим, т.к. испарение углерода с поверхности приводит к ее заметному 

охлаждению. Если при M = 6 и 7 сплошные и штриховые линии  T T y  на рис. 1b 

сливаются, что свидетельствует о том, что при этих скоростях полета (U < 2,3 км/с,  

рис. 1а) влияние сублимации несущественно, то уже при M = 8 (U  2,6 км/с, рис. 1а) 

охлаждение поверхности за счет ее испарения становится заметным. А при M = 10 

( 3,2U   км/с, рис. 1а) сублимация графита приводит к существенному снижению 

температуры адиабатической стенки: с w 4500T   K до w 3000T   K (см. для сравнения 

красные сплошную и штриховую кривые). При этом также заметно уменьшение толщи-

ны пограничного слоя на графитовой поверхности по сравнению с несублимирующей 

поверхностью.  

Рисунок 1c показывает, что увеличение скорости полета от M = 6 до 10 последо-

вательно приводит к увеличению интенсивности испарения вещества поверхности 

(в соответствии с (8), (12)). В результате этого концентрация паров примеси в погранич-

ном слое повышается от значений, близких к нулю (при M 7   испарения почти нет), 

до значений 1w 7,5%c   при M = 10. Можно отметить, что даже такой сравнительно 

небольшой выход атомов углерода с обтекаемой поверхности в газовую фазу суще-

ственно влияет на пограничный слой, приводя к заметному охлаждению пограничного 

слоя бинарной смеси газов (рис. 1b). Причиной этого является высокое значение энталь-

пии сублимации sgH  молекул C3.  

Поперечные профили  y   (рис. 1d) демонстрируют уменьшение плотности 

при движении от внешней границы пограничного слоя к стенке. Рост числа M от 6 

до 10 в отсутствие сублимации приводит к уменьшению плотности на стенке 

 w
e

0y





   от величины 0,15 до 0,06, (сплошные кривые на рис. 1d). Включение 

сублимации поверхности, напротив, приводит к повышению плотности в полтора раза: 

от 0,06w   до 0,09 при M = 10. Это происходит за счет того, что испаряющееся ве-

щество уносит значительную энергию, вследствие чего имеет место сильное охлаждение 

поверхности (красные сплошная и штриховая линии на рис. 1b).  
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На рис. 1e показано распределение поперек слоя полного безразмерного теплового 

потока  q q y  (6). Видно, что в отсутствие сублимации на адиабатической стенке 

 w 0 0.q q   Тепловой поток  q q y  достигает максимума внутри пограничного 

слоя при значениях координаты 10 22y   в слое максимального градиента температу-

ры (сплошные линии рис. 1b). На графитовой поверхности (штриховые линии рис. 1e) 

w 0,q   т.е. тепловой поток направлен к стенке, которая, однако, при этом не нагревается, 

поскольку все приходящее тепло wq  расходуется на испарение материала поверхности 

(тепловые граничные условия (10), (17)). При этом wq  растет с увеличением M .  

Величина ,dU dy  графики которой изображены на рис. 1f, демонстрирует нали-

чие в профилях среднего течения обобщенной точки перегиба (экстремумы указанной 

функции). Это свидетельствует о возможной невязкой неустойчивости рассматриваемо-

го течения. Видно, что с увеличением числа Маха положение обобщенной точки переги-

ба удаляется от обтекаемой поверхности.  

На рис. 2 верхняя линия 1 представляет собой зависимость температуры торможе-

ния потока T0 от числа Маха. Линия 2 отвечает температуре адиабатической стенки 

в отсутствие сублимации aw .T  Наконец, кривая 3 показывает температуру сублимирую-

щего графитового покрытия поверхности модели w,s ,T  рассчитанную на основании чис-

ленного решения краевой задачи (11, 14, 15 – 18). Видно, что полет на высоте h = 40 км 

при числах Маха 6 M 10   происходит при температурах торможения потока 

02000 5500T  K. Рис. 2 позволяет оценить величину охлаждения поверхности модели 

за счет сублимации графитового покрытия. Видно, что w,s awT T  при M  7,5 

( 0 3200,T   w 2600T  K). Дальнейший рост M приводит к тому, что температура гра-

фитовой поверхности становится заметно ниже температуры восстановления пластины 

в отсутствие сублимации. Так, при M = 9 aw w,s 1000T T  K (вертикальная стрелка), 

а при M = 10 разница температуры восстановления теплоизолированной пластины 

и температуры адиабатической сублимирующей поверхности превышает 1500 K. Таким 

образом, охлаждение поверхности за счет сублимации углерода становится достаточно 

сильным, а это, согласно выводам [10], способствует стабилизации пограничного слоя 

по отношению к возмущениям первой моды.  
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Рис. 2. Температура торможения T0, 

температура восстановления 

теплоизолированной пластины 

в отсутствие сублимации awT  

и температура сублимирующего 

графитового покрытия w,sT  

(кривые 1 – 3 соответственно) 

в зависимости от числа Маха M. 
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Результаты. Устойчивость сублимирующего пограничного слоя 

Расчеты устойчивости пограничного слоя проводились для плоской пластины, об-

текаемой потоком воздуха с различными числами Маха. Было рассчитано несколько 

вариантов, основные параметры которых сведены в табл. 1. В строках этой таблицы 

приводятся значения числа Маха набегающего потока M , продольной скорости U , 

температуры торможения T0 , давления торможения P0 (два последних параметра опре-

делены по обычным формулам сжимаемого изоэнтропического течения совершенного 

газа без учета явлений реального газа на основании таблиц стандартной атмосферы 

[25]), и единичного числа Рейнольдса Re1 . Рассмотренный диапазон полетных чисел 

Маха 6  M  10 перекрывает по ширине скоростной коридор для спускаемых космичес-

ких аппаратов на h = 40 км [12].  

Перейдем к изложению результатов по устойчивости пограничного слоя. На рис. 3а 

приведены зависимости скоростей пространственного нарастания двумерных ( = 0) 

возмущений от частотного параметра  ,i F  (где 6 2
e e e10 2 ,F f U     f — размер-

ная частота [Гц]), рассчитанные при 6  M  10, Re = 1500. Кривые пронумерованы 

в соответствии со значением числа Маха набегающего потока, и также соответствуют 

данным табл. 1. Сплошными линиями показаны инкременты возмущений пограничного 

слоя на несублимирующей теплоизолированной поверхности, а штриховыми — на адиа-

батической плоской пластине с сублимацией графитового покрытия. Наибольшие скорости 

Та б лица  1  

Параметры рассчитанных вариантов 

M 6 7 8 9 10 

U, км/с 1,9 2,25 2,6 2,9 3,2 

T0, K 2100 2790 3560 4440 5400 

P0, бар 4,7 12,2 29 62,4 125 

Re110
–6

, м
–1

 0,47 0,55 0,63 0,70 0,78 

 

0

10

20

30

i

4

6

7
8

9
10

0 20 40 60 80 100 120 F0 20 40 60 80 100 120 F
0 82,

0 84,

0 86,

0 88,

0 90,

0 92,

0 94,

0 96,

6
7

8910
cx

–αi ∙ 104 a b

 
 

Рис. 3. Зависимость скоростей пространственного роста  i i F     (а) 

и фазовых скоростей  x xc c F  (b) двумерных возмущений от частотного параметра F. 

Номер кривой соответствует значению числа M  (см. также табл. 1); Re = 1500;  

сплошные линии — результаты расчетов на несублимирующей теплоизолированной поверхности, 

штриховые — данные расчетов на адиабатической плоской пластине с сублимацией графитового покрытия. 
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роста показывает вторая акустическая мода неустойчивости (пики при 40 < F < 110). В то 

же время низкочастотная вихревая первая мода (F < 50) имеет намного меньшие инкремен-

ты роста. При M = 10 происходит дестабилизация третьей моды (F  115), однако по-

следняя имеет малые скорости нарастания, вследствие чего она не будет вносить суще-

ственного вклада в процесс турбулизации течения. Графики на рис. 3 наглядно демон-

стрируют, что рост числа Маха приводит к уменьшению наиболее неустойчивых частот 

и стабилизации пограничного слоя, поскольку скорости роста возмущений второй моды 

уменьшаются. Вместе с тем сублимация, происходящая главным образом за счет охла-

ждения поверхности (рис. 1b) приводит к дестабилизации возмущений второй (и треть-

ей) моды (это видно при сравнении сплошных и штриховых линий одного цвета) и 

к уменьшению скоростей роста первой моды. При M = 6 и 7 сплошные и штриховые 

линии с графической точностью совпадают. Это означает, что при таких скоростях поле-

та влияние сублимации пренебрежимо мало. Такой вывод совпадает с расчетами средне-

го течения в пограничном слое (рис. 1). На рис. 3b приводятся графики зависимости фа-

зовых скоростей возмущений от частотного параметра  .x xc c F  Видно, что сублима-

ция графитового покрытия приводит к некоторому уменьшению фазовых скоростей воз-

мущений. При этом общий тренд — увеличение фазовой скорости возмущения с ростом 

частоты — сменяется в частотном диапазоне неустойчивости второй моды (рис. 3а) 

на противоположный, когда xc  уменьшается с ростом F.  

На рис. 4 представлены рассчитанные диаграммы устойчивости пограничного слоя 

в виде изолиний безразмерных скоростей пространственного нарастания возмущений 

 ,i i F      на плоскости (частотный параметр F — угол ориентации волнового 

вектора возмущения  rarctan .    Расчеты проводились для значения числа Рей-

нольдса 1Re Re 1500x   и значений числа Маха (см. табл. 1) M = 6, 8 и 10 (рис. 4a, 

4b, рис. 4c, 4d и рис. 4e, 4f соответственно). Рис. 4а, 4c, 4e соответствуют случаям без 

сублимации, 4а, 4b, 4d, 4f — случаям с учетом сублимации. 

На приведенных диаграммах заполненная цветом область представляет собой диа-

пазон неустойчивых параметров (–i > 0), внутри которого амплитуда возмущений 

нарастает при движении вниз по потоку. Цветовая схема, расположенная в правом верх-

нем углу каждого фрагмента рис. 4, позволяет оценить максимальные скорости роста 

возмущений ,maxi . Отметим, что при числе Маха M = 6 (рис. 4a, 4b) диаграммы 

устойчивости идентичны. Это означает, что при таких условиях влияние сублимации 

обтекаемой поверхности на устойчивость течения в пограничном слое пренебрежимо 

мало́. Видно, что здесь имеются две отдельные области неустойчивости, соответству-

ющие первой и второй модам. Эти области на плоскости  ,F   расположены в зонах  

(3 < F < 70, 0   < 75) и (85 < F < 120, 0   < 40) соответственно. При этом макси-

мальные скорости роста первой и второй мод — i,1,max  = 12,710
–4

 и i,2,max  = 37,410
–4

 

соответственно — имеют возмущения с 1,max 18,3,F   1,max   65 и 2,max 102,5,F   

2,max 0.   Положения i,max  отмечены черными точками на диаграммах устойчивос-

ти. Таким образом, локальные скорости роста более высокочастотных возмущений вто-

рой моды более чем в три раза превосходят инкременты первой моды неустойчивости.  
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Увеличение числа Маха до M = 8 в отсутствие сублимации (рис. 4с) и далее 

до M = 10 (рис. 4e) приводит к тому, что две отдельные области неустойчивости первой 

и второй мод сливаются в одну за счет того, что вторая мода смещается в область более 

низких частот. Причем при M = 10 дестабилизируется третья мода неустойчивости. 

Максимальные инкременты всех трех мод и их положение на диаграмме устойчивости 

для удобства сравнения сведены в табл. 2, где через косую черту приводятся результаты 

в отсутствие сублимации (рис. 4а, 4c, 4e) и с сублимацией графитового покрытия (рис. 4b, 

4d, 4f). Видно, что увеличение скорости полета (числа Маха) приводит к уменьшению 

локальных скоростей пространственного роста первой и второй мод i,max ,  а также 

заметному уменьшению частоты наиболее усиливающихся волн второй моды 2,max .F  
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Рис. 4. Изолинии скоростей пространственного роста возмущений   4
i i , 10 ,F       

рассчитанные для чисел Маха M = 6 (a, b), 8 (c, d) и 10 (e, f) 

в отсутствие сублимации (а, c, e) и с сублимацией (b, d, f) графитового покрытия. 
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При этом вследствие сублимации материала обтекаемой поверхности наблюдается допол-

нительное уменьшение i,max  первой моды и дестабилизация второй моды (увеличе-

ние i,max ), усиливающихся с ростом числа Маха. 

На рис. 5 показаны диаграммы устойчивости пограничного слоя в виде изолиний 

безразмерных скоростей пространственного нарастания двумерных возмущений –i = 

=  i Re, F  на плоскости, где число Рейнольдса Re — частотный параметр F. Как и 

Та б лица  2  

Параметры мод с максимальными инкрементами 

M –i,1,max10
4
 F1,max 1,max –i,2,max10

4
 F2,max –i,3,max10

4
 F3,max 

6 12,7 18,3 65 37,4 102,5 – – 

8 9 / 8,9 20,5 61,3 25,6 / 27,2 64,2 – – 

10 6,4 / 5,8 21,1 57,7 16,4 / 21,7 44,6 0,95 / 4,7 114 
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Рис. 5. Изолинии скоростей пространственного роста двумерных возмущений 

  4
i i Re, 10 ,F      рассчитанные для чисел Маха M = 6 (a, b), 8 (c, d), 10 (e, f) 

в отсутствие сублимации (а, c, e) и с сублимацией графитового покрытия (b, d, f). 
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ранее (см. рис. 4), расчеты проводились для чисел Маха (см. табл. 1) M = 6, 8 и 10 

(рис. 5a, 5b, рис. 5c, 5d и рис. 5e, 5f соответственно). При M = 6 ((рис. 5a, 5b) влияние 

сублимации материала обтекаемой поверхности мало, а диаграммы устойчивости иден-

тичны. Наблюдаются две области неустойчивости. Нижняя и верхняя цветные полосы 

соответствуют первой и второй модам неустойчивости. Видно, что область неустойчи-

вости второй моды составляет довольно узкую полосу, в результате чего каждая инди-

видуальная частота F будет усиливаться в очень ограниченном диапазоне Re или про-

дольной координаты x. Возмущения более низкочастотной первой моды, напротив, мо-

гут усиливаться в гораздо большем диапазоне числе Re, однако имея при этом намного 

меньшие скорости пространственного нарастания в сравнении с пульсациями второй 

моды. Какая из двух представленных мод неустойчивости станет доминирующей в про-

цессе линейно-турбулентного перехода высокоскоростного пограничного слоя, будет 

показано ниже.  

При увеличении числа Маха в отсутствие сублимации до 8 (рис. 5c) и 10 (рис. 5e) 

две отдельных области неустойчивости первой и второй мод сливаются в одну. При M = 10 

дестабилизируется третья мода, область неустойчивости которой при 1200 < Re < 1700 

отделена от второй моды, а при Re > 1700 сливается с последней. Цветовые схемы, при-

водимые в правом верхнем углу диаграмм устойчивости на рис. 5, позволяют видеть, что 

максимальные скорости роста возмущений i,max  уменьшаются с ростом M  и увели-

чиваются вниз по потоку (рост числа Рейнольдса Re). Скорости роста второй и третьей 

мод i,2,(3),max  увеличиваются, а первой моды i,1,max  — уменьшаются вследствие 

сублимации поверхности. Сравнение диаграмм устойчивости при M = 10 (рис. 5e, 5f) 

показывает, что сублимация графитового покрытия приводит к тому, что область 

неустойчивости третьей моды отщепляется от диапазона неустойчивости второй моды 

(по крайней мере, в рассматриваемом и приводимом на диаграммах устойчивости диапа-

зоне Re).  

На рис. 6 показаны скорости пространственного нарастания возмущений второй моды 

вдоль линий максимальных инкрементов —  
 

  i,2,max i,2
, 0

Re max , ,Re .
F

F


  


    

Обращает на себя внимание тот факт, что в условиях настоящей работы точка потери 

устойчивости наиболее неустойчивой второй моды при всех M приблизительно одина-

кова и ей соответствует 0Re 120.  Видно, что рост числа Маха от 6 до 10 приводит 

к уменьшению скоростей нарастания второй моды, которые увеличиваются вниз  

по потоку с ростом числа Re. Также видно, что сублимация графитового покрытия при-

водит к дестабилизации второй моды, проявляющейся в увеличении инкрементов i,2,max  

с ростом числа Re.  

8

6

10

–αi ∙ 104

0 500 1000 1500 2000 2500 3000 3500 Re

40

30

20

10

 
 

 

Рис. 6. Зависимость максимальных скоростей 

пространственного роста второй моды 

от числа Рейнольдса  i,max Re .  

Обозначения кривых соответствует значениям 

числа M (см. также табл. 1); сплошные линии — 

для несублимирующей теплоизолированной 

поверхности, штриховые — для адиабатической 

плоской пластины с сублимацией 
графитового покрытия. 
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Таким образом, полученные на основе линейной теории устойчивости диаграммы 

устойчивости (рис. 5, 6) демонстрируют дестабилизирующее влияние сублимирующего 

графитового покрытия на устойчивость высокоскоростного пограничного слоя. Под-

твердим этот вывод также расчетами кривых нарастания возмущений.  

Линейная теория устойчивости позволяет оценивать положение ламинарно-

турбулентного перехода с помощью известного метода eN  [30]. В этом подходе поло-

жение перехода определяется величиной коэффициента усиления возмущения, при ко-

тором первый достигает некоторого порогового значения eN , где коэффициент N рас-

считывается как интеграл от локальных скоростей пространственного нарастания воз-

мущений выбранных частот  
t

0

Re

t

Re

2Im Re.N d    Здесь интегрирование проводится 

от точки потери устойчивости Re0 для каждой конкретной частоты. Первоначально этот 

метод был разработан для двумерных пограничных слоев несжимаемой жидкости. После 

сравнения значений N, рассчитанных с использованием линейной теории устойчивости, 

и экспериментальных данных по переходу, было установлено, что переход происходит 

при Nt  10. Удобство использования метода eN  для теоретических оценок положения 

перехода основано на предположении о постоянстве  t t const .N N   Многочисленные 

попытки применения этого метода для пограничного слоя в различных условиях показа-

ли, что при малом уровне внешних возмущений этот метод оказывается весьма эффек-

тивным для оценки положения перехода. Однако значения N-фактора перехода варьиро-

вались в зависимости от различных условий (отражающих различную природу неустой-

чивости) и они имели различные значения в пределах t7 11.N   Как показывает опыт, 

для высокоскоростных пограничных слоев N-фактор зависит от амплитуды возмущений 

свободного потока в рабочей части аэродинамической трубы. Так, величина N-фактора 

уменьшается с 8,1 до 2,6 при увеличении уровня внешних возмущений с 0,1 до 1 % [31]. 

Далее приводятся результаты расчетов, проведенных на основе метода eN , в которых 

не задавались какие-то определенные значения Nt .  

На рис. 7 изображены кривые нарастания амплитуд возмущений трехмерной 

первой и двумерной второй мод неустойчивости (синие штриховые и черные сплош-

ные линии соответственно) различных частот в зависимости от числа Рейнольдса 

   0ln Re .N A A  При M = 6 (рис. 7а) влияние сублимации пренебрежимо мало. 

Видно, что при выбранных в данной работе условиях темп роста вниз по потоку ампли-

туд возмущений первой и второй мод различен. Несмотря на то, что локальные скорости 

роста двумерных возмущений второй моды заметно выше в сравнении с трехмерными 

возмущениями первой моды (рис. 4, 5), первая мода опережает вторую по темпам роста 

амплитуды в силу того, что ее возмущения нарастают на гораздо более протяженных 

по Re отрезках. В результате, при числе Маха 6 трехмерные возмущения первой моды 

имеют опережающий рост по сравнению с двумерными возмущениями второй моды. 

Таким образом, рис. 7а наглядно показывает, что локальные характеристики устойчи-

вости не всегда однозначно определяют доминирование в спектре поля возмущений 

тех или иных частот.  
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Повышение числа Маха до M = 8 (рис. 7b) приводит к тому, что рассмотренная 

выше ситуация меняется на противоположную, когда несколько более быстрый рост 

показывают возмущения второй моды. Этот эффект становится еще более заметным при 

дальнейшем увеличении скорости до M = 10 (рис. 7c).  

Собственно N-факторы, т.е. огибающие кривых нарастания амплитуд возмущений 

различных частот (рис. 7), сгруппированы на рис. 8 отдельно для трехмерной первой 

и двумерной второй мод неустойчивости для всех рассмотренных чисел Маха. Видно, 

что с увеличением Re указанные N-факторы монотонно нарастают вниз по потоку с увели-

чением числа Re. Наибольший темп роста N-фактора показывают трехмерные возмуще-

ния первой моды при M = 6 (кривая 6(1)). Увеличение числа Маха набегающего потока 

приводит к последовательному уменьшению темпов роста N-фактора. Сублимация 
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Рис. 7. Кривые нарастания амплитуд возмущений трехмерной первой и двумерной второй мод 

(синие штриховые и черные сплошные линии соответственно) 

различных частот в зависимости от числа Рейнольдса    0ln Re .N A A  

Кривые рассчитаны по методу e
N
 в отсутствие сублимации и при сублимации графитового покрытия 

(левая и правая колонки соответственно); M = 6 (a), 8 (b), 10 (c). 
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графитового покрытия в принятых в настоящей работе условиях способствует уменьше-

нию темпов роста трехмерной первой моды неустойчивости и увеличению скорости 

нарастания двумерной второй моды, имеющей максимальные локальные простран-

ственные инкременты. В табл. 3 собраны рассчитанные значения N, достигнутые к Re = 

= 4000. Так, например, мода 6(1) к Re = 4000 дорастает до значения N  7,8. Все отме-

ченные выше особенности линейного развития первой и второй мод при различных чис-

лах Маха набегающего потока отражены в этой таблице. Вывод по данной части работы 

состоит в том, что при высоких числах Маха сублимация графитового покрытия способ-

ствует дестабилизации пограничного слоя на плоской пластине.  

На рис. 9 приведены для сравнения кривые нарастания двух возмущений низкой 

частоты (F = 10). Одно из них является трехмерной наклонной  60 ,    а второе — 

двумерной плоской волной (кривые 1 и 2 на графике соответственно). Обе волны начи-

нают свой рост как возмущения первой моды неустойчивости. Причем точка потери 

устойчивости трехмерной волны расположена заметно выше по течению, чем эта же 

точка для двумерной волны. Видно, что трехмерное  60    возмущение вначале 

(Re < 3500) доминирует по амплитуде, демонстрируя более быстрый рост по сравнению 

с двумерной модой. Однако последняя ниже по течению (3000 < Re < 7000) входит 

в область неустойчивости второй моды с высокими локальными скоростями простран-

ственного роста. Еще ниже по течению (8000 < Re < 9200) наблюдается дополнительный 

прирост амплитуды указанной волны, уже как возмущения третьей моды неустойчивос-

ти. В результате число N для выбранной частоты получает дополнительный прирост еще 

Та б лица  3  

N-факторы первой и второй мод при Re = 4000 

M (мода) 6(1) 6(2) 8(1) 8(2) 10(1) 10(2) 

N(Re = 4000) 

без сублимации /  

с сублимацией 

7,8 5,5 5,6 / 5,5 5,92 / 5,88 4,1 / 3,7 4,57 / 4,63 
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Рис. 8. N-факторы в зависимости от числа 

Рейнольдса   0ln Re ,N A A   

рассчитанные по методу eN. 

Обозначения кривых: число Маха (номер моды); 
cплошные линии — теплоизолированная 

поверхность в отсутствие сублимации, 
штриховые линии — для адиабатической плоской 

пластины с сублимацией графитового покрытия. 
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Рис. 9. Кривые нарастания амплитуд 

возмущений трехмерной первой  60    (1) 

и двумерной второй (2) мод 

на сублимирующем покрытии в зависимости 

от числа Рейнольдса    0ln Re ;N A A  

F = 10, M = 10. 
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на величину порядка N  1,5. Указанные особенности роста амплитуд двух волн нахо-

дятся в полном соответствии с приведенными выше диаграммами устойчивости (рис. 4f, 5f). 

На графиках рис. 9 видно, что коэффициент роста (максимальный N-фактор) первого 

из двух возмущений одинаковой частоты не превосходит 3, тогда как для второго N 

приближается к 9, хотя и достигается при гораздо бо́льших числах Рейнольдса.  

Выводы 

Проведены расчеты характеристик среднего течения в высокоскоростных погра-

ничных слоях на плоской пластине на основе полученных ранее локально-автомо-

дельных уравнений для сжимаемого пограничного слоя в условиях сублимации матери-

ала поверхности. Расчеты выполнены для различных скоростей полета для адиабатичес-

кой плоской пластины, покрытой слоем графита. Показано, что увеличение числа Маха 

набегающего потока в диапазоне 6  M  10 приводит к интенсификации испарения 

углерода с поверхности. Испаряющееся вещество уносит значительную энергию и при-

водит к сильному охлаждению поверхности, что, в свою очередь, вызывает увеличение 

плотности бинарной газовой смеси в пристенном подслое. Это повышает устойчивость 

пограничного слоя по отношению к возмущениям первой моды, тогда как пульсации 

второй и более высоких мод неустойчивости дестабилизируются. Определен диапазон 

параметров, при котором сублимация графита начинает существенно влиять на характе-

ристики пограничного слоя ( M 7,5  при h = 40 км). 

Проведены расчеты линейной устойчивости пограничного слоя плоской пластины 

в условиях сублимации графитового покрытия. Обнаружено, что сублимация графито-

вого покрытия приводит к увеличению скоростей пространственного роста возмущений 

второй моды, тем самым способствуя более быстрому переходу высокоскоростного по-

граничного слоя в турбулентное состояние. При этом скорости пространственного роста 

возмущений первой моды уменьшаются на сублимирующем покрытии в сравнении 

с теплоизолированной поверхностью в отсутствие сублимации. Показано, что дестаби-

лизирующее влияние сублимации проявляется при скоростях полета на высоте h = 40 км, 

соответствующих числам Маха M 8.   
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