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Проведены экспериментальные исследования влияния обледенения на кинематические и силовые пара-

метры рабочего элемента лопасти ветрогенератора с применением модифицированного метода лазерной до-

плеровской анемометрии. Моделирование арктических условий реализовано в специально сконструированном 

аэродинамическом климатическом стенде на основе оптически прозрачной трубы из оргстекла квадратного 

сечения 200200 мм со следующими параметрами: скорость потока — до 20 м/с, температура — до – 20 С, 

относительная влажность — до 90 %. Насыщение влагой потока осуществлялось генераторами мелкодисперс-

ного аэрозоля. Потоки генераторов аэрозоля оптимизировались с помощью лазерной доплеровской анемомет-

рии. Проведены измерения скоростей потока на расстояниях до 400 мм за задним краем лопатки и силовых 

характеристик элемента лопасти, подвергшейся обледенению. Показано влияние обледенения на аэродинами-

ческие и силовые характеристики. 
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Введение 

Энергетические ветровые зоны России расположены в основном на побережье 

и островах Северного Ледовитого океана, поэтому развитие ветроэнергетики Арктики 

особенно актуально [1]. Климатической особенностью региона является проблема обле-

денения лопастей ветрогенераторов, существенно влияющая на эффективность, надеж-

ность и безопасность их работы [2]. Помимо критического влияния обледенения на КПД 

установок, отрыв кусков льда с кромок лопастей нагруженных ветрогенераторов во вре-

мя работы способен повреждать технику и опасен для жизни и здоровья людей [3]. 

Существующие методы борьбы с обледенением на лопастях ветрогенератора обладают 

своими достоинствами и недостатками. Обоснование и развитие этих методов связано 
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с применением численного моделирования обтекания обледеневших лопастей, опираю-

щегося на экспериментальные исследования процессов обледенения лопасти самыми 

передовыми, в том числе лазерными, методами [4]. Традиционные оптические методы 

диагностики обледенения развиваются сравнительно давно и используются в ряде ис-

следований [5 – 11]. Для верификации подобных моделей и численных расчетов особен-

но хорошо зарекомендовало себя применение метода лазерной доплеровской анемомет-

рии (ЛДА) [12, 13].  

Цель настоящей работы заключается в измерении методами лазерной доплеровской 

анемометрии профилей скорости потока вокруг элемента лопасти ветрогенератора 

в условиях обледенения и оценки влияния обледенения на аэродинамику и силовые ха-

рактеристики лопастей ветрогенераторов.  

Моделирование арктических условий выполнялось в специально сконструирован-

ном аэродинамическом климатическом стенде, включающим оптически прозрачный 

участок с оптимизированными с использованием ЛДА генераторами мелкодисперсного 

аэрозоля.  

Экспериментальная установка и методика эксперимента 

Схема установки показана на рис. 1. Фотография климатической трубы и измери-

тельного комплекса ЛАД-07Т для измерений профилей скорости потока приведена 

на рис. 2. Установка представляет собой замкнутую аэродинамическую климатическую 

трубу со следующими элементами: 1 — рабочий канал квадратного поперечного сечения 

(размеры по внутренней части — 200200 мм), выполненный из органического стекла,  

2 — испытуемый экспериментальный объект (элемент лопасти с формирующимся обле-

денением), 3 — охладитель воздуха, 4 — металлические вентиляционные каналы, 5 — 

хонейкомб, 6 — центробежный вентилятор с электродвигателем, 7 — проточный крио-

термостат LOIP FT-600, 8 — система подачи воды для формирования капельной влаги 
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Рис. 1. Принципиальная схема климатической трубы для изучения обледенения. 

Описание см. в тексте. 
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в воздушном потоке, 9 — парогенератор, 

10 — регулирующие вентили, 11 — шаро-

вые краны, 12 — обратный клапан, 13 — 

форсунка распылительная, 14 — термо-

преобразователь сопротивления, 15 — дат-

чик относительной влажности и темпера-

туры, 16 — термоанемометр, 17 — систе-

ма фото-видео фиксации, также в систему 

входят трубопроводы и антифриз. Охла-

дитель воздуха 3 представляет собой про-

точный трубный жидкостно-воздушный 

теплообменник NWP 700-400/2-R, имею-

щий высокую степень оребрения со сто-

роны воздушного потока. Подвод и отвод 

охлаждающей жидкостью (антифриз) вы-

полнялся с помощью коллекторов. 

Формирование стабильного воздуш-

ного потока в климатической аэродинамической трубе проводилось с использованием 

вентиляционных металлических каналов 4 с внутренними размерами 400400 мм. Перед 

хонейкомбом 5 канал расширяется при помощи линейного диффузора до размеров 

800800 мм. После хонейкомба воздушный поток сужается при помощи профильного 

конфузора до необходимых размеров прозрачного рабочего участка 1 размером 

200200 мм. Подключение охладителя воздуха 3 к воздушным каналам производится 

через переходники с 400400 на 400700 мм. Воздушные каналы выполнены из оцинко-

ванной углеродистой стали. Толщина стенки канала составляет 0,7 мм. Хонейкомб пред-

ставляет собой вентиляционный канал квадратного сечения с внутренними размерами 

800800 мм. Внутри канала установлены вертикальные и горизонтальные пластины, 

формирующие в потоке сотовые структуры размером 33 мм квадратного сечения. Хо-

нейкомб используется для выравнивания поля течения воздушного потока и для снижения 

уровня турбулентности. Центробежный вентилятор ВР 280-46-5,0 с электродвигателем 

мощностью 15 кВт предназначен для создания воздушного потока в климатической 

аэродинамической трубе. Для регулирования производительности вентилятора (скорос-

ти потока воздуха) электродвигатель подключен к сети через преобразователь частоты. 

Проточный криотермостат LOIP FT-600 7 является циркуляционным охладителем 

и использовался для точного контроля температуры во внешних системах с закрытым 

контуром. Криотермостат имеет встроенный герметичный бак и насос подачи охлаж-

денной жидкости. Температурный диапазон его работы составляет от – 25 до +40 С, точ-

ность поддержания температуры — ± 0,5 С.  

Процессы обледенения, как правило, сопровождаются наличием в воздухе значи-

тельного количества капельной влаги в виде аэрозоля, дождя, мокрого снега и брызг 

от водоемов. Для имитации капельной влаги в потоке воздуха перед экспериментальным 

объектом создавался распыл воды с различной интенсивностью и размерами капель 

 
 

Рис. 2. Фотография климатической трубы 

и измерительного комплекса ЛАД-07Т 

для измерения профилей скорости потока. 
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с помощью генераторов аэрозоля. Для этой цели использовались различные типы фор-

сунок, которые устанавливались в ядро потока.  

На стенде наблюдалось три типа обледенения: в форме прозрачной наледи, в виде 

инея и в виде изморози (рис. 3). Процесс образования наледи нестационарен и плохо 

воспроизводится при физическом моделировании, поэтому в настоящей работе было 

принято решение изготавливать элементы лопаток с помощью трехмерной печати, что-

бы форма не менялась во времени. В качестве элементов лопаток применялся профиль 

RG-15. Формы обледенения, использованные в данном исследовании, предоставлены 

коллегами профессора Вирка М.Ш. из Арктического университета Нарвика в рамках 

работ консорциума по борьбе с обледенением — CoarIce [14]. Профили наледи приве-

дены на рис 4, 5. Лопатки изготавливались из нескольких частей и склеивались. Хорда 

 лопасти С составляла 200 мм. Пример 

сборки элемента лопасти показан на рис. 6. 

Фотография лопатки с искусственно соз-

данной наледью на передней кромке в фор-

ме изморози представлена на рис. 7. 

bа

 
 

Рис. 3. Фотографии прозрачной наледи (а), инея (b) 

и изморози (с) на передней кромке лопатки. 
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Рис. 5. Профили лопаток при различных типах обледенения: 

без наледи (1), в форме инея (2) и в форме изморози (3) при С = 200 мм. 
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Рис. 4. Профили передней кромки 

при различных типах обледенения. 

Профиль элементов лопаток RG-15 без наледи (1), 

с наледью в форме инея (2) и в форме изморози (3) 

при С = 200 мм. 
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Для проведения экспериментов были вы-

браны следующие параметры: скорость набегаю-

щего потока — 0 – 12,5 м/с, длина хорды — 0,2 м, 

число Рейнольдса — до 250000, размер капель — 

от 3 до 1000 мкм, температура потока — от 0 

до –30 С, углы атаки лопатки — от 0 до 20 С. 

Лопатки помещались в прозрачный канал климатической трубы (рис. 6). Шаг измерения 

по оси z составлял 1 мм, шаг перемещения по оси x — 10 мм, углы атаки принимали зна-

чения: 0, 4, 8, 12, 16, 20 градусов, скорость набегающего потока — 2,5, 5, 7,5, 10, 

12,5 м/с. 

Исследования изменения кинематических характеристик вокруг элементов лопас-

тей с образованием обледенения проводились при различных входных условиях с ис-

пользованием измерительного оборудования ЛДА. Для этого были изготовлены модели 

участков лопастей, имитирующие участки лопастей реальных ветрогенераторов (рис. 6 – 8). 

Расположение лопаток для измерения кинематических характеристик при различных 

углах атаки изображено на рис. 9. 

Для проведения исследований использовался метод лазерной доплеровской анемо-

метрии, развитый для возможности изучения гидрогазодинамических процессов в вих-

ревых системах. Кратко перечислим введенные улучшения. Выполнена модификация 

оптической схемы на основе комбинации дифракционного коммутационного расщепи-

теля пучка с главным объективом, что позволяет применять лазеры с ограниченной ко-

герентностью, бóльшим полоском и большей мощностью и надежностью. Реализована 

новая методика адаптивного выделения доплеровской частоты. Применены адаптивная 

спектральная коррекция и адаптивная спектральная фильтрация, позволившие прово-

дить измерения на более высоких скоростях, а также метод острой фокусировки. Повышено 

 
 

Рис. 6. Модель лопатки ветрогенератора. 

 
 

Рис. 7. Фотография лопатки с искусственно 

созданной наледью в форме изморози. 

 
 

Рис. 8. Фотография элемента лопасти в рабочем участке. 
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отношение сигнал/шум за счет использования полной мощности лазерного излучения 

в каждом оптическом измерительном канале. Более подробно про измерительную схему 

ЛДА и сделанные модификации можно прочитать в работах [12, 13]. 

Экспериментальные результаты и обсуждение  

Проведены измерения средней скорости потока на расстояниях x = –50 , –100 ,  

– 150 мм перед лопаткой и на расстояниях x = 50, 100, 150, 200 и 250 мм после заднего 

края лопатки при разных углах атаки (рис. 10 – 14). Для измерения скорости потока 

в качестве трассеров добавлялись частицы глицерина. Размер капель глицерина прини-

мал значения от 3 до 1000 мкм. На рис. 13 приведены отдельные профили при различ-

ных значениях z, а на рис. 14 — при различных значениях x. 
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Рис. 9. Схема расположения лопаток в рабочем участке климатической трубы 

и расположение относительно нее системы координат для измерения компонент скоростей. 
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Рис. 11. Карта расходной компоненты скорости 

при обдувании лопатки RG-15 с обледенением в форме наледи. 

Скорость набегающего потока — 10 м/с; угол атаки — 16. 
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Рис. 10. Карта расходной компоненты скорости 

при обдувании лопатки RG-15 без обледенения. 

Скорость набегающего потока — 10 м/с; угол атаки лопатки — 16. 
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Экспериментально установлено существенное влияние наледи на аэродинамику 

лопасти. Показано, что наличие наледи значительно ослабляет скорость потока вблизи 

лопатки, а также приводит к более раннему образованию зон возвратного течения 

по сравнению с лопаткой без обледенения. Наиболее ярко влияние наледи на аэродина-

мику течения проявлялось при образовании зон возвратного течения. Построенные поля 

расходной проекции скорости (рис. 10 – 12) показали, что при образовании наледи зона 

возвратного течения в случае отрыва потока оказывается почти в два раза больше, чем 

для лопатки без обледенения, а значения отрицательной проекции скорости интенсивнее 

на 50 %. 

Рисунки 15, 16 позволяют оценить воздействие обледенения лопастей на силовые 

характеристики ветротурбины. Установлена зависимость коэффициента подъемной силы 

от скорости набегающего потока и углов атаки элемента лопасти ветрогенератора. Ре-

зультаты экспериментов показали, что обледенение влияет на коэффициент подъемной 

силы для всех значений углов атаки и скоростей набегающего потока.  
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Рис. 12. Карта расходной компоненты скорости при обдувании лопатки RG-15 

с обледенением в форме изморози. 

Скорость набегающего потока — 10 м/с; угол атаки — 16. 
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Рис. 13. Профиль осевой компоненты 

при углах атаки 12 (а), 16 (b), 20 (c) 

и координате z = 20 мм. 

Типы обледенения: 1 — без наледи, 2 — наледь, 

3 — изморозь. 
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Измерение коэффициента подъемной силы проводилось с помощью системы ры-

чагов и весов. К элементу лопасти крепились рычаги и передавали крутящий момент 

на весы. Перед этим измерительная система калибровалась с помощью образцовых грузов. 

Экспериментально показано, что значение коэффициента подъемной силы для лопасти 

с инеем на 10 % меньше, чем значение коэффициента подъемной силы для лопасти 

без наледи, а для обледенения в форме наледи оно меньше, чем в последнем случае 

на 20 %. Максимум коэффициента подъемной силы для элементов лопастей ветрогене-

раторов без обледенения и с обледенением в виде наледи и изморози достигался 

при угле атаки 8 (рис. 15, 16). 

 

15

10

5

0

–5

–10
0 50 100 150 z, мм

a

Vx , м с/

16
14
12
10

8
6
4
2
0

–2
–4

0 50 100 150 z, мм

Vx , м с/

15

10

5

0

–5

–10
0 50 100 150 z, мм

b

1
2
3

c

 
 

2
3

1,0

0,5

К
о

эф
ф

и
ц

и
ен

т 
п

од
ъ

ем
н

о
й

 с
и

л
ы

0 5 10 15 20

Угол атаки, град  
 

Рис. 15. Зависимость коэффициента 

подъемной силы от угла атаки. 

Обозначения см. на рис. 13. 
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Рис. 16. Зависимость коэффициента подъемной 

силы от скорости набегающего потока 

при угле атаки 8. 

Обозначения см. на рис. 13. 

Рис. 14. Профиль осевой компоненты 

при угле атаке 16 в сечениях 

x = 100 (а), 150 (b), 250 (с) мм. 

Обозначения см. на рис. 13. 
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Заключение 

Выполнено экспериментальное исследование влияния обледенения на кинематику 

потока и силовые параметры лопасти ветрогенератора методом лазерной доплеровской 

анемометрии, адаптированным к условиям экспериментов. Моделирование арктических 

условий проведено на основе специально сконструированного климатического стенда 

для следующих диапазонов значений параметров: скорость потока — до 0 – 12,5 м/с, 

относительная влажность — до 90 %, число Рейнольдса — до 250000, размер капель — 

от 3 до 1000 мкм, температура потока — от 0 до –30 С, углы атаки лопатки — от 0 

до 20 С. В работе выполнены измерения скоростей потока на расстояниях до 400 мм 

за задним краем лопатки, также измерены аэродинамические и силовые характеристики 

элемента лопасти ветрогенератора, подвергшегося обледенению. Проведена оценка вли-

яния обледенения лопастей на силовые характеристики ветротурбин. Экспериментально 

показано, что обледенение влияет на коэффициент подъемной силы для всех значений 

углов атаки и скоростей набегающего потока. Установлено, что коэффициент подъемной 

силы для лопасти с инеем на 10 % меньше, чем коэффициент подъемной силы для лопас-

ти без наледи, и меньше в случае обледенения в виде наледи по сравнению с последним 

на 20 %. Установлено, что максимум коэффициента подъемной силы для элементов ло-

пастей ветрогенераторов без обледенения и с обледенением в виде наледи и изморози 

достигается при угле атаки 8.  

Полученные новые экспериментальные результаты по влиянию обледенения на ки-

нематику потока и силовые параметры лопастей ветрогенераторов важны как для вери-

фикации численных моделей, так и дальнейшего совершенствования ветроэнергетиче-

ской техники для арктических энергетических ветровых зон России. 
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