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В данной обзорной работе на примере расплавов AМ-Pb и AМ-Bi (AМ — щелочной металл) кратко из-

ложены современные представления о природе химического ближнего порядка в жидкометаллических систе-

мах с частично ионным характером межатомного взаимодействия. Проведены обобщение и анализ получен-

ных авторами экспериментальных данных по термическим свойствам и взаимной диффузии в жидких сплавах 

щелочных металлов со свинцом и висмутом. Показано, что поведение этих свойств в целом согласуется с су-

ществующими простыми моделями, предполагающими наличие в расплавах ионных комплексов, которые 

постепенно разрушаются с ростом температуры. В то же время подтверждено, что структура полианионных 

комплексов в жидких системах AМ-Bi нуждается в уточнении. 

Ключевые слова: жидкие сплавы щелочных металлов со свинцом и висмутом, химический ближний 

порядок, термические свойства, взаимная диффузия. 

Современные представления о структуре жидких сплавов 

щелочных металлов со свинцом и висмутом 

Результаты проведенных различными авторами исследований термодинамических 

и электрофизических характеристик жидких сплавов щелочных металлов со свинцом, 

оловом, висмутом, золотом и некоторыми другими металлами и полуметаллами, имею-

щими высокую электроотрицательность, демонстрируют одну общую особенность — 

существенное отклонение концентрационных зависимостей изученных свойств от пове-

дения, характерного для идеальных растворов, и наличие на этих зависимостях очень 

значительных экстремумов вблизи определенных стехиометрических составов [1 – 4]. 

Наибольшее число экспериментальных данных было получено для жидких систем 

AМ-Pb и AМ-Bi (AМ — щелочной металл). 

На рис. 1, 2 представлены концентрационные зависимости удельного электричес-

кого сопротивления el ( )X  и температурного коэффициента электросопротивления (ТКС) 
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 (X — концентрация, T — температура) для расплавов AM-Pb [5 – 8]. Как 

видно из рис. 1, на изотермах el ( )X  имеется пик вблизи 20 ат. % Pb (системы Li-Pb 

и Na-Pb) или вблизи 50 ат. % Pb (системы K-Pb, Rb-Pb и Cs-Pb). Электросопротивление 

жидких сплавов в районе максимумов в несколько раз (а для систем Rb-Pb и Cs-Pb — 

в несколько десятков раз) превышает сопротивление жидкого свинца. Вблизи этих 

же концентраций ТКС расплавов становится отрицательным (см. рис. 2) , что не-

обычно для жидкометаллических систем. 
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Рис. 1. Концентрационные зависимости удельного электрического 

сопротивления жидких сплавов щелочных металлов со свинцом 

(по данным работ [5 – 8]). 
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Рис. 2. Концентрационные зависимости температурных 

коэффициентов электросопротивления жидких сплавов 

щелочных металлов со свинцом (по данным работ [5 – 8]). 



Теплофизика и аэромеханика, 2024, том 31, № 1 

177 

 

На рис. 3, 4 показаны изотермы el ( )X  и ( )X  для жидких систем AМ-Bi [9 – 11]. 

Как видно, концентрационные зависимости электросопротивления и ТКС для расплавов 

Li-Bi и Na-Bi похожи на соответствующие зависимости для жидких сплавов Li-Pb 

и Na-Pb, однако экстремумы на кривых теперь находятся в районе 25 ат. % Bi. Электро-

физические свойства расплавов K-Bi и Rb-Bi показывают более сложное поведение. 

Зависимость el ( )X  для системы калий-висмут имеет максимум вблизи 25 ат. % Bi 

и «плечо» вблизи 40 ат. % Bi, а для системы рубидий-висмут — два максимума вблизи 

этих же составов. Зависимости ( )X  для этих систем демонстрируют по два минимума. 

Положение первых минимумов совпадает между собой и находится в районе 25 ат. % Bi. 
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Рис. 4. Концентрационные зависимости температурных 

коэффициентов электросопротивления жидких сплавов 

щелочных металлов с висмутом (по данным работ [9 – 11]). 
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Рис. 3. Концентрационные зависимости удельного электрического сопротивления 

жидких сплавов щелочных металлов с висмутом (по данным работ [9 – 11]). 
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Второй минимум для системы калий-висмут расположен вблизи 35 ат. % Bi, а для си-

стемы рубидий-висмут — вблизи 45 ат. % Bi. Здесь, впрочем, следует отметить, что 

в вышеупомянутых работах [9 – 11] данные по электросопротивлению и ТКС для рас-

плавов AМ-Bi представлены в основном в графической форме и на рисунках очень ма-

лого размера. Погрешность данных по электросопротивлению достигает 30 % [9], 

а погрешность ТКС, как правило, не указана. По нашему мнению, фактически можно 

лишь утверждать, что зависимости el ( )X  и ( )X для систем K-Bi и Rb-Bi имеют ши-

рокие максимумы и минимумы в интервале концентраций 25 – 40 ат. % Bi. Для системы 

Cs-Bi концентрационные зависимости электросопротивления и ТКС снова демонстри-

руют ярко выраженные экстремумы вблизи определенных составов, но их положение 

не совпадает между собой ( 40 и  30 ат. % Bi соответственно). 

Отмеченные выше аномалии поведения электрофизических свойств жидких систем 

AМ-Pb и AМ-Bi указывают на сильное взаимодействие между компонентами расплава 

и наличие химического ближнего порядка [3]. Для описания структуры подобных сис-

тем была предложена простая модель [1 – 3], согласно которой полагается, что часть 

атомов жидкого сплава связана в ассоциированных комплексах определенного стехио-

метрического состава, причем химическая связь в этих комплексах из-за большой раз-

ницы в электроотрицательности компонентов имеет частично ионный характер. Исполь-

зование такого подхода позволяет дать качественное объяснение особенностям на кон-

центрационных и температурных зависимостях физико-химических свойств жидкостей 

с химическим ближним порядком. Положение максимумов на зависимостях el ( )X  

для жидких сплавов легких щелочных металлов (литий и натрий) со свинцом указывает 

на наличие ионных комплексов с соотношением компонентов 4:1 (рис. 5). В распла-

вах K-Pb, Rb-Pb и Cs-Pb преобладают комплексы с соотношением компонентов 1:1 (рис. 6). 

По аналогии с твердыми сплавами AМ-Pb (для которых наличие таких структурных 

единиц достоверно подтверждено) предполагается, что эти комплексы представляют 

собой четыре иона свинца, образующие с помощью ковалентных связей тетраэдр 

(так называемый «полианион Цинтля (Zintl)» 
4

4[Pb ] 
) с суммарным зарядом 4–, окру-

женный четырьмя катионами щелочного металла. Концентрация комплексов первого 

и второго типов достигает максимума в расплавах с составами, близкими соответствен-

но к 20 и 50 ат. % Pb. Значительная часть валентных электронов оказывается запертыми 
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Рис. 5. Ионные комплексы 

в жидких сплавах лития 

и натрия со свинцом 

(из работы [4]). 
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Рис. 6. Полианионные 

структуры в жидких 

сплавах калия, рубидия 

и цезия со свинцом 

(из работы [4]). 
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в этих структурах, что и приводит к появлению гигантских максимумов на концентра-

ционных зависимостях электросопротивления вблизи указанных составов [4]. 

Наличие максимумов в районе 25 ат. % Bi (см. рис. 3) на концентрационных зави-

симостях электросопротивления для жидких сплавов щелочных металлов с висмутом 

указывает на тенденцию к образованию комплексов вида + 3
3AM Bi   в расплавах [1, 10]. 

Что касается полианионных комплексов, то их структура на настоящий момент не ясна. 

Авторы работ [10, 11] предположили, что полианионы представляют собой цепочки 

из отрицательных ионов висмута, причем средняя длина цепочек зависит от состава 

жидкого сплава. Анионы висмута соединены между собой ковалентными связями, 

а с катионами щелочного металла — ионными связями. Например, комплекс + 6
6 4AM [Bi ]   

(40 ат. Bi, стехиометрическое соотношение 3:2) содержит четыре аниона в цепочке. 

В расплавах Li-Bi и Na-Bi в основном образуются «простые» комплексы + 3
3AM Bi .  В рас-

плавах K-Bi и Rb-Bi существуют как простые, так и полианионные структуры. В жидкой 

системе Cs-Bi, у которой на зависимости el ( )X  имеется ярко выраженный пик в районе 

40 ат. % Bi, вероятно преобладают полианионные комплексы 
+ 6
6 4Cs [Bi ] 

 [11]. 

Результаты экспериментов по дифракции нейтронов в расплавах AМ-Pb и AМ-Bi 

косвенно подтверждают существующие представления о структуре этих систем [1, 12 – 14]. 

В частности, установлено, что функции радиального распределения для жидких сплавов 

Na-Pb, K-Pb, Rb-Pb и Cs-Pb эквиатомного состава имеют пик на расстоянии, равном рас-

стоянию между атомами свинца в тетраэдрах Цинтля для твердых сплавов [12]. Анало-

гично, положение первого пика на функции радиального распределения для расплавов 

цезий-висмут оказалось близким к наименьшим расстояниям между атомами висмута 

в твердых фазах [14]. По мнению авторов [14], это свидетельствует о существовании 

одиночных анионов Bi
3–

 и коротких полианионных цепочек в жидком состоянии. Следу-

ет, однако, отметить, что до настоящего времени не проводились нейтронографические 

или рентгенографические исследования парциальных функций радиального распределе-

ния для жидких сплавов щелочных металлов со свинцом или висмутом (и другими ме-

таллами с большой электроотрицательностью, упомянутыми в начале раздела), которые 

могли бы уточнить природу химического ближнего порядка в этих системах. 

Среди литературных данных по термодинамическим свойствам жидких систем 

AМ-Pb и AМ-Bi следует выделить результаты экспериментальных исследований избы-

точной функции стабильности Даркена ES = (∂
2
ΔGex /∂X

 2
)P,T (ΔGex — избыточная сво-

бодная энергия смешения Гиббса). Поведение концентрационной зависимости избыточ-

ной функции стабильности позволяет выявить особенности структуры жидких сплавов 

и растворов [15]. В частности, наличие ярко выраженных пиков на зависимости ES (X) 

указывает на тенденцию к образованию ассоциированных комплексов в расплаве, 

а положение и высота максимумов позволяют оценить вероятный стехиометрический 

состав этих комплексов и их сравнительную устойчивость [3]. 

Зависимости ES (X) для жидких систем Li-Pb, Na-Pb, K-Pb и Rb-Pb были построены 

в работах [16 – 19] на основе экспериментальных данных по активности щелочных 

металлов в расплавах. Как видно из рис. 7, поведение избыточной функции стабильнос-

ти для расплавов литий-свинец, калий-свинец и рубидий-свинец коррелирует с поведе-

нием электросопротивления для этих систем, что подтверждает тенденцию к образованию 

комплексов с соотношением компонентов 4:1 (Li-Pb) и 1:1 (K-Pb и Rb-Pb). Для системы 

натрий-свинец зависимость ES (X) имеет два максимума: острый пик вблизи 20 ат. % Pb 
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(совпадающий с пиком на изотерме el ( )X  и подтверждающий присутствие в расплавах 

комплексов с соотношением компонентов 4:1), а также относительно небольшой макси-

мум в окрестности 50 ат. % Pb (указывающий на наличие менее стабильных структур 

с соотношением компонентов 1:1). Следует отметить, что на концентрационной зависи-

мости электросопротивления жидкой системы Na-Pb отсутствует максимум при 50 ат. % 

Pb, а имеется лишь небольшой перегиб («плечо») в этой области концентраций [20].  

Согласно исследованиям [21], параметром, определяющим возможность образова-

ния ионных комплексов первого и второго типов в жидких системах AМ-Pb, является 

размер катиона щелочного элемента. Простые комплексы (рис. 5) сохраняют стабиль-

ность лишь в случае малых размеров катионов (Li
+
 и Na

+
) и теряют ее при достаточно 

больших размерах катионов (K
+
, Rb

+
 или Cs

+
), а на смену им приходят полианионные 

структуры типа комплексов Цинтля (рис. 6). Размер иона Na+ является «переходным» 

и позволяет образование комплексов обоих типов в расплавах натрий-свинец [3]. 

На рис. 8 показаны концентрационные зависимости избыточной функции стабиль-

ности для жидких систем Na-Bi, K-Bi и Rb-Bi [22 – 24]. Все три зависимости имеют пик 

вблизи 25 ат. % Bi, что свидетельствует о существовании комплексов с соотношением 

компонентов 3:1 и согласуется с результатами измерения электросопротивления (см. 

рис. 3). По мере увеличения атомного номера щелочного металла в ряду Na-Bi … Rb-Bi 

высота этого пика уменьшается, и начинает проявляться все более заметный второй мак-

симум в районе эквиатомного состава, свидетельствующий о нарастающей тенденции 

к образованию полианионных структур с соотношением компонентов 1:1 [1, 2]. Это про-

тиворечит выводам авторов [10, 11], сделанным на основании анализа данных 

по электросопротивлению (см. рис. 3), согласно которым стехиометрический состав по-

лианионных комплексов в жидких сплавах тяжелых щелочных металлов c висмутом 

близок к 3:2. Если исходить из предположения [10, 11], что полианионные структуры 

представляют собой цепочки из ионов висмута, окруженные катионами щелочного ме-

талла, то, чтобы соотношение компонентов в этих комплексах было близко к эквиатом-

ному составу, длина цепочек должна быть очень большой (в идеале бесконечной) [1, 2]. 
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Рис. 7. Концентрационные зависимости избыточной функции 

стабильности Даркена жидких сплавов щелочных металлов со свинцом 

(по данным работ [16 – 19]). 
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Следует отметить, что до настоящего времени не была экспериментально исследована 

избыточная функция стабильности для расплавов цезий-висмут (как и цезий-свинец). 

Результаты этих исследований, вероятно, позволили бы более надежно выявить тенден-

ции в поведении изотерм ES (X) в ряду жидких систем AM-Bi. 

В обзорной статье [2] были обобщены и проанализированы результаты теоретичес-

ких и экспериментальных исследований жидкометаллических систем с частично ион-

ным характером межатомного взаимодействия по состоянию на 1996 год. В основном 

выводе этой работы указывалось, что существующие представления о структуре этих 

систем требуют уточнения и развития. Автор [2] отметил, что для этого, в частности, 

необходимы экспериментальные данные по ряду структурно-чувствительных термичес-

ких и транспортных свойств ионно-металлических расплавов, которые на тот момент 

были исследованы недостаточно подробно. Однако после выхода статьи [2] и до начала 

2010-х годов измерения этих свойств, по-видимому, никем не проводились. 

Начиная с 2011 года, авторами настоящей работы проводились комплексные экс-

периментальные исследования термических свойств и коэффициентов взаимной диф-

фузии жидких систем Li-Pb, Na-Pb, K-Pb, Cs-Pb, Rb-Bi и Cs-Bi [25 – 37]. Измерения вы-

полнялись методом просвечивания образцов узким пучком гамма-излучения [38, 39]. 

Чистота щелочных металлов, использовавшихся для приготовления сплавов, составляла 

от 99,8 масс. % (калий) до 99,95 масс. % (литий). Чистота свинца и висмута была не ме-

нее 99,98 масс. %. Измерительные ячейки изготавливались из нержавеющей стали 

12Х18Н10Т. Операции по приготовлению образцов, заполнению и герметизации изме-

рительных ячеек проводились в перчаточном боксе, заполненном высокочистым арго-

ном и оснащенном аппаратом электрической дуговой сварки и электронными аналитичес-

кими весами. Измерения свойств выполнялись в широких интервалах температур и кон-

центраций. Экспериментальные данные по взаимной диффузии во всех исследованных 

системах, кроме системы натрий-свинец, были получены впервые и на настоящий момент 

остаются единственными. То же самое касается данных по термическим свойствам 

жидких сплавов тяжелых щелочных металлов (Rb и Cs) со свинцом и висмутом. Ниже 

излагаются наиболее интересные, на наш взгляд, результаты проведенных исследований. 
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Рис. 8. Концентрационные зависимости избыточной функции 

стабильности Даркена жидких сплавов щелочных металлов с висмутом 

(по данным работ [22 – 24]). 
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Термические свойства жидких сплавов щелочных металлов 

со свинцом и висмутом 

На рис. 9 приведены концентрационные зависимости относительного избыточного 

мольного объема Vex для жидких систем литий-свинец, натрий-свинец, калий-свинец 

и цезий-свинец, построенные по данным наших работ [26, 28, 29, 36] (Vex = (V – Vid )/Vid, 

где V — мольный объем жидкого сплава, а Vid — мольный объем идеального раствора 

того же состава). Для всех систем наблюдается очень большое уменьшение объема 

по сравнению с идеальным раствором. Минимальные значения Vex составляют: –16,5 % 

(Li-Pb), –17,3 % (Na-Pb), –27 % (K-Pb) и –37 % (Cs-Pb). Столь значительное уплотнение 

подтверждает высокую степень ионности химической связи в расплавах AM-Pb, которая 

приводит к уменьшению межатомных расстояний [40]. Поведение изотерм Vex(X) хоро-

шо коррелирует с поведением концентрационных зависимостей электросопротивления 

и избыточной функции стабильности (рис. 1 и 7) и подтверждает существующие пред-

ставления о структуре жидких сплавов щелочных металлов со свинцом. В частности, 

положение минимумов на изотермах Vex(X) для расплавов Li-Pb (X 20 ат. % Pb) и K-Pb, 

Cs-Pb (X  50 ат. % Pb) близко к положению максимумов на зависимостях el ( )X  и ES (X) 

для этих систем. Размытый минимум на зависимости Vex(X) для жидкой системы Na-Pb 

находится между 20 и 50 ат. % Pb (точнее, в районе 30 ат. % Pb). Абсолютная величина 

экстремумов на изотермах Vex(X), как и на el ( ),X  возрастает в ряду Li-Pb … Cs-Pb, что 

указывает на постепенное увеличение степени ионности химической связи между ком-

понентами, связанное с уменьшением электроотрицательности щелочных металлов 

в ряду Li … Cs [2, 3]. 

На рис. 10 приведены концентрационные зависимости объемного коэффициента 

теплового расширения  (X) для расплавов Li-Pb, Na-Pb, K-Pb и Cs-Pb [26, 28, 29, 36]. 

Отличительной особенностью этих зависимостей является наличие пиков в районе 
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Рис. 9. Концентрационные зависимости относительного избыточного 

мольного объема жидких сплавов щелочных металлов со свинцом 

(по данным работ [26, 28, 29, 36]). 
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20 ат. % Pb (системы литий-свинец и натрий-свинец) или в районе 50 ат. % Pb (системы 

калий-свинец и цезий-свинец). Как отмечалось выше (см. рис. 2), вблизи этих же соста-

вов имеются минимумы на концентрационных зависимостях температурного коэффици-

ента электросопротивления, где величина  становится отрицательной. Существует ряд 

предположений о причине уменьшения электросопротивления жидкометаллических 

систем с частично ионным характером химической связи при увеличении температуры. 

Многие авторы считают, что оно связано с постепенной диссоциацией ионных комплек-

сов [2, 3, 10, 11]. При разрушении этих структур с ростом температуры происходит вы-

свобождение запертых в них валентных электронов и, соответственно, увеличение элек-

тропроводности расплавов. Это объяснение согласуется с наличием максимумов на за-

висимостях  (X) для жидких систем AM-Pb, поскольку постепенное разрушение хими-

ческого ближнего порядка в расплавах должно не только приводить к уменьшению их 

электросопротивления, но и давать дополнительный вклад в тепловое расширение. 

Плотность жидких сплавов легких щелочных металлов с висмутом (Li-Bi и Na-Bi) 

измерялась в работах [9, 41]. Однако в этих работах не был изучен интервал составов 

25 – 50 ат. % Bi, в котором эффекты, связанные с наличием химического ближнего по-

рядка, проявляются наиболее ярко. Ранее авторами были проведены экспериментальные 

исследования термических свойств жидких систем рубидий-висмут и цезий-висмут 

в широкой области концентраций [33, 35]. На рис. 11 показаны изотермы Vex(X) для рас-

плавов AM-Bi, построенные по данным [9, 33, 35, 41]. Как видно, для всех этих систем 

также характерны отрицательные и очень большие по абсолютной величине значения 

относительного избыточного мольного объема. В частности, величина Vex для расплавов 

цезий-висмут достигает практически рекордного для жидкометаллических систем 

значения: – 41,7 % при X = 35 ат. % Bi.  По нашим сведениям, только расплав Cs-Au 
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Рис. 10. Концентрационные зависимости объемных коэффициентов 

теплового расширения жидких сплавов щелочных металлов со свинцом 

(по данным работ [26, 28, 29, 36]). 
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эквиатомного состава демонстрирует большее объемное сжатие (Vex = – 45,5 %) [42]. 

Минимумы на концентрационных зависимостях относительного избыточного мольного 

объема для систем рубидий-висмут и цезий-висмут довольно широкие и размытые. Это, 

в принципе, согласуется с выводами авторов [10, 11] о наличии различных типов ионных 

комплексов в расплавах AM-Bi, сделанными на основании анализа данных об их элек-

тросопротивлении и ТКС. Однако на концентрационных зависимостях объемного коэф-

фициента теплового расширения жидких систем Rb-Bi и Cs-Bi наблюдаются ярко выра-

женные узкие пики (см. рис. 12). Для обеих систем их положение очень близко к составу 

25 ат. % Bi. Поведение изотерм  (X) резко отличается от поведения концентрационных 

зависимостей температурного коэффициента электросопротивления (рис. 4), которые 
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Рис. 11. Концентрационные зависимости относительного избыточного 

мольного объема жидких сплавов щелочных металлов с висмутом 

(по данным работ [9, 33, 35, 41]). 
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Рис. 12. Концентрационные зависимости объемных коэффициентов 

теплового расширения жидких систем 

рубидий-висмут и цезий-висмут (по данным работ [33, 35]). 
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либо демонстрируют два минимума (система Rb-Bi), либо имеют один минимум, но 

при другой концентрации (система Cs-Bi). Таким образом, данные по тепловому расши-

рению расплавов Rb-Bi и Cs-Bi согласуются с выводами [10, 11] о постепенной диссоци-

ации комплексов со стехиометрическим составом 3:1 (типа 3
3AM Bi  ) при увеличении 

температуры, но не подтверждают прямо разрушение полианионных структур (типа 

+ 6
6 4AM [Bi ]  ). 

Взаимная диффузия  в жидких сплавах щелочных металлов 

со свинцом и висмутом 

Прежде, чем приступить к обсуждению результатов экспериментальных исследо-

ваний взаимной диффузии в расплавах AМ-Pb и AМ-Bi, следует пояснить, как они поз-

воляют выявить особенности структуры этих систем. Известно, что коэффициент взаим-

ной диффузии D в жидком бинарном сплаве (или растворе) с компонентами A и B связан 

с избыточной функцией стабильности соотношением Даркена [43, 44]: 

A B

id

1 ,
X XD

ES
D RT

                                                              (1) 

здесь R — универсальная газовая постоянная, XA и XB = 1 – XA — атомные доли компо-

нентов в сплаве, Did — коэффициент взаимной диффузии в гипотетическом идеальном 

растворе с теми же самыми компонентами: 

Did = XADB + XBDA, 

где DA, DB  — коэффициенты самодиффузии атомов компонентов в реальной системе 

(именуемые в англоязычной литературе как «self-diffusion coefficients» или «tracer diffu-

sion coefficients»). Как видно из (1), поведение концентрационной зависимости коэффи-

циента взаимной диффузии должно коррелировать с поведением соответствующей зави-

симости для избыточной функции стабильности. В частности, наличие максимума 

на изотерме ES(X) должно приводить к появлению максимума на изотерме D(X) при той 

же концентрации при условии, что зависимости DA(X), DB(X) и, соответственно, Did (X) 

не имеют слишком глубоких минимумов вблизи этого состава. Последнее может при-

вести к некоторому смещению пика на изотерме D(X) или даже к его исчезновению. 

В любом случае присутствие ярко выраженного максимума на концентрационной зави-

симости коэффициента взаимной диффузии является новым независимым подтвержде-

нием тенденции к образованию ассоциированных комплексов в жидком сплаве, а поло-

жение пика на изотерме D(X), так же, как и ES(X), позволяет оценить стехиометрический 

состав этих комплексов. 

На рис. 13 приведены концентрационные зависимости коэффициента взаимной 

диффузии D(X) для расплавов Li-Pb, Na-Pb, K-Pb и Cs-Pb [25–27, 31, 37]. Для жидких 

систем Li-Pb и Na-Pb поведение изотерм D(X), как и ES(X) (см. рис. 7), указывает на тен-

денцию к образованию комплексов со стехиометрическим составом 4:1. Для системы 

Cs-Pb зависимость D(X) имеет пик в районе 50 ат. % Pb, свидетельствующий о преобла-

дании полианионных структур в расплаве, с соотношением компонентов 1:1 (напомним, 

что данные по избыточной функции стабильности для этой системы в литературе отсут-

ствуют). Относительно небольшой максимум на изотерме D(X) для жидкой системы  

калий-свинец расположен вблизи 40 ат. % Pb, в отличие от пика на концентрационной 

зависимости избыточной функции стабильности, который находится в районе 50 ат. % Pb. 
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По нашему мнению, это отличие связано с тем, что коэффициенты самодиффузии за-

метно уменьшаются при приближении концентрации расплава калий-свинец к эквиа-

томному составу. Каких-либо сведений в литературе об исследованиях самодиффузии 

компонентов в жидких сплавах щелочных металлов со свинцом и висмутом авторы 

не обнаружили. Однако в работе [45] была измерена вязкость расплавов калий-свинец 

в широком интервале концентраций. Согласно этой работе, изотермы кинематической 

и динамической вязкости имеют заметный максимум при 50 ат. % Pb. В частности, 

коэффициент кинематической вязкости для расплава эквиатомного состава в два и три 

раза больше, чем соответствующие коэффициенты для жидких калия и свинца. Оценки, 

выполненные с помощью соотношения Стокса – Эйнштейна, показывают, что изотермы 

DK(X), DPb(X) и Did(X) должны иметь достаточно глубокие минимумы вблизи 50 ат. % Pb, 

приводящие к уменьшению амплитуды максимума на зависимости D(X) и некоторому 

смещению его положения. Вероятно, по этой же причине на изотерме D(X) для жидкой 

системы натрий-свинец отсутствуют особенности вблизи эквиатомного состава, в отли-

чие от зависимости ES(X), которая имеет небольшой максимум в этой области концен-

траций (см. рис. 7). Однако в литературе отсутствуют данные по вязкости распла-

вов Na-Pb (как и других жидких систем — 

AМ-Pb и AМ-Bi, за исключением вышеупо-

мянутой системы K-Pb), так что данное пред-

положение пока что никак не подтверждено. 

Подробно эти вопросы рассматривались в ра-

ботах [25, 27]. 

На рис. 14 приведены изотермы D(X) 

для расплавов Rb-Bi и Cs-Bi [32, 34]. Отме-

тим, что исследования взаимной диффузии 
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Рис. 13. Концентрационные зависимости коэффициентов взаимной 

диффузии в жидких сплавах щелочных металлов со свинцом 

(по данным работ [25 – 27, 31, 37]). 
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Рис. 14. Концентрационные зависимости 

коэффициентов взаимной диффузии в жидких 

системах рубидий-висмут и цезий-висмут 

(по данным работ [32, 34]). 
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в этих системах были проведены на относительно небольшом количестве составов, по-

этому полученные зависимости следует рассматривать как оценочные. Тем не менее, как 

видно из рисунка, обе кривые демонстрируют пики вблизи 25 ат. % Bi, что свидетель-

ствует об образовании ассоциированных комплексов с соотношением компонентов 3:1 

и согласуется с результатами измерений электросопротивления и избыточной функции ста-

бильности расплавов AМ-Bi (см. рис. 3 и 8). Для системы Rb-Bi изотерма D(X), как и ES(X), 

также имеет максимум в районе эквиатомного состава, указывающий на тенденцию 

к образованию комплексов со стехиометрическим соотношением 1:1. Таким образом, 

подтверждается отмеченное в работах [2, 10] противоречие между результатами изме-

рений термодинамических и электрофизических свойств жидких сплавов тяжелых ще-

лочных металлов с висмутом (напомним, что согласно данным по электросопротивле-

нию и ТКС этих систем соотношение компонентов в полианионных комплексах должно 

быть близко к 3:2). 

Заключение 

Результаты исследований термических свойств и взаимной диффузии в жидких 

сплавах щелочных металлов со свинцом, полученные авторами настоящей работы, со-

гласуются с литературными данными по их электрофизическим и термодинамическим 

свойствам и в целом подтверждают современные представления о природе химического 

ближнего порядка в этих системах. В то же время новые результаты по свойствам рас-

плавов рубидий-висмут и цезий-висмут подтверждают вывод работы [2] о том, что 

существующие модели полианионных структур в жидких системах AМ-Bi являются 

слишком упрощенными и нуждаются в уточнении. Эти модели не могут объяснить 

не только известное противоречие в поведении концентрационных зависимостей элек-

тросопротивления и избыточной функции стабильности расплавов, но и обнаруженные 

авторами настоящей работы расхождения в поведении температурных коэффициентов 

электросопротивления и объемных коэффициентов теплового расширения, а также 

коэффициентов взаимной диффузии и электросопротивления. 

Следует еще раз подчеркнуть, что наиболее полную и надежную информацию 

о структуре жидкометаллических систем с частично ионным характером химической 

связи можно получить только из данных по парциальным функциям радиального рас-

пределения. Однако прямые экспериментальные исследования этих характеристик 

для указанных систем не проводились, вероятно, ввиду их чрезвычайно высокой слож-

ности [2]. В связи с этим остается актуальным получение косвенных экспериментальных 

данных о строении таких расплавов, которые можно извлечь из измерений их структур-

но-чувствительных свойств, плохо исследованных до сих пор (таких, например, как вяз-

кость и теплопроводность). В настоящее время в Институте теплофизики СО РАН про-

водятся комплексные экспериментальные исследования ряда теплофизических характе-

ристик жидких сплавов AМ-Pb и AМ-Bi (энтальпия, теплоемкость, теплопроводность, 

температуропроводность) в широких интервалах концентраций и температур. Авторы 

надеются, что обобщение и анализ новых результатов позволит внести существенный 

вклад в развитие представлений о природе химического ближнего порядка в этих системах. 
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