2016. Том 57, № 3

Март – апрель

C. 461 – 465

УДК 541.54

КВАНТОВО-ХИМИЧЕСКОЕ МОДЕЛИРОВАНИЕ *ТРАНС-* И *ЦИС-*ИЗОМЕРОВ БИС-ХЕЛАТНЫХ АЗОМЕТИНОВЫХ КОМПЛЕКСОВ Ni(II), Pd(II), Pt(II) С КООРДИНАЦИОННЫМ УЗЛОМ MN₂Y₂ (Y = 0, S, Se)

Н.Н. Харабаев¹, А.Г. Стариков^{1,2}, В.И. Минкин^{1,2}

¹НИИ физической и органической химии Южного федерального университета, Ростов-на-Дону, Россия E-mail: kharabayev@aaanet.ru ²Южный научный центр РАН, Ростов-на-Дону, Россия

Статья поступила 21 мая 2015 г.

В рамках метода теории функционала плотности проведено моделирование экспериментально наблюдаемых стереоэффектов лигандного окружения в низкоспиновых бисхелатах Ni(II), Pd(II), Pt(II) с ароматическими азометинами. Показано, что для комплексов с координационным узлом MN_2O_2 характерна *транс*-конфигурация, а в комплексах с узлом MN_2S_2 или MN_2Se_2 происходит стабилизация *цис*-конфигурации. Установлена связь между составом металлоциклов и их конформацией (величиной перегиба по линии донорных атомов), степенью стерических ограничений для *цис*-конфигурации за счет межлигандного взаимодействия заместителей R у атомов азота азометиновой группы и относительной устойчивостью *цис*- и *транс*-изомеров комплексов.

DOI: 10.15372/JSC20160302

Ключевые слова: квантовая химия, молекулярная структура, хелатные комплексы металлов, ароматические азометины.

введение

Изучению молекулярного строения и физико-химических свойств хелатных комплексов тетракоординированных переходных металлов с Шиффовыми основаниями (координационные узлы MN_2Y_2 (Y = O, S, Se)) посвящено большое число исследований (см. обзоры [1—5]), на основании которых установлено, что планарные комплексы d^8 -металлов (Ni²⁺, Pd²⁺, Pt²⁺) в зависимости от состава лигатирующих донорных атомов могут стабилизироваться в *транс-* или *цис*-конфигурациях. Рентгеноструктурные исследования последних лет [6—13], как и более ранние [1, 14—16], показали, что в отличие от О-содержащих азометиновых комплексов с координационным узлом NiN₂O₂ [1, 6, 7, 14], PdN₂O₂ [1, 7, 8] и PtN₂O₂ [9], для которых характерна *транс*-конфигурация, S- и Se-содержащим комплексам с координационными узлами NiN₂S₂ [1, 10, 15], NiN₂Se₂ [11], PdN₂S₂ [10, 16], PdN₂Se₂ [12], PtN₂S₂ [13], PtN₂Se₂ [12] свойственна *цис*-конфигурация. Накопленная обширная экспериментальная информация о факторах, определяющих молекулярное строение бис-хелатов d^8 -металлов (Ni²⁺, Pd²⁺, Pt²⁺) с координационными узлами MN₂Y₂ (Y = O, S, Se) пока не имеет достаточной теоретической интерпретации. Наиболее подробно методами квантовой химии эффекты лигандного окружения изучены в бис-хелатах Ni(II) с координационным узлом MN₂Y₂ (Y = O, S) [17].

Целью настоящей работы является теоретическое (с помощью квантово-химических расчетов методом теории функционала плотности (DFT [18])) исследование влияния состава лигатирующих (донорных) атомов на относительную устойчивость *транс*- или *цис*-изомеров бис-

[©] Харабаев Н.Н., Стариков А.Г., Минкин В.И., 2016

хелатов d^8 -металлов (Ni²⁺, Pd²⁺, Pt²⁺) на основе ароматических азометинов (1, координационные узлы MN₂Y₂ (Y = O, S, Se)).

Квантово-химические расчеты выполнены с помощью программы Gaussian03 [19] методом теории функционала плотности [18] с использованием гибридного функционала B3LYP [20, 21] в сочетании с базисом 6-311++G(d,p) для комплексов Ni(II) и базисом SDD для комплексов Pd(II) и Pt(II). Выбор расчетной схемы основан на результатах методических работ по применимости методов DFT при исследовании молекулярного строения [22—24], включая координационные соединения [24]. Изучение конфигурационных *транс-* и *цис*-изомеров бисхелатов Ni(II), Pd(II), Pt(II) проведено путем полной оптимизации геометрии молекулярных структур и с учетом того, что для плоской конфигурации основным является синглетное электронное состояние. Графические изображения молекулярных структур построены при помощи программы ChemCraft [25].

РАСЧЕТНАЯ ЧАСТЬ (РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ)

При исследовании зависимости относительной устойчивости *транс-* и *цис*-планарных изомеров азометиновых бис-хелатов 1 (M = Ni(II), Pd(II), Pt(II); Y = O, S, Se) от состава координационного узла MN_2Y_2 были изучены комплексы, включающие при атоме азота фенильную группу (R = Ph) или атом водорода (R = H) по аналогии с проведенным ранее исследованием бис-хелатов Ni(II) с координационным узлом NiN₂Y₂ (Y = O, S) [17].

Как следует из приведенных в табл. 1 результатов расчетов относительных энергий изомеров азометиновых комплексов 1 с R = H, наиболее предпочтительными являются *транс*-изомеры, характеризующиеся плоским строением металлоциклов.

Таблица 1

O-содержащие комплексы 1 ($M = Ni(II)$, Pd(II), Pt(II))						S-содержащие комплексы 1 (M = Ni(II), Pd(II), Pt(II))									
		Координационный узел								Координационный узел					
R	Изомер	NiN ₂ O ₂ PdN ₂ O ₂		PtN ₂ O ₂		R	Изомер	NiN_2S_2		PdN ₂ S ₂		PtN ₂ S ₂			
		ΔE	$\Delta E_{\rm ZPE}$	ΔE	$\Delta E_{\rm ZPE}$	ΔE	$\Delta E_{\rm ZPE}$			ΔE	$\Delta E_{\rm ZPE}$	ΔE	$\Delta E_{\rm ZPE}$	ΔE	$\Delta E_{\rm ZPE}$
R = H	Транс	0,0	0,0	0,0	0,0	0,0	0,0	R = H	Транс	0,0	0,0	0,0	0,0	0,0	0,0
	Цис	8,7	8,5	8,7	8,5	8,0	7,8		Цис	5,9	5,4	6,9	6,4	7,1	6,6
R = Ph	Транс	0,0	0,0	0,0	0,0	0,0	0,0	R = Ph	Транс	0,7	0,7	0,1	0,2	0,0	0,0
	Цис	8,2	8,2	8,1	8,0	7,9	8,0		Цис	0,0	0,0	0,0	0,0	1,1	0,9
Se-содержащие комплексы 1 (M = Ni(II), Pd(II), Pt(II))															
	Изомер	Координационный узел							Координационный узел						
R		NiN ₂ Se ₂		PdN ₂ Se ₂		PtN ₂ Se ₂		R	Изомер	NiN ₂ Se ₂		PdN ₂ Se ₂		PtN ₂ Se ₂	
		ΔE	$\Delta E_{\rm ZPE}$	ΔE	$\Delta E_{\rm ZPE}$	ΔE	$\Delta E_{\rm ZPE}$			ΔE	$\Delta E_{\rm ZPE}$	ΔE	$\Delta E_{\rm ZPE}$	ΔE	$\Delta E_{\rm ZPE}$
R = H	Транс	0,0	0,0	0,0	0,0	0,0	0,0	R = Ph	Транс	1,5	1,5	2,1	2,2	0,3	0,4
	Цис	3,4	2,9	4,2	3,7	4,9	4,3		Цис	0,0	0,0	0,0	0,0	0,0	0,0

Рассчитанные DFT-методом относительные энергии (ΔE , ккал/моль) и относительные энергии с учетом нулевых колебаний (ΔE_{ZPE} , ккал/моль) транс- и цис-изомеров комплексов **1** (M = Ni(II), Pd(II), Pt(II))

Замена атома водорода (R = H) на фенильную группу (R = Ph) у азометинового атома азота приводит к тому, что

относительная устойчивость *транс-* и цис-конфигурационных изомеров становится зависимой от состава координационного узла MN_2Y_2 (Y = O, S, Se) бис-хелатов 1 (см. табл. 1). Так, согласно расчетам, для комплексов Ni(II), Pd(II), Pt(II) с координационным узлом MN₂O₂ *транс* энергетически заметно предпочтительнее цис-конфигурации, для комплексов с координационным узлом MN₂S₂ энергетическое различие между *транс-* и *цис*-конфигурациями существенно меньше, а в комплексах с координационным узлом MN₂Se₂ более устойчивой формой является иис-конфигурация (см. табл. 1).

Установленная зависимость относительной устойчивости транс- и цис-плоских изомеров комплексов d^8 -металлов (Ni²⁺, Pd²⁺, Pt²⁺) от состава координационного узла MN₂Y₂ (Y = O, S, Se) может быть интерпретирована, исходя из особенностей конформации О-, S- и Se-содержащих шестичленных металлоциклов, различающихся степенью перегиба (величиной угла φ) по линии донорных атомов N—Y (рис. 1, табл. 2), по аналогии с проведенным ранее исследованием азометиновых комплексов Ni(II) [17].

Уплощенные О-содержащие металлоциклы (см. табл. 2) обусловливают существенные стерические ограничения для *цис*-конфигурации координационного узла MN₂O₂ за счет межлигандного взаимодействия заместителей R v азометиновых атомов азота (см. рис. 1, a), что делает эту конфигурацию невыгодной и предопределяет полученное в DFT-расчетах энергетическое предпочтение *транс*-изомеров комплексов Ni(II), Pd(II), Pt(II) с узлом MN_2O_2 (см. табл. 1). Для S- и Se-содержащих металлоциклов (с арильным заместителем (R = Ph) у азометинового

Таблица 2

в транс- и цис-изомерах комплексов I ($M = Ni(II)$, Pd(II), Pt(II); Y = O, S, Se; R = Ph)											
Y	Узел MN ₂ Y ₂	Конфигурация	M—N, Å	M—Y, Å	N—M—Y, град.	α(Y), град.	φ(N—Y), град.				
Y = 0	NiN ₂ O ₂	Транс	1,940	1,850	92,8	130,6	7,0				
		Цис	1,934	1,868	92,0	127,1	22,0				
	PdN_2O_2	Транс	2,054	2,006	91,6	127,9	7,0				
		Цис	2,057	2,015	89,9	124,9	24,0				
	PtN ₂ O ₂	Транс	2,048	2,023	92,1	127,1	5,0				
		Цис	2,050	2,031	90,2	124,9	22,0				
$\mathbf{Y} = \mathbf{S}$	NiN_2S_2	Транс	1,932	2,247	91,6	105,5	39,0				
		Цис	1,969	2,205	92,3	105,4	38,0				
	PdN_2S_2	Транс	2,063	2,405	89,7	104,3	38,0				
		Цис	2,107	2,360	90,0	103,5	39,0				
	PtN_2S_2	Транс	2,059	2,422	90,1	104,8	36,0				
		Цис	2,094	2,381	90,3	103,8	38,0				
Y = Se	NiN ₂ Se ₂	Транс	1,926	2,372	90,6	99,1	44,5				
		Цис	1,979	2,317	91,8	100,4	41,0				
	PdN_2Se_2	Транс	2,061	2,506	89,2	99,2	42,5				
		Цис	2,124	2,448	89,9	99,4	42,0				
	PtN_2Se_2	Транс	2,060	2,520	89,5	99,8	41,0				
		ІІис	2.111	2.467	90.2	99.7	41.0				

Рассчитанные DFT-методом геометрические параметры координационного узла MN₂Y₂ (длина связей М—N, М—Y и величина внутрициклического угла N—M—Y), величины валентного угла 🛚 у атома Y и угла 🛛 перегиба металлоцикла по линии атомов N—Y

Рис. 2. Рассчитанные молекулярные структуры *транс*- и *цис*-изомеров комплексов 1 (M = Ni(II), Pd(II), Pt(II); Y = S; R = Ph)

атома азота) характерен значительный перегиб по линии донорных атомов N—S или N—Se, величина угла которого ф составляет около 40° (см. рис. 1, б, табл. 2). Такое искажение S- и Se-содержащих металлоциклов существенно разводит в пространстве заместители R в *цис*-конфигурации координационного узла MN₂Y₂ (Y = S, Se) (см. рис. 1, б), нивелируя энергетические различия между иис- и транс-изомерами комплексов, что проявляется в малых величинах ΔE ($\Delta E = |E(mpahc) -$ - *E*(*цис*)|) относительных энергий (см. табл. 1).

На рис. 2 изображены рассчитанные молекулярные структуры *транс-* и *цис-*изомеров бисхелатных комплексов Ni(II), Pd(II) и Pt(II) с ароматическими

азометинами (координационный узел MN_2S_2), на которых видны отмеченные выше существенные перегибы S-содержащих металлоциклов по линии атомов N—S. Комплексы с координационным узлом MN_2Se_2 имеют аналогичную геометрию, причем для *транс*-изомеров предпочтительна конформация *зонтик*, а для *цис*-изомеров — конформация *ступенька* (см. рис. 2). Числовые данные геометрических параметров координационных узлов MN_2Y_2 (Y = O, S, Se) для комплексов Ni(II), Pd(II), Pt(II) приведены в табл. 2.

Следует отметить, что в рассмотренных S- и Se-содержащих комплексах Ni(II), Pd(II) и Pt(II) на основе ароматических азометинов (R = Ph) величины угла перегиба металлоциклов по линии донорных атомов N—S или N—Se в *транс-* и *цис-*изомерах практически совпадают (см. табл. 2). Это свидетельствует о том, что природа такого перегиба S- и Se-содержащих шестизвенных металлоциклов не определяется стерическими межлигандными взаимодействиями (они существенно различаются для *транс-* и *цис-*изомеров при плоском строении металлоциклов), а связана, прежде всего, с составом металлоциклов. Наличие в составе металлоциклов донорных атомов серы или селена предопределяет малые по величине (около 105° для атома серы и 100° для атома селена, см. табл. 2) внутрициклические валентные углы α(S) и α(Se), реализация которых в планарных бис-хелатах Ni(II), Pd(II) и Pt(II) с шестизвенными металлоциклами требует, как отмечалось ранее [5], значительного перегиба этих циклов по линии донорных атомов N—S или N—Se (см. рис. 1, табл. 2). В О-содержащих металлоциклах величины внутрициклических валентных углов $\alpha(O)$ гораздо больше (около 130°), а величина угла перегиба φ по линии атомов N—O, соответственно, меньше (см. табл. 2), что обусловливает для *иис*-конфигурации существенные стерические ограничения за счет межлигандного взаимодействия заместителей R у атомов азота азометиновой группы (см. рис. 1, a) и делает эту конфигурацию невыгодной по сравнению с *транс*-конфигурацией комплексов Ni(II), Pd(II), Pt(II) с координационным узлом MN₂O₂ (см. табл. 1).

Полученная на основании DFT-расчетов зависимость относительной устойчивости *транс*и *цис*-изомеров азометиновых бис-хелатов Ni(II), Pd(II), Pt(II) от состава координационного узла MN_2Y_2 (Y = O, S, Se) согласуется с данными рентгеноструктурного анализа комплексов, указывающими на *транс*-конфигурацию координационного узла MN_2O_2 [1, 6—9, 14] и *цис*конфигурацию узлов MN_2S_2 [1, 10, 13, 15, 16] и MN_2Se_2 [11, 12]. Расчеты корректно воспроизводят экспериментально установленную конформацию *ступенька* для *цис*-изомеров S- и Seсодержащих комплексов Ni(II), Pd(II), Pt(II) со значительными перегибами металлоциклов по линии донорных атомов N—S или N—Se.

выводы

Таким образом, на основании теоретического DFT-моделирования стереоэффектов лигандного окружения в планарных бис-хелатах d^8 -металлов (Ni²⁺, Pd²⁺, Pt²⁺) с ароматическими азометинами показано, что для комплексов с координационным узлом MN₂O₂ характерна *транс*-конфигурация, а замена атомов кислорода на атомы серы или селена (координационные узлы MN₂S₂ или MN₂Se₂) сопровождается стабилизацией *цис*-конфигурации. Этот результат находится в согласии с экспериментальными данными и показывает существование связи между составом координационного узла, составом и конформацией шестизвенных металлоциклов (величиной перегиба по линии донорных атомов), степенью стерических ограничений для *цис*конфигурации за счет межлигандного взаимодействия заместителей R у атомов азота азометиновой группы и относительной устойчивостью *транс-* и *цис*-изомеров бис-хелатных комплексов Ni(II), Pd(II), Pt(II).

Работа выполнена в рамках базовой части внутреннего гранта ЮФУ, тема № 213.01-2014/005.

СПИСОК ЛИТЕРАТУРЫ

- 1. Garnovskii A.D., Nivorozhkin A.L., Minkin V.I. // Coord. Chem. Rev. 1993. 126, N 1-2. P. 1 69.
- 2. Bourget-Merle L., Lappert M.F., Severn J.R. // Chem. Rev. 2002. 102, N 9. P. 3031 3066.
- 3. Коган В.А., Харабаев Н.Н., Осипов О.А., Кочин С.Г. // Журн. структур. химии. 1981. **22**, № 1. С. 126 148.
- 4. Гарновский А.Д., Бурлов А.С., Васильченко И.С. и др. // Координац. химия. 2010. 36, № 2. С. 83 98.
- 5. Харабаев Н.Н. // Координац. химия. 1991. 17, № 5. С. 579 596.
- 6. Song X., Wang Z., Zhao J., Hor T.S.A. // Chem. Commun. 2013. 49. P. 4992 4994.
- 7. Chen L., Zhong Z., Chen C., He X., Chen Y. // J. Organomet. Chem. 2014. 752. P. 100 108.
- 8. Jevtic V.V., Pesic M., Radic S.P. et al. // J. Mol. Struct. 2013. 1040. P. 216 220.
- 9. Peterson A.E., Miller J.J., Miles B.A. et al. // Inorg. Chim. Acta. 2014. 415. P. 88 94.
- 10. Orysyk S.I., Bon V.V., Pekhnyo V.I. et al. // Polyhedron. 2012. 38. P. 15 25.
- 11. Bredenkamp A., Zenq X., Mohr F. // Polyhedron. 2012. 33. P. 107 113.
- 12. Dutta P.K., Panda S., Zade S.S. // Inorg. Chim. Acta. 2014. 411. P. 83 89.
- 13. Al-Jibori S.A., Dayaaf N.A., Mohammed M.Y. et al. // J. Chem. Cryst. 2013. 43. P. 365 372.
- 14. Lacroix P.G., Averseng F., Malfant I., Nakatani K. // Inorg. Cnim. Acta. 2004. 357. P. 3825 3835.
- 15. Mistrvukov A.E., Vasil'chenko I.S., Sergienko V.S. et al. // Mendeleev Commun. 1992. 2, N 1. P. 30 32.
- 16. Orysyk S.I., Bon V.V., Pekhnyo V.I. // Acta Crystallogr. Sect. E. Struct. Rep. Online. 2009. 65. P. m1059.
- 17. Харабаев Н.Н., Стариков А.Г., Минкин В.И. // Докл. АН. 2014. 458, № 5. С. 555 558.
- 18. *Parr R., Yang W.* Density-Functional Theory of Atoms and Molecules. New York: Oxford University Press, 1989.
- 19. Frisch M.J., Trucks G.W., Schlegel H.B. et al. GAUSSIAN 03, Revision E.01. Gaussian, Inc., Wallingford CT, 2004.
- 20. Becke A.D. // Phys. Rev. 1988. A38. P. 3098 3102.
- 21. Lee C., Yang W., Parr R.G. // Phys. Rev. 1988. B37. P. 785 790.
- 22. Sousa S.F., Fernandes P.A., Ramos M.J. // J. Phys. Chem. A. 2007. 111, N 42. P. 10439 10452.
- 23. Burke K., Wagner L.O. // Int. J. Quantum Chem. 2013. 113, N 2. P. 96 101.
- 24. *Tsipis A.C.* // Coord. Chem. Rev. 2014. 272. P. 1 29.
- 25. Zhurko G.A., Zhurko D.A. Chemcraft. Version 1.6. URL: http://www.chemcraftprog.com