УДК 541.12 DOI: 10.15372/KhUR2019174

Изучение окисления порошкового биотоплива с различным химическим составом: оценка реакционной способности

А. П. БУРДУКОВ¹, Е. Б. БУТАКОВ¹, А. В. КУЗНЕЦОВ¹, В. А. ЛОГВИНЕНКО², О. И. ЛОМОВСКИЙ³

¹Институт теплофизики им. С. С. Кутателадзе СО РАН, Новосибирск (Россия)

E-mail: temkansu@yandex.ru

²Институт неорганической химии им. А. В. Николаева СО РАН, Новосибирск (Россия)

³Институт химии твердого тела и механохимии СО РАН, Новосибирск (Россия)

Аннотация

Изучен процесс окисления образцов биотоплива с различным химическим составом (содержание лигнина 10, 20 и 70 %). Получены кинетические параметры реакций окисления, позволяющие рассматривать процесс как двухстадийный. Установлено, что образец с содержанием лигнина 20 % имеет большую реакционную способность в реакциях окисления.

Ключевые слова: биотопливо, лигнин, теплота сгорания, кинетика окисления, кинетические уравнения

введение

Растительное сырье обладает большим и недостаточно используемым в настоящее время энергетическим потенциалом [1-3]. Известно, что на 1 ед. произведенного зерна приходится до 5 ед. нерационально используемых отходов: соломы, лузги, волокон и пыли растительной природы [4]. В настоящее время сжигание - основной способ утилизации подобных отходов. При этом лишь незначительная часть биомассы идет на получение энергии для бытовых нужд [5]. Развитие новых технологий энергетического сжигания сдерживается недостатками, свойственными лигноцеллюлозному топливу [6, 7]: нестабильность состава и теплотворной способности, затрудненный контроль скорости горения, трудности в организации равномерной подачи топлива, высокая инвестиционная стоимость энергоустановок и бойлеров.

Большинство этих недостатков связаны с гетерогенностью растительного сырья, устранить которую можно получением гомогенного массива пеллет и брикетов [8, 9] или тонким измельчением биомассы в порошковое топливо для сжигания в факеле [10, 11]. В обоих случаях осуществляется измельчение биомассы и перемешивание различных по химическому составу компонентов в порошковом виде. Полученный продукт однороден по дисперсности и теплотворной способности, легко транспортируется и дозируется.

В последнее время развиваются новые методы повышения теплотворной способности лигноцеллюлозного топлива, основанные прежде всего на повышении в материале массовой доли лигнина путем аэродинамического разделения тканей растительного сырья с разным химическим составом [12, 13], а также на механохимическом удалении углеводной части лигноцеллюлозы, осуществляющемся в цикле производства биоэтанола [14]. Получаемый таким образом побочный продукт биотехнологического осахаривания растительного сырья имеет повышенную теплоту сгорания, малые размеры частиц и может быть использован в качестве порошкового топлива непосредственно на том же биотехнологическом предприятии [12].

Несмотря на наметившийся прогресс в изучении дисперсного порошкового топлива, сведения о протекании окисления лигноцеллюлозы довольно скудны [15] и в основном касаются прикладных теплофизических аспектов сжигания [16], способов гомогенизации и дозирования топлива [17, 18], отвода выделившегося тепла и т. д. [19].

Цель данной работы — изучение кинетики окисления порошкового лигноцеллюлозного топлива с различным химическим составом, выделение и характеризация стадий химического процесса окисления.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Подготовка образцов

В качестве исходного лигноцеллюлозного сырья использовалась солома пшеницы (Кожевниковский район Томской области) с химическим составом, определенным по методике [20], мас. %: лигнин 18.3, целлюлоза 32.9, гемицеллюлоза 33.6, экстрактивные вещества 9.4; влажность 5.9 %, зольность 8.5 %. Для подготовки образцов порошкового топлива солому пшеницы измельчали в центробежной роликовой мельнице TM-3 (ЗАО "Новиц", Россия) при частоте вращения ротора 2800 мин⁻¹.

Образцы порошкового топлива с содержанием лигнина 10, 20 и 70 мас. % получали смешением навесок измельченной соломы пшеницы с рассчитанным количеством чистой целлюлозы (Sigma Aldrich, CAS # 9004-34-6) и лигнина (Sigma Aldrich, CAS # 8068-05-1). Для усредне-

ТАБЛИЦА 1

Химический состав и теплота сгорания образцов биотоплива с различным содержанием лигнина

Показатель	Содержание лигнина, мас. %		
	10	20	70
Содержание целлюлозы, мас. %	63.2	32.2	12.1
Содержание гемицеллюлозы, мас. $\%$	18.5	32.9	12.3
Теплота сгорания, МДж/кг	17.0	17.5	22.2

ния состава смеси компонентов тщательно перемешивались и перетирались в агатовой ступке в течение 5 мин.

Теплота сгорания (высшая теплотворная способность) образцов биотоплива определялась при помощи адиабатического калориметра АБК-1 (Россия) по методике [21]. Для этого образцы массой 0.7–0.8 г помещались в калориметрический сосуд и сжигались в атмосфере кислорода при давлении 30 атм. Управление работой калориметра и определение количества выделяющегося тепла осуществлялось системой управления на базе персонального компьютера.

Термический анализ

Термогравиметрический (ТГ) анализ осуществляли с помощью термического анализатора Netzsch TG 209 F1 (Германия). Эксперименты проводились в инертной (гелий) и окислительной (80 % аргона/20 % кислорода) газовых средах. Скорость нагрева составляла 5, 10 и 20 К/мин. Для избегания перегрева образцов и снижения вклада от газофазного пиролиза летучих веществ вне тигля использовались небольшие массы образцов (~2 мг).

Кинетический анализ в неизотермических условиях

Термогравиметрические данные обрабатывались с помощью компьютерной программы NetzschThermokinetics 2 (версия 2004.05). Специальный программный модуль позволяет обрабатывать ТГ-кривые, полученные с разными скоростями нагрева, и вычислять энергию активации (E) без предварительной информации о кинетическом топохимическом уравнении. Для расчета E для каждой экспериментальной точки преобразования (степень превращения α в диапазоне от 0.005 до 0.995) использовался метод Фридмана.

На основе полученных ТГ-данных найдены топохимические уравнения, описывающие гетерогенные химические реакции, протекающие на границе раздела фаз: роста зародышей новой фазы и диффузионного продвижения реакционного фронта. Расчет выполнен на основе дифференциальной процедуры Борхардта-Дэниелса в рамках подхода с множественной линейной регрессией. Диапазон для α при вычислении выбирался на основе постоянства расчетных кинетических параметров из анализа Фридмана. Тест F (F-test) использовался для поиска наилучшего кинетического описания процесса и для статистического управления полученным уравнением. Он анализирует остаточную дисперсию отдельных моделей друг относительно друга и выявляет статистическое различие моделей. Если $F_{exp}(1) \approx F_{exp}(2)$ для двух уравнений, нет оснований полагать, что одна из моделей лучше характеризует эксперимент. Статистический квантиль F_{crit} получался для уровня значимости 0.05.

Если расчет приводил к двум или трем кинетическим уравнениям с близкими значениями в их коэффициентах корреляции, но с заметно отличающимися значениями в параметрах кинетики, то выбиралось уравнение с *E*, наиболее близкой к значению, полученному экспериментально.

Случайная ошибка определения E для реакции окисления, как правило, составляла ~10 %. После расчета методом нелинейной регрессии компьютерная программа NetzschThermokinetics 2 позволяет оценить вклад в ошибку каждого этапа многостадийного процесса. При выполнении расчетов учтены новые исследования неизотермической кинетики [22–24] и использованы общепринятые рекомендации для выполнения кинетических расчетов по данным термоанализа.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1–4 представлены данные ТГ-анализа образцов соломы при варьировании условий эксперимента (состава газовой среды и скорости нагрева образца) и состава образца (содержание лигнина). Оказалось, что при прочих равных условиях температурный интервал протекания процесса газовыделения смещен в низкотемпературную область по сравнению с температурным интервалом пиролиза (см. рис. 1). Следовательно, ускоренного окисления выходящих газов не происходит, а окисление соломы является реакцией твердого тела.

Температурный интервал протекания процесса окисления зависит от содержания лигнина и смещается в высокотемпературную область с возрастанием содержания лигнина в образце (см. рис. 2).

Для кинетического исследования использовались кривые потерь массы, полученные при разных скоростях нагрева (5, 10 и 20 К/мин), в зависимости от температуры *T* (см. рис. 3, 4) и времени реакции (рис. 5, 6). Сравнение экспериментальных и расчетных данных наиболее убедительно для второго варианта. Использовалась довольно небольшая навеска образца (~2 мг), однако исключить его воспламенение и перегрев не удалось, о чем свидетельствует перегиб на кривой *1* (см. рис. 3).

Рис. 1. Данные ТГ-анализа образца соломы (10 мас. % лигнина) в токе аргона/кислорода (1) и гелия (2). Скорость нагрева 10 К/мин.

Рис. 2. Данные ТГ-анализа образцов соломы с содержанием лигнина 20 (1) и 70 (2) мас. % в токе аргона/кислорода. Скорость нагрева 10 К/мин [12].

Рис. 3. Данные ТГ-анализа образца соломы (70 мас. % лигнина) в токе аргона/кислорода. Скорость нагрева, К/мин: 5 (1), 10 (2) и 20 (3).

Рис. 5. Обработка данных ТГ-анализа образца соломы (70 мас. % лигнина). ТГ-кривые подгонки нелинейной регрессии, моделируемые двумя последовательными (А \rightarrow B \rightarrow C) реакциями (уравнения An). Скорость нагрева, К/мин: 20 (1), 10 (2) и 5 (3).

Образец соломы

с содержанием лигнина 70 мас. % (размер частиц меньше 100 мкм)

Данные, полученные с применением расчетного модуля "Без модели" приведены на рис. 7. Энергия активации может рассматриваться как переменная в соответствии с методом Фридмана, поэтому процесс окисления является многостадийной реакцией.

Лучше всего процессу соответствует двухстадийная схема с последовательными (A \rightarrow B \rightarrow C) или с параллельными (A \rightarrow B; C \rightarrow D) реакция-

Рис. 4. Данные ТГ-анализа образца соломы (20 мас. % лигнина) в токе аргона/кислорода. Скорость нагрева, К/мин: 5 (1), 10 (2) и 20 (3).

Рис. 6. Обработка данных ТГ-анализа образца соломы (20 мас. % лигнина). ТГ-кривые подгонки нелинейной регрессии, моделируемые двумя последовательными ($A \rightarrow B \rightarrow C$) реакциями (уравнения An). Скорость нагрева, К/мин: 20 (1), 10 (2) и 5 (3).

ми, описываемыми двумя уравнениями Аврами-Ерофеева (An).

Сравнение экспериментальных расчетных кривых (линии) по уравнениям Аврами-Ерофеева для моделей, описываемых двумя последовательными или параллельными реакциями, представлено на рис. 5 и 8.

Вариант 1. Две последовательные реакции (см. рис. 5):

I. А \rightarrow В. $f_1(\alpha) = (1 - \alpha)/[-\ln (1 - \alpha)]^{1.2}$, $E_1 = 175 \pm 7 \text{ кДж/моль, lg } A = 14.0 \pm 0.7$. II. В \rightarrow С. $f_2(\alpha) = (1 - \alpha)]^{0.17}$, $E_2 = 74 \pm 1 \text{ кДж/моль, lg } A = 3.1 \pm 0.1$.

Рис. 7. Фридмановский анализ окисления соломы (70 мас. % лигнина): зависимость энергии активации *E* от степени превращения α. Перпендикулярные линии показывают среднеквадратичное отклонение.

Коэффициент корреляции равен 0.999744.

Здесь $f(\alpha)$ – топохимическое уравнение; α – степень превращения вещества во время реакции разложения (от 0.00 до 1.00); *E* – энергия активации; *A* – предэкспоненциальный множитель.

Различные топохимические уравнения $f(\alpha)$ описывают протекание реакции в пространстве твердой фазы: нуклеацию, химическую реакцию на межфазной границе, диффузионные процессы.

Вариант 2. Две параллельные реакции (см. рис. 8):

I. А \rightarrow В. $f_1(\alpha) = (1 - \alpha)/[-\ln (1 - \alpha)]^{1.4}$, $E_1 = 185 \pm 10 \text{ кДж/моль, lg } A = 15 \pm 1$. II. С \rightarrow D. $f_2(\alpha) = (1 - \alpha) \cdot [-\ln (1 - \alpha)]^{0.17}$, $E_1 = 77 \pm 1 \text{ кДж/моль, lg } A = 3.3 \pm 0.1$.

Коэффициент корреляции равен 0.999430.

В кинетических параметрах этих двух вариантов имеются очень небольшие различия. Для модели, описываемой двумя параллельными реакциями (см. рис. 8), используемая компьютерная программа позволяет оценить вклад каждой стадии (как часть потери массы Δm) после вычисления нелинейной регрессии. Первая стадия потери массы ($A \rightarrow B$) соответствует 38 мас. %, вторая стадия потери массы ($C \rightarrow D$) – 62 мас. % полной стадии окисления.

Обычно считается, что три основные компоненты соломы начинают окисляться в разных температурных интервалах: ≈450 К (гемицеллюлоза и лигнин); ≈540 К (целлюлоза) [24]. Возможное объяснение: для образца с большим содержанием лигнина эти три основные компоненты соломы окисляются в два этапа: первая стадия

Рис. 8. Окисление образцов соломы (70 мас. % лигнина). Временная зависимость выхода для каждого реагента при разложении. Расчет соответствует модели двухстадийного процесса, описываемой двумя параллельными реакциями (A \rightarrow B; C \rightarrow D). Скорость нагрева 20 К/мин.

(420-620 К) представляет собой окисление гемицеллюлозы, вторая стадия (420-800 К) – окисление лигнина и целлюлозы.

Образец соломы

с содержанием лигнина 20 мас. % (размер частиц меньше 100 мкм)

Обработку экспериментальных данных (см. рис. 4) для образца соломы с содержанием лигнина 20 мас. % проводили согласно вышеописанной процедуре для образца с содержанием лигнина 70 %. Получены следующие уравнения, описывающие процесс окисления как двухстадийный: с последовательными (см. рис. 6) или параллельными (см. рис. 9) реакциями.

Две последовательные реакции (см. рис. 6): I. A \rightarrow B. $f_1(\alpha) = (1 - \alpha)/[-\ln (1 - \alpha)]^{0.31}$, $E_1 = 133 \pm 7$ кДж/моль, lg $A = 10.0 \pm 1$.

II. B
$$\rightarrow$$
 C. $f_2(\alpha) = (1 - \alpha) \cdot [-\ln (1 - \alpha)]^{0.17}$

 $E_1 = 155 \pm 1$ кДж/моль, lg $A = 10.0 \pm 1$.

Коэффициент корреляции равен 0.991363. Две параллельные реакции (см. рис. 9):

I. А \rightarrow В. $f_1(\alpha) = (1 - \alpha) / [-\ln (1 - \alpha)]^{0.28}$, $E_1 = 134 \pm 2 \text{ кДж/моль, lg } A = 10.3 \pm 0.2$. II. С \rightarrow D. $f_2(\alpha) = (1 - \alpha) / [-\ln (1 - \alpha)]^{1.22}$, $E_1 = 155 \pm 4 \text{ кДж/моль, lg } A = 10.1 \pm 0.3$.

Коэффициент корреляции равен 0.999779.

В качестве примеров приведены сравнение экспериментальных и расчетных данных для последовательных процессов (см. рис. 6) и временная зависимость окисления и появления начальных и конечных продуктов (см. рис. 9). Согласно полученной модели для параллельных реакций,

Рис. 9. Окисление образцов соломы (20 мас. % лигнина). Временная зависимость выхода для каждого реагента при разложении. Расчет соответствует модели двухстадийного процесса, описываемой двумя параллельными реакциями (A → B; C → D). Скорость нагрева составляет 20 К/мин.

первая стадия (A \to B) соответствует 60 % потери массы, вторая стадия (C \to D) – 40 % потери массы при окислении.

Для образца с низким содержанием лигнина три основные компоненты соломы окисляются в два этапа: первая стадия (420–620 К) представляет собой окисление гемицеллюлозы и лигнина, вторая стадия (420–800 К) – окисление целлюлозы. В отличие от образца с высоким содержанием лигнина, в этом случае процесс окисления смещен в низкотемпературную область. В интервале температур 420–620 К для образцов с содержанием 20 и 70 мас. % лигнина окисляется 60 и 40 % биомассы соответственно.

Сопоставление полученных кинетических параметров реакций окисления образцов соломы с низким (20 мас. %) и высоким (70 мас. %) содержанием лигнина позволяет заключить, что первый имеет большую реакционную способность в реакциях окисления.

ЗАКЛЮЧЕНИЕ

Показано, что кинетика окисления образцов соломы с различным содержанием лигнина может быть описана моделью двухстадийного процесса, включающего две последовательные или параллельные реакции. Установлено, что величины кинетических параметров и корреляционных коэффициентов практически не зависят от варианта расчетов с параллельными или последовательными реакциями. Выявлена зависимость кинетических параметров окисления биотоплива от его химического состава. В интервале температур 420-620 К для образцов с содержанием 20 и 70 мас. % лигнина окисляется 60 и 40 % биомассы соответственно, что обусловлено широким интервалом окисления лигнина и последовательным окислением гемицеллюлозы и целлюлозы. Найденное кинетическое описание (топохимическое уравнение, энергия активации и предэкспоненциальный множитель) является формальным и может быть использовано для предрасчета процесса окисления смесей в изотермических условиях.

Работа выполнена при поддержке РФФИ проект № 18-29-24028 мк.

СПИСОК ЛИТЕРАТУРЫ

- 1 Hagos D. A., Gebremeghin A., Bolkesjo T. F. The prospects of bioenergy in the future energy system of Inland Norway // Energy. 2017. Vol. 121. P. 78-91.
- 2 Piriou B., Vaitilingom G., Veyssiere B., Cuq B., Rouau X. Potential direct use of solid biomass in internal combustion engines // Progress in Energy and Combustion Science. 2013. Vol. 39. P. 169–188.
- 3 Сидорова Е. Биотопливо и энергия для развития страны // Наука в России. 2012. № 4. С. 28-31.
- 4 Shuvalov A. M., Samodurov A. V. Investigation of furnace working modes for efficient burning of vegetation waste // Transaction TSTU. 2003. Vol. 1. P. 70–75.
- 5 Iye E. L., Bilsborrow P. E. Assessment of the availability of agricultural residues on a zonal basis from medium - to large-scale bioenergy production in Nigeria // Biomass and Bioenergy. 2013. Vol. 48. P. 66-74.

- 6 Hansson J., Berndes G., Johnsson F., Kjarstad J. Co-firing biomass with coal for electricity generation – An assessment of the potential in EU27 // Energy Policy. 2009. Vol. 37. P. 1444-1455.
- 7 Sajdak M., Kmieć M., Micek B., Hrabak J. Determination of the optimal ratio of coal to biomass in the co-firing process: feed mixture properties // Int. J. Environ. Sci. and Technol. 2019. Vol. 16 (7). P. 2989–3000.
- 8 Ushakov D. E., Karelin D. V., Bychkov A. L., Korobeinichev O. P., Shmakov A. G. Preparation of fuel briquettes from plant biomass // Solid Fuel Chemistry. 2017. Vol. 51(4). P. 238-242.
- 9 Liu Z., Liu X., Fei B., Jiang Z., Cai Z., Yu Y. The properties of pellets from bamboo and rice straw // Renewable Energy. 2013. Vol. 55. P. 1–5.
- 10 Siyi L., Bo X., Zhiquan H., Shiming L., Maoyun H. Experimental study in combustion of biomass micron fuel (BMF) in cyclone furnace // Energy Conversion and Management. 2010. Vol. 51. P. 2098–2102.
- 11 Бурдуков А. П., Попов В. А., Чернецкий М. Ю., Дектерев А. А., Ломовский О. И., Бычков А. Л. Использование мелкодисперсного лигноцеллюлозного сырья в качестве твердого топлива // Ползунов. вестн. 2013. № 4/3. С. 16-27.
- 12 Lomovsky O., Bychkov A., Lomovsky I., Logvinenko V., Burdukov A. Mechanochemical production of lignin-containing powder fuels from biotechnology industry waste: A review // Thermal Science. 2015. Vol. 19, No. 1. P. 219–229.
- 13 Bychkov A. L., Buchtoyarov V. A., Lomovsky O. I. Mechanical pretreatment of corn straw in a centrifugal roller mill // Cellulose Chemistry and Technology. 2014. Vol. 5–6. P. 545–551.
- 14 Darvell L. I., Jones J. M., Gudka B., Baxter X. C., Saddawi A., Williams A., Malmgren A. Combustion properties of some power station biomass fuels // Fuel. 2010. Vol. 89. P. 2881-2890.
- 15 Iacovidou E., Hahladakis J., Deans I., Velis C., Purnell P. Technical properties of biomass and solid recovered fuel (SRF) co-fired with coal: Impact on multi-dimensional re-

source recovery value // Waste Management. 2018. Vol. 73. P. 535–545.

- 16 Weiland F., Wiinikka H., Hedman H., Wennebro J., Pettersson E., Gebart R. Influence of process parameters on the performance of an oxygen blown entrained flow biomass gasifier // Fuel. 2015. Vol. 153. P. 510-519.
- 17 Silins K. A review on suspended wood dust combustion. Efficiency and fuel quality // Environmental and Climate Technologies. 2012. Vol. 9. P. 28-34.
- 18 Рябов Г. А., Долгушин И. А. Использование на ТЭЦ технологии циркулирующего кипящего слоя при совместном сжигании биомассы и ископаемых топлив // Энергет. станции. 2012. № 10. С. 4–9.
- 19 Bychkov A. L., Ryabchikova E. I., Korolev K. G., Lomovsky O. I. Ultrastructural changes of cell walls under intense mechanical treatment of selective plant raw material // Biomass and Bioenergy. 2012. Vol. 47. P. 260-267.
- 20 Bychkov A. L., Denkin A. I., Tikhova V. D., Lomovsky O. I. Prediction of higher heating values of plant biomass from ultimate analysis data // J. Therm. Anal. Calorim. 2017. Vol. 130. P. 1399-1405.
- 21 Vyazovkin S. Model-free kinetics: staying free of multiplying entities without necessity // J. Therm. Anal. Calorim. 2006. Vol. 83. P. 45-51.
- 22 Simon P. The single-step approximation: attributes, strong and weak sides // J. Therm. Anal. Calorim. 2007. Vol. 88. P. 709-715.
- 23 Simon P., Thomas P., Dubaj T., Cibulkova Z., Peller A., Veverka M. The mathematical incorrectness of the integral isoconversional methods in case of variable activation energy and the consequences // J. Therm. Anal. Calorim. 2014. Vol. 115. P. 853-859.
- 24 Коробейничев О. П., Палецкий А. А., Гончикжапов М. Б., Шундрина И. К., Chen H., Liu N. Пиролиз и горение лесных горючих материалов // Тр. VIII Всерос. конф. "Горение твердого топлива" Новосибирск, 13–16 ноября 2012. С. 50.1–50.8.