2014. Том 55, № 2

Март – апрель

C. 220 – 229

УДК 542.128.1

КВАНТОВО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ КОМПЛЕКСОВ ТРИМЕТОКСИАЛЮМИНИЯ С НЕЙТРАЛЬНЫМИ МОЛЕКУЛАМИ

Н.В. Алексеев

ГНИИ химии и технологии элементоорганических соединений, Москва E-mail: nalekseev1@rambler.ru

Статья поступила 23 февраля 2013 г.

Методом MP2/6-31(2d,p) с использованием программного комплекса PC GAMESS-Firefly проведены расчеты пространственных и электронных структур комплексов триметоксиалана с нейтральными молекулами. Методами AIM и NBO определены основные характеристики связей алюминия в этих молекулах. Показано, что эти связи можно охарактеризовать как связи между атомами с "закрытыми оболочками".

Ключевые слова: алюмооксаны, комплексы, квантовая химия, метод AIM, метод NBO.

Характерным свойством всех алюминийорганических соединений является высокая склонность к димеризации и образованию разнообразных комплексов, в том числе и с молекулами растворителей. Это обстоятельство оказывает большое влияние на поведение алюминийорганических соединений в химических процессах. Комплексы триалкилалюминия с нейтральными молекулами были получены уже давно и неоднократно исследовались методами ЯМР и ИК спектроскопии, рентгеноструктурного анализа, электронографии и квантовой химии [1--11]. Сведений о строении и свойствах аналогичных комплексов алюмоксанов в современной литературе немного. В Кембриджском банке структурных данных [12] имеются сведения о структурах комплексов $Al(O - CR_3)_3$ (R = CF₃ и SiPh₃) с диэтиловым эфиром, тетрагидрофураном и диметиламином [13-17]. Неэмпирических теоретических расчетов строения комплексов алюмоксанов с нейтральными молекулами, распределения электронной плотности в этих соединениях и топологических характеристик связей алюминия не проводилось. Между тем эти данные представляют большой интерес для исследователей, работающих в области химии алюминийорганических соединений. Поэтому было предпринято настоящее исследование пространственных и электронных структур комплексов триметоксиалюминия с нейтральными молекулами.

Расчеты структур молекул, волновых функций и топологических характеристик связей исследованных молекул проводили с использованием программного комплекса PC GAMESS-Firefly [18] и программ AIMALL [19] и NBO 5.G [20].

Как было показано в работах [9—11], при изучении процессов комплексообразования алюминийорганических соединений с галогеносодержащими основаниями и кислотами Льюиса методами квантовой химии наилучшие результаты получаются с использованием приближения MP2/6-31G(d,p). Для проверки возможности использования этого приближения в данном исследовании были рассчитаны структуры комплексов три(перфторбутокси)алюминия с тетрагидрофураном и трибутоксиалюминия с диметиламином. Экспериментальные и вычисленные (с использованием приближения MP2/6-31(2d,p)) величины структурных параметров обоих

[©] Алексеев Н.В., 2014

Таблица 1

Межатомное расстояние	Эксперимент [13, 17], Å	Расчет, Å	Валентный угол	Эксперимент [13, 17], град.	Расчет, град.		
Три(перфторбутокси)-(тетрагидрофуран)-алюминий							
Al—O(C)	1,699(2)	1,709	$O - Al - O_{(T\Gamma\Phi)}$	106,9(0,5)	109,9		
	1,709(2)	1,718		101,0(0,5)	96,6		
	1,707(2)	1,716		104,0(0,5)	101,0		
Al— $O(T\Gamma\Phi)$	1,826(3)	1,860	(C)O - Al - O(C)	115,8(0,7)	117,7		
$O - C(CF_3)$	1,374(3)	1,403		111,3(0,7)	113,9		
	1,351(3)	1,401		116,1(0,7)	114,9		
	1,363(3)	1,402	$Al - O - C(CF_3)$	149,9(0,8)	136,7		
$C - C(CF_3)$	1,537(4) _{cp}	1,536 _{cp}		152,1(0,9)	138,1		
C—F	1,348(4) _{cp}	1,378 _{cp}	F—C—F	$108,3(1,5)_{cp}$	108,4 _{cp}		
CAO*		0,024			4,8		
	Три(<i>t</i> -	бутокси)-(Д	циметиламид)-алюм	иний			
Al—O(C)	1,728(3)	1,737	O—Al—N	106,0(0,5)	102,5		
	1,685(3)	1,728		98,9(0,4)	98,8		
	1,713(3)	1,729		101,0(0,4)	100,5		
Al—N	1,987(2)	1,997	(C)O-Al-O(C)	119,9(0,4)	119,8		
О—С _(<i>t</i>—бутил)	1,424(3)	1,478		111,5(0,4)	112,8		
	1,399(4)	1,468		115,8(0,5)	117,5		
	1,413(3)	1,475	Al—N—C	111,1(0,6)	109,3		
C—C	1,507(4) _{cp}	1,550 _{cp}		113,9(0,6)	111,7		
N—C	1,484(4) _{cp}	1,528 _{cp}	C—C—C	109,7(0,6) _{cp}	110,8 _{cp}		
CAO*		0,039			1,4		

Экспериментальные и вычисленные (MP2/6-31(2d, p) величины структурных параметров три(перфторбутокси)-(тетрагидрофуран)-алюминия и три(t-бутокси)-(диметиламин)-алюминия

* Среднее абсолютное отклонение.

комплексов приведены в табл. 1. Судя по полученным данным, выбранное нами приближение хорошо воспроизводит длины связей и величины валентных углов, в том числе и расстояний $(CH_3O)_3AI\cdots O(T\Gamma\Phi)$ и $(CH_3O)_3AI\cdots N(CH_3)_2H$. Последнее обстоятельство позволяет сделать вывод, что такого рода комплексы могут существовать не только в кристаллическом состоянии, но и в виде свободных молекул. Приближение MP2/6-31(2*d*,*p*) было использовано нами для расчетов всех исследованных соединений. Данные об их строении представлены на рис. 1.

В рамках рассматриваемой проблемы наибольший интерес для нас представляют связи атома алюминия с атомами кислорода, азота и серы, посредством которых нейтральные молекулы объединяются в комплексы. Как видно из данных, приведенных на рис. 1, в исследованных комплексах расстояния A1…X (X = O, N, S) изменяются в пределах от 1,955 (в I и II) до 2,705 Å (в VIII). Эти величины больше сумм ковалентных радиусов A1 и O (~1,91 Å), A1 и N (~1,93 Å), A1 и S (~2,20 Å), но намного меньше сумм ван-дер-ваальсовых радиусов этих атомов (3,13, 3,34 и 3,68 Å соответственно) [22—25]. Из-за существенного различия электроотрицательностей A1 (1,47) и O (3,50), N (3,07), S (2,60) длины валентных связей A1—O, A1—N и A1—S, как правило, меньше сумм ковалентных радиусов упомянутых элементов.

Результаты поиска по материалам Кембриджского банка структурных данных с использованием программы MOGUL [27] показывают, что длины связей Al-O изменяются с изменением числа атомов кислорода, связанных с Al. Так, в соединениях, где Al связан с тремя атомами О, они равны 1,675±0,026 Å, в соединениях, где он связан с четырьмя атомами О — 1,714± ±0.023 Å, и в соединениях, где он связан с пятью атомами О — 1.842±0.035 Å. Скудность экспериментальных данных препятствует проведению такого же анализа для связей Al—N и Al—S. Тем не менее некоторые экспериментальные данные все же имеются. Как было показано выше (см. табл. 1) в трибутокси-диметиламидалюминии связь Al—N равна 1,982 Å [28], в (µ2-*трет*бутокси)-(µ2-диметиламидо)-тетракис(*трет*-бутокси)-диалюминии две мостиковые связи Al-N равны 1,942 Å [29], а в бис-(иминодиацетате)алюминии, где координационный полиэдр алюминия представляет собой тетрагональную бипирамиду, в экваториальной плоскости которой расположены четыре атома кислорода, а аксиальные положения занимают атомы азота, связи Al—N равны 2,049 Å [30]. В выпуске Кембриджского банка структурных данных 2013 г. [12] имеются сведения о пяти молекулах алюминийорганических соединений, где в ближайшее окружение Al входят и атомы кислорода, и атом серы [28—32]. Координационный полиэдр Al в этих молекулах представляет собой искаженную тригональную бипирамиду, в которой экваториальные положения занимают 2 атома О и атом S, а аксиальные — 1 атом О и 1 атом S. Расстояние Al—S_{экв} там равно 2,360_{ср} Å, а Al—S_{акс} — 2,961_{ср} Å.

Расчеты по модифицированному уравнению Стивенсона—Шомакера [26], одним из параметров которого является разность величин электроотрицательностей атомов, образующих связь, дают следующие величины длин связей: Al—O 1,71 Å, Al—N 1,79 Å и Al—S 2,17 Å.

Таким образом, расстояния Al····O, Al····N и Al····S в исследованных соединениях близки к тем экспериментальным величинам длин связей между упомянутыми атомами, которые ха-

рактерны для соединений типа
$$\begin{bmatrix} 0 & X & 0 \\ 0 & A & 0 \\ 0 & A & 0 \end{bmatrix}$$
 (X = O, N, S), но больше упо-

мянутых вышевычисленных величин длин связей Al—O, Al—N и Al—S.

Сближение атома Al триметоксиалана с атомами O, N и S нейтральных молекул до тех расстояний, которые реализуются в соединениях **I—IX**, может происходить:

• в результате кулоновских взаимодействий разноименно заряженных атомов;

• в результате образования химических связей.

Чтобы решить, какой из процессов реализуется в данном случае, был предпринят расчет топологических характеристик связей Al···X (X = O, N, S) и Al—OCH₃ молекул исследуемых соединений. Результаты этих расчетов представлены в табл. 2 и 3. Как видно из полученных данных, у всех молекул на поверхности $\rho(r)$ (функции, описывающей распределение электронной плотности в молекуле) между атомами Al и X (X = O, N, S) имеются критические точки типа (3, -1) с координатами r_c , в которых градиент $\rho(r)$ равен нулю. Наличие таких точек является необходимым условием существования межатомной связи. Величины лапласиана электронной плотности $\nabla^2 \rho(\mathbf{r}_c)$ в критических точках (3, -1) у всех молекул положительны, а от-

Таблица 2

Моле- кула	Связь	Длина связи, Å	$\rho(\mathbf{r_c})$	$ abla^2 ho(\mathbf{r_c})$	Собственные значения гессиана р(r _c)			Вклад кинетической энергии		Плотность потенциаль- ной энергии	
					λ_1	λ_2	λ_3	$ \lambda_1 /\lambda_3$	$G(\mathbf{r}_{c})$	$G(\mathbf{r}_{\mathbf{c}})/\rho(\mathbf{r}_{\mathbf{c}})$	V (I _c)
Ι	Al…O	1,955	0,0543	0,4296	-0,0938	-0,0874	0,6110	0,1535	0,0979	1,0371	-0,0884
	Al—OCH ₃	1,716 _{cp}	0,0943	0,8472	-0,1802	-0,1687	1,1964	0,1506	0,2045	2,1686	-0,1972
Π	Al⋯O	1,955	0,0449	0,3620	-0,0716	-0,0691	0,5027	0,1424	0,0804	1,7906	-0,0703
	Al—OCH ₃	1,714 _{cp}	0,0961	0,8660	-0,1855	-0,1707	1,2225	0,1517	0,2096	2,1811	-0,2027
III	Al…O	1,936	0,0480	0,3907	-0,0795	-0,0740	0,5442	0,1461	0,0872	1,8167	-0,0767
	Al—OCH ₃	1,720 _{cp}	0,0953	0,8492	-0,1834	-0,1687	1,2014	0,1526	0,2056	2,1573	-0,1989
IV	Al⋯N	1,987	0,0599	0,3772	-0,0950	-0,0949	0,5672	0,1675	0,0938	1,5659	-0,0933
	Al—OCH3	1,735 _{cp}	0,0931	0,8320	-0,1784	-0,1649	1,1754	0,1518	0,2005	2,1536	-0,1930
V	Al⋯N	2,063	0,0462	0,2803	-0,0669	-0,0653	0,4126	0,1621	0,0681	1,4740	-0,0661
	Al—OCH ₃	1,718 _{cp}	0,0956	0,8570	-0,1839	-0,1700	1,2109	0,1519	0,2074	2,1694	-0,2005
VI	Al⋯N	2,006	0,0527	0,3483	-0,0827	-0,0808	0,5118	0,1616	0,0836	1,5863	-0,0801
	Al—OCH ₃	1,719 _{cp}	0,0943	0,8476	-0,1813	-0,1674	1,1965	0,1515	0,2045	2,1686	-0,1971
VII	Al⋯S	2,462	0,0321	0,1048	-0,0322	-0,0312	0,1681	0,1915	0,0311	0,9688	-0,0360
	Al—OCH ₃	1,716 _{cp}	0,0950	0,8064	-0,1821	-0,1640	1,1527	0,1580	0,1974	2,0779	-0,1932
VIII	Al⋯S	2,705	0,0196	0,0644	-0,0142	-0,0072	0,0858	0,1247	0,0177	0,9031	-0,0194
	Al—OCH ₃	1,701 _{cp}	0,0995	0,9092	-0,1937	-0,1756	1,2786	0,1444	0,2206	2,2170	-0,2137
IX	Al…S	2,547	0,0302	0,1072	-0,0301	-0,0273	0,1647	0,1742	0,0306	1,0132	-0,0343
	Al—OCH ₃	1,715 _{cp}	0,0965	0,8660	-0,1858	-0,1705	1,2227	0,1457	0,2098	2,1741	-0,2031

Характеристики критических точек связей алюминия в исследованных молекулах

Примечание. За исключением длин межатомных связей, все остальные величины приведены в атомных единицах (ат. ед.).

Таблица 3

Моле- кула	Связь	Заряд атомов		Локализация электронов в атомах, %		DI _{A,B} * связи	Deloc _{A,B} **	Deloc _{B,A} ***
Ι	Al—O	2,61	-1,25	95,6	88,1	0,124	0,60	0,67
	Al—OCH ₃	2,61	-1,46	95,6	91,6	0,245	1,18	1,29
Π	Al—O	2,61	-1,29	95,6	87,5	0,107	0,51	0,57
	Al—OCH ₃	2,61	-1,46	95,6	94,6	0,256	1,23	1,31
III	Al—O	2,61	-1,30	95,6	88,0	0,108	0,52	0,58
	Al—OCH ₃	2,61	-1,46	95,6	91,9	0,260	1,25	1,38
IV	Al—N	2,60	-1,35	95,5	79,0	0,147	0,78	0,88
	Al—OCH ₃	2,60	-1,46	95,5	91,5	0,243	1,17	1,28
V	Al—N	2,60	-1,45	95,5	80,2	0,118	0,57	0,70
	Al—OCH ₃	2,60	-1,47	95,5	91,7	0,253	1,22	1,34
VI	Al—N	2,60	-1,52	95,5	81,7	0,129	0,62	0,76
	Al—OCH ₃	2,60	-1,46	95,5	91,6	0,249	1,20	1,32
VII	Al—S	2,56	-0,07	95,3	91,0	0,118	0,56	0,37
	Al—OCH ₃	2,56	-1,49	95,3	91,2	0,119	0,57	1,27
VIII	Al—S	2,59	0,09	95,5	90,4	0,060	0,29	0,19
	Al—OCH ₃	2,59	-1,47	95,5	91,7	0,275	1,32	1,45
IX	Al—S	2,59	-0,04	95,5	90,9	0,101	0,49	0,32
	Al—OCH ₃	2,59	-1,46	95,5	91,6	0,265	1,27	1,40

Топологические характеристики связей атома Al в исследованных молекулах

* Среднее количество электронов, делокализованных между атомами связи.

** Deloc_{A,B} = 100* (DI(A,B)/2)/N(A), где N(A) — среднее количество электронов, локализованных в атомном объеме атома A.

*** Deloc_{B,A} = 100* (DI(A,B)/2)/N(B), где N(B) — среднее количество электронов, локализованных в атомном объеме атома В.

ношения собственных значений гессиана $\rho(\mathbf{r}_c) |\lambda_{1,2(\text{сред})}|/\lambda_3$ в этих точках намного меньше единицы. Используя терминологию метода AIM, можно сказать, что в данном случае "доминирует сжатие электронной плотности, направленное от межатомной поверхности в сторону каждого из ядер", и для связей A1····X характерен отток электронной плотности от межатомных поверхностей в околоатомные области Al и X. Это хорошо видно, например, на контурной карте распределения лапласиана электронной плотности соединений I и III, где атом германия со всех сторон окружен областями пониженной электронной плотности (рис. 2).

Во всех исследованных молекулах более 95 % электронов атома Al сосредоточены внутри его атомного объема, а доля электронов, локализованных внутри атомного объема атома кислорода связей Al—OCH₃, изменяется от 94,6 % в молекуле **II** до 91,2 % в молекуле **VII**. Электроны атомов O связей Al····OR локализованы в меньшей степени (87,5÷88,1 %). Еще менее локализованы электроны атомов азота связей Al····NR (79,0÷81,7 %). Степень локализации электронов атомов серы связей Al····SR примерно та же, что и для электронов атомов O связей Al—OCH₃ ~ 90 %. В то же время количество электронов на межатомных поверхностях этих связей (DI) невелико. Для связей Al—OCH₃ эта величина равна 0,12÷0,27, а для связей Al····OR, Al···NR и Al···SR — 0,06÷0,147. Для сравнения можно отметить, что в молекуле **II** для связи C—C эта величина равна 1,12, для связей C—O — 0,83, а для связей C = C — 1,64.

Для классификации типа связи очень важна величина отношения кинетической энергии к электронному заряду $G(\mathbf{r}_c)/\rho(\mathbf{r}_c)$. Из соотношения размерностей $G(\mathbf{r}_c)$ и $\rho(\mathbf{r}_c)$ следует, что оно

Рис. 2. Распределение Лапласиана электронной плотности $\nabla^2 \rho(\mathbf{r})$ в молекулах соединений I (*A*) и III (*Б*). Плоскости сечения проведены через атомы O1, Al и O4.

Сплошные линии определяют области локальной концентрации электронной плотности, штриховые — области локального разряжения электронной плотности

представляет собой меру локальной кинетической энергии, приходящейся на один электрон. Для ковалентных связей его величина менее 0,3—0,4, а для связей между атомами с "закрытыми оболочками" оно может быть увеличено до единицы и более. Из данных табл. 2 видно, что в исследованных соединениях отношения $G(\mathbf{r}_c)/\rho(\mathbf{r}_c)$ связей алюминия лежат в интервале 0,97÷2,18. При этом, чем больше величина DI, тем меньше отношение $G(\mathbf{r}_c)/\rho(\mathbf{r}_c)$. Так, для связей (CH₃O)₃Al····X их величины в 1,5—2 раза меньше, чем для связей Al—OCH₃.

Существенной особенностью топологии связей Al—O и Al···X является примерное равенство локальных плотностей кинетической $G^{e}(\mathbf{r}_{c})$ и потенциальной $V^{e}(\mathbf{r}_{c})$ энергий в критических точках (3, -1) и почти нулевое значение локальной плотности общей энергии $E^{e}(\mathbf{r}_{c})$.

Значения лапласиана электронной плотности $\nabla^2 \rho(\mathbf{r_c})$, отношения $G(\mathbf{r_c})/\rho(\mathbf{r_c})$ и локальной плотности энергии $E(\mathbf{r_c})$ в критических точках (3, -1) связей (CH₃O)₃Al···X и Al—OCH₃ позволяют в рамках терминологии метода AIM определить эти связи как "связи между атомами с закрытыми электронными оболочками" [33].

Таким образом, стабилизация исследованных нами молекул обусловлена в основном кулоновскими взаимодействиями разноименно заряженных атомов. Поэтому сколь-нибудь существенного перераспределения электронной плотности между фрагментами молекул, образующих комплекс, не происходит. Так, в свободном триметоксиалане электронные заселенности алюминия и атомов его ближайшего окружения выглядят следующим образом.

Электронные заселенности атомов кислорода и углерода фуранового кольца равны:

А вот те же величины для алюминия и атомов его ближайшего окружения в комплексе II:

Аналогичная картина характерна и для других исследованных комплексных соединений.

Как было показано в работах [34—36], энергию связей, подобных тем, которые стабилизируют исследованные нами соединения, можно оценить с помощью следующей корреляционной формулы:

$$E_{\rm A-B} = 1/2 V(r_{\rm c}).$$

Здесь E_{A-B} — энергия связи; $V(\mathbf{r_c})$ — плотность потенциальной энергии в критической точке (3, -1) этой связи. В табл. 4 приведены величины энергий связей Al…X в исследованных соединениях, вычисленные с использованием этой формулы. Из полученных данных видно, что эти энергии изменяются в диапазоне $-29,3 \div -6,1$ ккал/моль. Наиболее прочными являются связи Al…O в I и Al…N в IV; их энергии равны -29,3 и -27,7 ккал/моль соответственно. А самая слабая связь — связь Al…S в VIII (-6,1 ккал/моль).

Результаты топологических расчетов очень хорошо соотносятся с данными, полученными методом NBO. Расчеты, проведенные с использованием программы NBO 5.G [21], показали, что для "натуральных орбиталей" связей Al—OCH₃ характерны низкие величины заселенностей (в отдельных случаях менее 1,97), малый вклад AO Al (всюду менее 8 %) и большая разница зарядов атомов алюминия и кислорода. Уменьшение ковалентной составляющей связей Al—OCH₃ и увеличение их полярности обусловлено переносом электронной плотности с NBO связей C—O и неподеленных электронных пар атомов кислорода на разрыхляющие NBO* связей Al—OC(заселенность последних повышена до 0,06—0,08 в разных молекулах). В использованной версии программы NBO 5.G существует ограничение: если заселенность данной NBO менее определенного предела, то такая орбиталь трактуется как одноцентровая. Из всех исследованных соединений только в комплексах I и IV с наиболее прочными связями Al…X "натуральные орбитали" связей Al—O и Al…N были охарактеризованы как двухцентровые. Заселенность NBO связи Al…O в I равна 1,972, а соответствующей NBO* — 0,087. Вклад AO алюминия составляет 4,2 %. В целом же NBO этой связи может быть описана как:

Т	а (5л	И	ц	а	4
---	-----	----	---	---	---	---

Моле- кула	Связь	Длина связи, Å	Плотность потенциальной энергии $V^{\rm e}(r_{\rm c})$, ат. ед.	Энергия связи, ккал/моль
I	Al…O	1,955	-0,0884	-27,7
П	Al⋯O	1,955	-0,0703	-22,0
III	Al⋯O	1,936	-0,0767	-24,0
IV	Al⋯N	1,987	-0,0933	-29,3
V	Al⋯N	2,063	-0,0661	-20,7
VI	Al⋯N	2,006	-0,0801	-25,1
VII	Al⋯S	2,462	-0,0360	-11,3
VIII	Al…S	2,705	-0,0194	-6,1
IX	Al⋯S	2,547	-0,0343	-10,8

Энергии связей Al…X (X = O, N, S) в исследованных молекулах

Н.В. АЛЕКСЕЕВ

$$\sigma_{AIN} = 0,205(sp^{4,01})_{AI} + 0,979(sp^{2,43})_{O},$$

$$\sigma_{AIN}^{*} = 0,979(sp^{4,01})_{AI} - 0,205(sp^{2,43})_{O},$$

Для NBO связи Al…N подобное же описание выглядит следующим образом:

$$\sigma_{\rm AlN} = 0.214(sp^{3.18})_{\rm Al} + 0.977(sp^{3.81})_{\rm N},$$

$$\sigma_{AIN}$$
* = 0,977($sp^{3,18}$)_{Al} - 0,214($sp^{3,81}$)_N

Вклад АО алюминия в NBO этой связи составляет 4,6 %, а заселенность — 1,984.

Во всех остальных соединениях связи Al…X (X = O, N, S) в рамках метода NBO описываются как одноцентровые.

В результате образования комплексных соединений структуры молекул — фрагментов этих соединений — заметно изменяются. Координационный полиэдр алюминия

триметоксиалана преобразуется из плоского в пирамидальный, где атом Al приподнят над плоскостью, в которой располагаются связанные с ним 3 атома кислорода, на ~0,24÷0,29 Å (см. Δ нас рис. 1). В результате этого преобразования изменяются величины углов MeO—Al—OMe. В свободном триметоксиалане эти углы равны 120°, а в комплексах **I—IX** — 117,3÷118°. Изменяются и длины связей Al—O. В некоординированном триметоксиалане они равны 1,702 Å, а в соединениях **I—IX** — 1,716÷1,720 Å. Длины связей O—C_(Me) триметоксиаланового фрагмента по сравнению с величинами, которые характерны для "свободного" Al(OCH₃)₃, увеличены на 0,03÷0,04 Å.

Структурные параметры молекул, координированных с триметоксиаланом, также претерпевают изменения. Так, в молекуле свободного фурана длины связей С—О, С=С, С—С и валентный угол СН—О—СН равны 1,362, 1,368, 1,431 Å и 106,6° соответственно. А в комплексе II — 1,441, 1,365, 1,466 Å и 107,3°. В (СН₃)₃N···Al (ОСН₃)₃ (IV) длины связей N—С и валентные углы С—N—С равны 1,524 Å и 110,2°, а в "свободном" триметиламине — 1,455 Å и тоже 110,0°. Аналогичные небольшие изменения структурных параметров происходят и в других молекулах исследованных нами комплексов.

В заключение автор статьи хотел бы выразить благодарность А.А. Грановскому и его сотрудникам (Химический факультет МГУ им. М.В. Ломоносова) за предоставление программы PC GAMESS-Firefly, адаптированной для параллельных вычислений, руководству и сотрудникам Межведомственного суперкомпьютерного центра за предоставление вычислительных ресурсов Центра, к.х.н. З.А. Стариковой (ИНЭОС РАН им. А.Н. Несмеянова) за предоставление возможности использования последней версии Кембриджского банка структурных данных.

СПИСОК ЛИТЕРАТУРЫ

- Корнеев Н.Н. Химия и технология алюминийорганических соединений. М.: Химия, 1979; Comprehensive Organometallic Chemistry, Vol. 1 / Eds. G. Wilkinson, G.A. Stone, E.W. Abel. N. Y.: Pergamon, 1982. P. 555 670; *Mole T., Jeffery E.A.* Organoaluminium Compounds. N. Y.: Elsevier, 1972. P. 85 123.
- 2. Бочкарев В.Н., Белоконь А.И., Хромых Н.Н. Тез. Докл. III Всесоюзн. конф. по металлоорганической химии. Уфа: Институт химии Башкирского филиала АН СССР, 1985, ч.1. С. 48 51.
- 3. Mason M.R., Smith J.M., Bott K.L. // J. Amer. Chem. Soc. 1993. 115. P. 4971 4984.
- 4. Anderson J.A., Forgaard F.R. // Acta Chem. Scand. 1972. 26. P. 1947 1952.
- 5. *Харгиттаи М., Харгиттаи И.* Геометрия молекул координационных соединений в парообразной фазе. М.: Мир, 1978.
- 6. Almenningen A., Fernholt L., Haaland A. et. al. // J. Organomet. Chem. 1977. 145. P. 109 114.
- Haaland A. // In Stereochemical Application of Gas-phase Electron Diffraction. / I. Hargittai, M. Hargittai. - N. Y.: VCH Publishers Inc, 1988. - V.2. - P. 325 - 383.
- 8. Алексеев Н.В., Абронин И.А., Корнеев Н.Н., Чернышев Е.А. // Журн. хим. физ. 1996. 15, № 2. С. 225 230.

- 9. Вакулин И.В., Загидуллина А.Э., Талипов Р.Ф., Вострикова О.С. // Вестн. Башкир. ун-та. 2006. № 3. С. 37 39.
- 10. Вакулин И.В., Загидуллина А.Э., Талипов Р.Ф., Вострикова О.С. // Журн. структур. химии. 2006. **47**, № 16. С. 1179 1184.
- Загидуллина А.Э. Сборник трудов. Международная школа-конференция для студентов, аспирантов и молодых ученых "Фундаментальная математика и ее приложения в естествознании" Том 3. Химия. – С. 31 – 44.
- 12. Cambridge Structural Database, release 2013, version 5.35.
- 13. Bihlmeier A., Gonsior M., Raabe I., Trapp N., Krossing I. // Chem. Eur. J. 2004. 10. P. 5041 5044.
- 14. Apblett A.W., Warren A.C., Barron A.R. // Canad. J. Chem. 1992. 70. P. 771 779.
- 15. Apblett A.W., Barron A.R. // J. Crystallogr. Spectrosc. Res. 1993. 23. P. 529 534.
- 16. McGuinness D.S., Rucklidge A.J., Tooze R.P., Slawin A.M.Z. // Organometallics. 2007. 26. P. 2561 2566.
- 17. Chisholm M.H., DiStasi V.F., Streib W.E. // Polyhedron. 1990. 9. P. 253 257.
- 18. Granovsky A.A. // GAMESS Firefly version 7.1.G. http://classic.chem.msu.su/gran/firefly/index.html
- 19. Todd A. Keith // AIMAll (Version 12.11.09), TK Gristmill Software, Overland Park KS, USA, 2012.
- Glendening E.D., Badenhoop J.K., Reed A.E., Carpenter J.E., Bohmann J.A., Morales C.M., Weinhold F. // NBO 5.G. http: // www.chem.wisc.edu/~nbo5 (Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2004).
- 21. Коттон Ф., Уилкинсон Дж. Основы неорганической химии. М.: Мир, 1979.
- 22. Урусов В.С. Теоретическая кристаллохимия. М.: Изд-во МГУ, 1987.
- 23. Зефиров Ю.В. // Журн. неорган. химии. 2000. 45, № 10. С. 1691 1693.
- 24. *Mantina Manjeera, Chamberlin Adam C., Valero Rosendo, Cramer Christopher J., Truhlar Donald G. //* J. Phys. Chem. A. 2009. **113**, N 19. P. 5806 5812.
- 25. Blom K., Haaland A. // J. Mol. Struct. 1985. 128. P. 21 27.
- 26. Mogul v 1.0 CSD System Molecular Geometry Library. The Cambridge Crystallographic Data Centre, 2013.
- 27. Chisholm M.H., DiStasi V.F., Streib W.E. // Polyhedron. 1990. 9. P. 253 259.
- 28. Илюхин Ф.Б., Петросянц С.П., Милованов С.В., Малярик М.А. // Кристаллография. 1997. **42**. С. 1034 1037.
- 29. Braune W., Ma Haiyan, Spaniol T.P., Okuda J. // Organometallics. 2005. 24. P. 1953 1958.
- 30. Ma Haiyan, Melillo G., Oliva L., Spaniol T.P., Englert U., Okuda J. // Dalton Trans. 2005. P. 721 729.
- Janas Z., Jerzykiewicz L.B., Sobota P., Szczegot K., Wioeniewska D. // Organometallics. 2005. 24. – P. 3987 – 3993.
- 32. Бейдер Р. Атомы в молекулах. Квантовая теория. М.: Мир, 2001. С. 357 363.
- 33. Abramov Yu.A. // Acta Crystallogr. 1997. A53. P. 264 272.
- 34. Espinosa E., Molins E., Lecomte C. // Chem. Phys. Lett. 1998. 285. P. 170 173.
- 35. Spackman Mark A. // Chem. Phys. Lett. 1999. 301. P. 425 429.