Значения E, вычисленные по этой формуле, практически совпадают с результатами, представленными на фиг. 2, 3. В частности, для течения разрежения из (3.3) следует, что при $\gamma = 1/2 \ E = 0$.

4. Пусть $x < 0$, тогда, как следует из (1.5), величины β и γ должны иметь противоположные знаки. Так как при $x \to -\infty$ толщина неровности $f(x) \to 0$, то $|d(x)| > 0$ и, следовательно, $\beta > 0$ и $\gamma < 0$.

Здесь, как и в п. 3, исходная краевая задача (1.2) может принимать автоволновый вид только при $-x \gg 1$:

$$q'' = -1 + n^2 \varphi'' - n^2 \varphi^4 + \varphi, \quad \varphi(0) = 0, \quad \varphi(\infty) = E, \quad \varphi''(\infty) = 0, \quad q(\infty) = 1.$$

Необходимо отметить, что эта краевая задача отличается от (3.1) только знаком перед членом $\gamma n^2 \varphi''$.

Для функции $z(n) = q''(n) \exp(-\gamma n^2/6)$ при $n \to \infty$ можно получить уравнение $z'' - n^2 z^2/4 = 0$, решение которого выражается через модифицированные функции Бесселя [6]. Учитывая, что при $n \to \infty$ функция $z(n)$ должна убывать, можно получить $z(n) \sim n^{-2} K_{1/4}(\gamma n^2/6)$.

Тогда из асимптотического представления функции $K_{1/4}(\gamma n^2/6)$ при $n \to \infty$ следует, что $q''(n) \to \text{const}$. Краевое условие $q''(\infty) = 0$ дает тогда решение вида $q''(n) = 0$, которое не удовлетворяет остальным краевым условиям задачи (4.1), и, значит, краевая задача (4.1) решения не имеет. Это доказывает, что исходная краевая задача (1.2) не имеет автоволновых решений для неровностей, простирающихся неограниченно далеко вперёд по потоку.

Поступила 21 VII 1981

ЛИТЕРАТУРА

UDK 533.6.12

О ВОЗМУЩЕНИЯХ, ГЕНЕРИРУЕМЫХ ОСЦИЛЛИАТОРАМИ

В ПОТОКЕ ВЯЗКОЙ ЖИДКОСТИ НА ЗАКРИТИЧЕСКИХ ЧАСТОТАХ

E. B. Богданова, O. C. Рыжов

(Москва)

1. Следуя [1, 2], воспользуемся теорией свободного взаимодействия [3—5] для изучения длинноволновых возмущений на входе в плоский полубесконечный канал. Источником возмущений будем считать два гармонических осциллятора, расположенных на противоположных стенках. Чтобы задать характерную частоту генерируемых ими колебаний, введем малый параметр $\varepsilon = R^{-1/2}$, где число Рейнольдса R вычислено по ширине канала b^*, скорости U_∞^* потока на его входе и кинематической вязкости

5 пята м 4, 1982
\[t^* = \varepsilon^{-1} \frac{b^*}{U^*_\infty}, \quad x^* = b^* (e^{-2x_e} + x), \quad y^* = b^* y_0. \]

\[u^* = U^*_\infty [1 + \varepsilon^2 u_0(t, x, y_0) + \ldots], \]
\[v^* = U^*_\infty [e^2 v_0(t, x, y_0) + \ldots], \]
\[p^* = p^*_\infty + \rho^* U^*_\infty [e^2 p_0(t, x, y_0) + \ldots]. \]

Поле скоростей по обе стороны от центральной оси сосуда, которую совместим с осью \(x^* \) декартовой системы координат \(x^*, y^* \), разобьем на три области. В областях 1 и 2, образующих ядро потока, возмущения имеют потенциальный характер. Области 3 и 4 составляют основную толщу пограничных слоев у стенок канала, в них возмущения остаются локально невязкими, но сохраняют вихри. Природа возмущенного движения в узких пристеночных слоях 5 и 6 существенно зависит от вязкости жидкости, здесь уже нельзя пренебречь касательными напряжениями.

Обозначим через \(t^* \) время, \(u^* \) и \(v^* \) — компоненты вектора скорости, \(\rho^* \) — плотность, \(p^* \) — давление, в котором выделим постоянную часть \(p_0^* \). В дальнейшем области 1 и 2 целесообразно объединить в одну область 0, полагая в ней

\[\partial p_0/\partial x = \partial p_0/\partial y_0 = 0, \quad \partial p_0/\partial y_0 + \partial v_0/\partial x = 0, \]

откуда заключаем, что функции \(p_0 \) и \(v_0 \) являются гармонически сопряженными.

Как обычно в теории свободного взаимодействия, асимптотические уравнения для изысканных параметров жидкости в областях 3 и 4 интегрируются в явном виде \([3–5]\). Опустим соответствующие соотношения, так как в дальнейшем их знать не требуется.

Независимые переменные и искомые функции в прилегающих к стенкам слоях 5 и 6 введем следующим образом:

\[t^* = \varepsilon^{-1} \frac{b^*}{U^*_\infty}, \quad x^* = b^* (e^{-2x_e} + x), \quad y^* = b^* \left(1 \pm \frac{1}{2} + e^2 y_{5,6}\right), \]

\[u^* = U^*_\infty [e^2 u_0(t, x, y_{5,6}) + \ldots], \quad v^* = U^*_\infty [e^2 v_0(t, x, y_{5,6}) + \ldots], \]
\[p^* = p^*_\infty + \rho^* U^*_\infty [e^2 p_0(t, x, y_{5,6}) + \ldots]. \]

Безразмерные функции здесь удовлетворяют уравнениям Прандтля

\[\partial u_{5,6}/\partial x + \partial v_{5,6}/\partial y_{5,6} = 0, \quad \partial p_{5,6}/\partial y_{5,6} = 0, \]
\[\partial u_{5,6}/\partial t + u_{5,6}\partial u_{5,6}/\partial x + v_{5,6}\partial u_{5,6}/\partial y_{5,6} = - \partial p_{5,6}/\partial x + \partial^2 u_{5,6}/\partial y_{5,6}^2, \]

в которых градиент \(\partial p_{5,6}/\partial x \) самоиндукционировано давление находится из условий сращивания разложений \((1.1), (1.3)\) через промежуточные области 3 и 4.

Пусть \(\lambda = 0.3321 \) — постоянная, задающая поверхностное трение в решении Блауэуса для пограничного слоя на плоской пластинке \([6]\), а \(A_{5}(t, x) \) и \(A_{6}(t, x) \) — произвольные функции, пропорциональные отклонениям линий тока от горизонтальных прямых в соответствующих областях. Получающиеся в процессе сращивания граничные условия при \(y_0 = \mp 1/2 \) дают

\[\partial p_{5,6}/\partial x = \partial v_0/\partial y_0, \quad v_0 = - \partial A_{5,6}/\partial x. \]
Кроме того, при \(y_{5,6} \to \pm \infty \) имеем

\[
(1.6) \quad u_{5,6} = \pm \left(\chi/\sqrt{3} \right) y_{5,6} \to \pm (\chi/\sqrt{3}) A_{3,4}(t, x).
\]

Во всех трех рассматриваемых областях 0, 5 и 6 возмущение должно затухать на бесконечности вверх по потоку.

Остаётся записать условие прилипания жидкости к обтекаемым ею поверхностям. Обозначим амплитуду колебаний осцилляторов посредством \(e^{2a}b^* \), зададим их форму в виде

\[
y^* \pm 4b^* = e^{2a}b^* e^{-2x} e^{b^*} \left(e^{-e^{-2x}e^{b^*}} \right).
\]

Так как безразмерная частота \(\omega = e^{-2x} e^{b^*} / U_{5,6}^* \), то

\[
u_{5,6} = 0, \quad \nu_{5,6} = i a \omega e^{2x} h_{5,6}(x) \quad \text{при} \quad y_{5,6} = a e^{b^*} h_{5,6}(x).
\]

2. Положим амплитудный фактор \(a \ll 1 \). Пропорциональными ему можно считать смещения линий тока и избыточное давление, т. е.

\[
(A_{3,4}, y_{5,6}) = a e^{b^*} [A_{3,4}^*(x), y_{5,6}^*(x)].
\]

Аналитический вид имеет вертикальная составляющая \(v_0 = a e^{b^*} v_0^*(x, y_0) \) скорости в центральной области 0, где она в силу (1.2) удовлетворяет уравнению Лапласа. Разложим отмеченные штрихом функции в интегралы Фурье по продольной координате:

\[
(2.2) \quad [\tilde{A}_{3,4}(k), \tilde{v}_0(k, y_0)] = \int_0^\infty e^{-ikx} [A_{3,4}^*(x), p_{5,6}^*(x), p_{5,6}^*(x)] dx.
\]

Обозначив через \(b \) и \(d \) произвольные постоянные, находим \(\tilde{v}_0 = b e^{b^*} + b e^{-b^*} \). Из краевых условий (1.5) при \(y_0 = \mp 1/2 \) следует

\[
(2.3) \quad ik \tilde{A}_{3,4} = -(b_0 e^{-b^*} + de^{-b^*}) \mp de^{-b^*}.
\]

Поле скоростей в пристеночном слое 5 и 6 выражается как

\[
(2.4) \quad (u_{5,6}, v_{5,6}, \tilde{v}_{5,6}) = a e^{b^*} [u_{5,6}^*(x, y_{5,6}), v_{5,6}^*(x, y_{5,6})],
\]

где постоянная \(\mu_s = \lambda x \). Подстановка формулы (2.4) в уравнения Прандтля позволяет линеаризовать последние по амплитуде возмущений \(a \). Определенные линейными уравнениями функции \(u_{5,6} \) и \(v_{5,6} \) разложим в интегралы Фурье вида (2.2), а их образы \(u_{5,6}(k, y_{5,6}) \) и \(v_{5,6}(k, y_{5,6}) \) выразим при помощи соотношений

\[
u_{5,6} = -d f_{5,6}(y_{5,6}, y_{5,6}) = b k \tilde{v}_{5,6}(k, y_{5,6}).
\]

Линеаризация уравнений (1.4), вывод обобщенных дифференциальных уравнений для функций \(f_{5} \) и \(f_{6} \) и интегрирование последних следует из [7]. Границные условия прилипания

\[
(2.5) \quad f_{5,6} = (\omega/k) h_{5,6}, \quad df_{5,6} = \pm \mu_s^* h_{5,6} \quad \text{при} \quad y_{5,6} = 0
\]

вытекают из (1.7), причем \(h_{5,6}(k) \) означает фурье-образы осцилляторов \(h_{5,6}(x) \) на нижней и верхней стенках. Введем комплексные переменные

\[
z_{5,6} = z + \mu_s k, \quad z = t^{1/3} \omega(k) - 2\mu.
\]

В результате имеем производные

\[
(2.6) \quad \frac{df}{dz} = \frac{dA(z)}{dz}, \quad \frac{df}{dz} = \frac{dA(z)}{dz}.
\]
удовлетворяющие вторым условиям (2.5). Интегрирование формул (2.6) дает функции \(f_n \) и \(f_{\sigma} \), которые подчиняются первым из названных условий.

Остаётся учесть требования (1.6) на внешних краях пограничных слоев. В новых переменных

\[
\frac{df_{5,6}}{dz} = -i^{1/2}k^{-1/3} \mu_e^{2/3} A_{5,6}(z) \quad \text{при} \quad |z_{5,6}| \to \infty,
\]

откуда выводом связи

\[
A_3 \equiv -\tilde{\eta}_5 + i^{1/2}k^{1/3} \mu_e^{-5/6} \Phi^{-1}(\zeta) \tilde{p}_5,
\]

\[
\overline{A}_4 \equiv -\tilde{\eta}_6 \pm i^{1/2}k^{1/3} \mu_e^{-5/6} \Phi^{-1}(\zeta) \tilde{p}_6,
\]

\[
\Phi(\zeta) = \frac{dA_i(\zeta)}{dz} \left[\int_0^z A_i(z) \, dz \right]^{-1},
\]

между величинами \(A_{3,4} \) и \(\tilde{p}_{5,6} \). Подставляя в них соотношения (2.3), получим неоднородные линейные уравнения, определяющие постоянные \(b \) и \(d \):

\[
\frac{b}{k} = -\frac{1}{2} ik^{1/3} \Phi(\zeta) \times
\]

\[
\frac{\left[\Phi(\zeta) \tilde{\eta}_5 \pm i^{1/2}k^{1/3} \mu_e^{-5/6} \tilde{p}_5 \right] \chi \left(\frac{k}{2} \right)}{\left[\Phi(\zeta) \tilde{p}_5 \pm i^{1/2}k^{1/3} \mu_e^{-5/6} \tilde{\eta}_5 \right] \chi \left(\frac{k}{2} \right)} - \frac{\left[\Phi(\zeta) \tilde{\eta}_6 \pm i^{1/2}k^{1/3} \mu_e^{-5/6} \tilde{p}_6 \right] \chi \left(\frac{k}{2} \right)}{\left[\Phi(\zeta) \tilde{p}_6 \pm i^{1/2}k^{1/3} \mu_e^{-5/6} \tilde{\eta}_6 \right] \chi \left(\frac{k}{2} \right)}\]

\[
\frac{d}{k} = \frac{1}{2} ik^{1/3} \Phi(\zeta) \times
\]

\[
\frac{\left[\Phi(\zeta) \tilde{\eta}_5 \pm i^{1/2}k^{1/3} \mu_e^{-5/6} \tilde{p}_5 \right] \chi \left(\frac{k}{2} \right)}{\left[\Phi(\zeta) \tilde{p}_5 \pm i^{1/2}k^{1/3} \mu_e^{-5/6} \tilde{\eta}_5 \right] \chi \left(\frac{k}{2} \right)} - \frac{\left[\Phi(\zeta) \tilde{\eta}_6 \pm i^{1/2}k^{1/3} \mu_e^{-5/6} \tilde{p}_6 \right] \chi \left(\frac{k}{2} \right)}{\left[\Phi(\zeta) \tilde{p}_6 \pm i^{1/2}k^{1/3} \mu_e^{-5/6} \tilde{\eta}_6 \right] \chi \left(\frac{k}{2} \right)}\]

3. Если приравнять нулю знаменатель правых частей в (2.7), то получим два дисперсионных соотношения

\[
\mu_e^{5/6} \Phi(\zeta) = k \left(ik \right)^{1/3} \text{cth} \left(k/2 \right), \quad \mu_e^{5/6} \Phi(\zeta) = k \left(ik \right)^{1/2} \text{th} \left(k/2 \right)
\]

для частот и волновых чисел свободных симметричных и антисимметричных колебаний соответственно. Приведем вкратце свойства корней (3.1) на плоскости комплексного переменного \(k \) с вырезанной положительной мнимой полюсно, считая регулярную ветвь трехзначной функции \(k^{1/3} \) заданной условиями \(-3\pi/2 \leq \arg k \leq \pi/2 \).

Если фиксировать \(\omega \), то как для симметричных, так и для антисимметричных колебаний существуют четыре бесконечные последовательности собственных волновых чисел. Первая из них проще всего находится по результатам [8] для пограничного слоя на изолированной пластинке сначала на плоскости \(\zeta \). Обозначим \(\arg \zeta = \theta + \varphi \) и положим \(|\zeta| \to \infty \), в то время как \(\vartheta \rightarrow 0 \). Для любых корней с номером \(j \) имеем

\[
|\zeta_j| = (3\pi/2 \omega j + 3/4)^{1/2}.
\]

Симметричные колебания характеризуются равенством

\[
\theta_{\omega j} = (-1)^j \frac{\sqrt{3\pi}}{4} \mu_e^{-3/3} \left(j + \frac{1}{4} \right)^{1/2} k^{1/2},
\]

а для антисимметричных волн справедлива формула

\[
\theta_{\omega j} = (-1)^{j+1} \frac{\sqrt{3\pi}}{4} \mu_e^{-3/3} \left(j + \frac{1}{4} \right)^{1/2} k^{1/2}.
\]

Таким образом, каждое из дисперсионных соотношений (3.1) обладает бесконечной последовательностью корней \(k_j \) в окрестности луча \(\arg k = -5\pi/4 \) с точкой сгущения в начале координат.

Наличие еще трех бесконечных последовательностей корней в комплексной плоскости \(k \) обусловлено вхождением гиперболических функций
в правые части (3.1). Две из этих последовательностей расположены вдоль берегов разреза \(\arg k = \pi/2 \) и \(\arg k = -3\pi/2 \), а одна — в окрестности отрицательной мнимой полуси. Пусть \(\ell = -1, 0, 1 \), тогда собственное волновое число с номером \(n \to \infty \) в симметричных колебаниях устанавливается равенством

\[
\ell_{in}^{(1)} = 2(n + 1) \pi e^{i(n-1/2)} + \Delta k_{in}^{(1)},
\]

\[
\Delta k_{in}^{(1)} = -2 \cdot 3^{2/3} \pi^{-4/3} \Gamma^{-1}(3/3) \mu_{s}^{-5/3} (2n + 1)^{-4/3} e^{i(n/2 - (4/3)n)},
\]

а в антисимметричных возмущениях задается формулой

\[
\ell_{an}^{(1)} = 2 \pi e^{i(n-1/2)} + \Delta k_{an}^{(1)},
\]

\[
\Delta k_{an}^{(1)} = -2 \cdot 3^{2/3} \pi^{-4/3} \Gamma^{-1}(3/3) \mu_{s}^{-5/3} (2n)^{-4/3} e^{i(n/2 - (4/3)n)}.
\]

Обратимся теперь к основным представлениям линейной теории устойчивости, результаты которой для длинноволновых возмущений при \(R \to \infty \) совпадают с таковыми из теории свободного взаимодействия[9, 10]. С этой целью будем считать \(k \) действительной отрицательной величиной и рассмотрим корни дисперсионных соотношений (3.1) на комплексной плоскости. Вычисления показывают, что при любом \(\mu_{s} \) мнимая часть у первого корня \(\omega_{k} \) из последовательностей, асимптотика «хвостов» которых описывается формулами (3.2), (3.3) и (3.2), (3.4), меняет знак, когда \(k \) переходит через некоторое критическое значение \(k_{s} \). Как упоминалось в [2], сами критические значения \(\omega_{k} < 0 \) и \(\mu_{s} < 0 \) можно найти прямым пересчетом по имеющимся данным для несжимаемого пограничного слоя на изолированной пластинке. Так, для симметричных собственных колебаний \(\omega_{s} = 0.5736 \), \(\mu_{s} = 0.1248 \), а для антисимметричных \(\omega_{k} = 2.9270 \), \(\mu_{k} = -1.4382 \) при \(\mu_{s} = 1 \). Существенно, что \(\omega_{k} < \omega_{s} \) при любом \(\mu_{s} = O(1) \). Из рассмотрения кривых \(\omega_{s}(k) \) оси абсцисс вытекает, что амплитуда первой моды как симметричных, так и антисимметричных волн может и вырождаться со временем, и экспоненциально нарастать. Все остальные моды оказываются устойчивыми. Что касается корней из последовательностей с асимптотиками (3.5), (3.6), то они аналогов в плоскости \(\omega \) не имеют.

Рассмотрим обратные преобразования Фурье

\[
[A_{3,4}^{(1)}(x), p_{3,4}(x)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i k x} \mathcal{A}_{3,4}(k), p_{3,4}(k) \] dk
\]

на плоскости комплексного переменного \(k \) с вырезанной положительной мнимой полусою. Формулы (2.1) вместе с (2.3), (2.7) завершают построение линий тока и избыточного давления с учетом их изменения во времени.

Схематически расположение корней каждого из дисперсионных соотношений (3.1) для \(\mu_{s} = O(1) \) изображено на фиг. 1. Варьирование \(\phi \) влечет за собой качественное изменение демонстрируемой картины лишь в одном отношении: корень \(k_{s}(\phi) \) перемещается из одной полуплоскости в другую. Направление его движения с возрастанием \(\phi \) следует стрелке. Очевидно, \(\text{Re} k_{s} = k_{s} \), \(\text{Im} k_{s} = 0 \) при \(\phi = \omega_{s} \). Корень \(k_{s}(\phi) \) всегда находится в нижней полуплоскости, причем \(\text{Re} k_{s} = 0 \) при \(\phi = 0 \).

4. Поскольку \(\omega_{k} < \omega_{s} \), будем сначала считать, что частота осцилляторов \(\phi < \omega_{k} \). Поле возмущений в области \(x < 0 \), проистекающейся вверх по потоку от источников, проще всего получить, если воспользоваться замкнутым контуrom, который включает дугу полукружности в нижней полуплоскости \(k \) со стремящимися к бесконечности радиусом. Обозначим подынтегральную функцию из (3.7) посредством

\[
\Psi(k) = (1/2\pi) \mathcal{A}_{3,4}(k), \quad p_{3,4}(k).
\]
На основании леммы Жордана и теоремы Коши о вычетах имеем

\[(4.2) \quad \int_{-\infty}^{\infty} \Psi (k) \, dk = -2\pi i \left[\text{res} \, \Psi (k_{1}\nu) + \sum_{n=1}^{\infty} \text{res} \, \Psi (k_{n}^{(0)}) + \right. \\
+ \left. \text{res} \, \Psi (k_{2}\nu) + \sum_{n=1}^{\infty} \text{res} \, \Psi (k_{n}^{(0)}) \right]. \]

Полученный результат допускает наглядную интерпретацию: вверх по потоку от осцилляторов возмущения распространяются в виде симметричной и антисимметричной волн Толлимина — Шлихтина, обусловленных корнями \(k_{2}\nu \) и \(k_{2}\nu \) из последовательностей \((3.2), (3.3)\) и \((3.2), (3.4)\), и двух бесконечных цугов таких волн, которые связаны с корнями, принадлежащими последовательностям \((3.5), (3.6)\).

Чтобы изучить возмущения в области \(x > 0 \), уходящей вниз по потоку за источниками звука, применим замкнутый контур, включающий дугу полуокружности в верхней полуплоскости \(k \) со стремящимся к бесконечности радиусом. Берега разреза вдоль положительной мнимой полуоси с \(\arg \, k = \pi/2 \) и \(\arg \, k = -3\pi/2 \) обозначены через \(L_{1} \) и \(L_{2} \) соответственно. В результате

\[(4.3) \quad \int_{-\infty}^{0} \Psi (k) \, dk = -I_{1} + I_{2} + 2\pi i \left[\sum_{n=1}^{\infty} \text{res} \, \Psi (k_{n}^{(0)}) + \right. \\
+ \sum_{n=1}^{\infty} \text{res} \, \Psi (k_{n}^{(1)}) + \sum_{n=1}^{\infty} \text{res} \, \Psi (k_{n}^{(-1)}) + \sum_{n=1}^{\infty} \text{res} \, \Psi (k_{n}^{(-1)}) + \\
\left. + \sum_{n=1}^{\infty} \text{res} \, \Psi (k_{n}^{(1)}) \right], \\
I_{1} = \int_{L_{1}} \Psi (k) \, dk, \quad I_{2} = \int_{L_{2}} \Psi (k) \, dk, \]

где первые указывают на пропуск в суммировании индекса \(j = 2 \).

Таким образом, природа споистых вниз по потоку возмущений двояка. Обусловленная вычетами часть состоит из шести бесконечных последовательностей симметричных и антисимметричных волн Толлимина — Шлихтина, параметры которых определяются собственными функциями задачи о свободных колебаниях. Спектр волновых чисел каждой из последовательностей дискретен. Наоборот, вторая часть возмущений с параметрами, задаваемыми интегралами \(I_{1} \) и \(I_{2} \) по берегам разреза, характеризуется непрерывным спектром.

При \(\omega \to \omega_{m} \) декремент затухания в \(\exp(ik_{1}\nu x) \), входящей в \(\text{res} \, \Psi (k_{1}) \), становится как угодно малым, в связи с чем амплитуда возмущений чрезвычайно медленно падает вниз по потоку от осцилляторов. Когда \(\omega = -\omega_{m} \), корень \(k_{2}\nu = k_{2} \) совпадает с одной из точек отрицательной полуоси абсцисс. В этом случае формальное применение аппарата интегральных преобразований ведет к заключению, что из правой части \((4.3)\) необходимо вычесть \(2\pi i \text{res} \, \Psi (k_{1}) \) и перенести эту величину с обратным знаком в правую часть \((4.2)\). Амплитуда колебаний получается постоянной вдоль всей длины канала, за исключением небольшой окрестности точек звука. Если \(\omega_{m} > \omega > \omega_{m} \), то корень \(k_{1} \) перемещается в нижнюю полуплоскость, в связи с чем из выражения \((4.3)\) целиком исчезает член \(2\pi i \text{res} \, \Psi (k_{1}) \), который необходимо добавить с отрицательным знаком к выражению \((4.2)\). Пока \(\omega \) не слишком превосходит \(\omega_{m} \), амплитуда генерируемых волн увеличивается весьма умеренно в области вверх по потоку от осцилляторов.

Аналогичная картина имеет место при дальнейшем увеличении частоты. Действительно, при \(\omega \to \omega_{m} \) неограниченно уменьшается декретент затухания в \(\exp(ik_{1}\nu x) \), входящей в \(\text{res} \, \Psi (k_{1}) \). Когда \(\omega = \omega_{m} \), на отрицательную полуось абсцисс попадает корень \(k_{1} = k_{m} \). Кроме члена
$2\pi \text{res} \Psi(k_\alpha)$, из правой части (4.3) следует вычесть $\pi \text{res} \Psi(k_\alpha)$, причем обе эти величины надлежит перенести в правую часть (4.2) с обратным знаком. Амплитуда колебаний остается постоянной по длине сосуда вверх по потоку от осцилляторов и экспоненциально нарастает вниз по потоку от них. Если $\omega > \omega_{0\alpha}$, то в нижнюю полуплоскость переходит также корень k_α. В этом случае из выражения (4.3) вместе с $2\pi \text{res} \Psi(k_\alpha)$ выписывает еще вкладом $2\pi \text{res} \Psi(k_\alpha)$, оба члена следует добавить к выражению (4.2) с отрицательным знаком. Таким образом, при $\omega > \omega_{0\alpha}$ ростом амплитуды испускаемых волн управляют уже оба экспоненты $\exp(ik_\alpha x)$ и $\exp(-ik_\alpha x)$.

По поводу данываем аппаратом интегральных преобразований картины возмущений необходимо сделать два замечания. Во-первых, ни в одном из проведенных до сих пор экспериментов не было обнаружено резкого увеличения интенсивности передаваемых вверх по потоку сигналов, когда частота колебаний переходит через одно из критических значений $\omega_{0\alpha}$ или $\omega_{0\beta}$. Таковые данные отсутствуют также для вынужденных колебаний в пограничном слое и развитом вязком течении в канале с трубой. Во-вторых, при $\omega > \omega_{0\alpha}$ и тем более $\omega > \omega_{0\beta}$ решение рассматриваемой линейной задачи необходимо искать в классе функций, с экспоненциальным ростом по продольной координате x, чтобы получить наблюдаемое нарастание амплитуды возмущений вниз по потоку, которое вызывает возникновение турбулентных пульсаций. Естественно, в названном классе теоремы, гарантирующие единственность решения, отсутствуют. Однако, как обращалось внимание в [11], классическое решение с вырождающимся при $x \rightarrow \pm \infty$ полем возмущений с физической точки зрения неприемлемо.

Чтобы обеспечить единственный выбор решения при закритических частотах осцилляторов, необходимо дополнительный поступать. Как показывают опыты, никаких вневзвешенных изменений (по крайней мере на умеренных расстояниях от источников) в полях возмущений не происходит при достижении ω одного из критических значений $\omega_{0\alpha}$ и $\omega_{0\beta}$. Потребуется поэтому непрерывность по ω даневоформулы (4.1)—(4.3) решения реальной задачи при любых конечных x. Сформулированное требование означает, что соотношения (4.2), (4.3) сохраняют силу при любых $\omega_{0\alpha} > \omega > \omega_{0\alpha}$ и $\omega > \omega_{0\beta}$. Все граничные условия задачи будут удовлетворены, так как использование формул (4.2), (4.3) при закритических частотах обеспечивает возможность добавить к построенному при помощи интегральных преобразований решению собственные функции с экспоненциальным ростом при $x \rightarrow \infty$. Вычеты $\text{res} \Psi(k_\alpha)$ и $\text{res} \Psi(k_\alpha)$ дают искомые собственные функции, представляющие первую моду симметричных и антисимметричных волн Толланта—Шлакхинга.

Изложенное правило задает непрерывную эволюцию линейных возмущений по ω в области, где отсутствуют турбулентные пульсации, развивающиеся на некотором расстоянии от источников. Разумеется, оно
имеет универсальный характер и в однородной мере приложим к пограничному слою на пластинке и развитому вязкому течению в канале или трубе.

Расчеты реальной и мнимой частей избыточного давления для колеблющихся в фазе осцилляторов однородной формы представлены на фиг. 2, 3 соответственно. Было принято, что параметр $\mu = 0,97$, a $h_0(x) = h(x)$, причем

$$h(x) = \begin{cases} 0, & x \leq 0, \\ x, & 0 \leq x \leq 1, \\ 2 - x, & 1 \leq x \leq 2, \\ 0, & 2 \leq x, \end{cases}$$

откуда формула $h(k) = -(1 - e^{ik})^2/k^2$. В этом случае возбуждаются только антисимметричные возмущения, для которых формулы (2.7) сводятся к

$$b = \frac{1}{2} ik\Phi(z) \frac{h(k)}{\Phi(z) \text{ch} \frac{k}{2} - t^{1/2}k^{1/2}e^{k/2} \text{sh} \frac{k}{2}}.$$

Цифра 1 относится к колебаниям с докритической частотой $\omega = 2 < \omega_{cr}, 2 \rightarrow$ к колебаниям с закритической частотой $\omega = 2,92 > \omega_{cr}$. Напомним, что при $\mu = 0,97$ критическая частота свободных антисимметричных возмущений $\omega_{cr} = 2,81$. В расчетах формулы (4.1)–(4.3) использовались как для докритического, так и для закритического режима. Вверх по потоку от осцилляторов излучаемые сигналы затухают чрезвычайно быстро, небольшая раскачка волнового процесса вниз по потоку от источников происходит на частоте $\omega = 2,92$.

Авторы искренне признательны В. И. Жукову и Е. Д. Терентьеву за плодотворные дискуссии.

ПОСТУПИЛА 14 VIII 1981

ЛИТЕРАТУРА

3. Нейланд В. Я. Асимптотические задачи теории вязких сверхзвуковых течений.— Труды ЦАГИ, 1974, вып. 1529.
5. Рубан А. И., Сычев В. В. Асимптотическая теория отрыва ламинарного пограничного слоя в несжимаемой жидкости.— Усп. механики, 1979, т. 2, вып. 4.
7. Рыжков О. С., Терпентин Е. Д. О вестанционарном пограничном слое с самоиндуктированным давлением.— НММ, 1977, т. 41, вып. 6.
11. Богданова Е. В., Рыжков О. С. О колебаниях, возбуждаемых гармоническим осциллятором в течении Пузая. Там же.

72