РОССИЙСКАЯ АКАДЕМИЯ НАУК СИБИРСКОЕ ОТДЕЛЕНИЕ ФИЗИКО-ТЕХНИЧЕСКИЕ ПРОБЛЕМЫ РАЗРАБОТКИ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

2015

№ 3

ОБОГАЩЕНИЕ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

УДК 622.765.061

КОМПЛЕКСООБРАЗУЮЩИЙ СОБИРАТЕЛЬ ДЛЯ СЕЛЕКТИВНОЙ ФЛОТАЦИИ ХАЛЬКОПИРИТА

И. Г. Зимбовский¹, Т. А. Иванова¹, В. А. Чантурия¹, Е. Л. Чантурия²

¹Институт проблем комплексного освоения недр РАН, E-mail: zumbofff@gmail.com, Крюковский тупик, 4, 111020 г. Москва, ²Горный институт НИТУ "МИСиС", Ленинский проспект, 6, 119991, г. Москва

Исследован механизм взаимодействия pearenta 1-фенил-2,3-диметил 4-диметиламинопиразолон-5 (АМД) с медью в растворе и на поверхности халькопирита. Установлено, что на поверхности халькопирита АМД сорбируется химически в виде комплексного соединения с медью. Определена зависимость сорбции комплексообразующего реагента АМД на сульфиде меди от введения роданида аммония (NH4CNS), играющего роль дополнительного лиганда, либо его смеси с уксусной кислотой. На основании проведенных исследований и данных аналитической химии определен тип сорбции на поверхности халькопирита. Проведены флотационные опыты на мономинеральной фракции халькопирита и пирита, а также на медной сульфидной руде. Флотационными исследованиями подтверждена селективность действия реагента АМД при разделении халькопирита и пирита.

Селекция сульфидов, сорбция, флотация, халькопирит, пирит, извлечение, реагенты

В работах, проведенных в ИПКОН РАН, исследован новый перспективный собиратель-комплексообразователь класса пиразолов 1-фенил-2,3-диметил 4-диметиламинопиразолон-5 (АМД) [1, 2]. Рассмотрены комплексообразующие свойства реагента АМД по отношению к цинку, определен тип сорбции реагента АМД на поверхности сфалерита и механизм его селективного действия при разделении сульфидов цинка и железа. Сорбционные и флотационные исследования показали перспективность применения реагента АМД при флотации цинксодержащих сульфидных руд [1, 2].

Ввиду того что сфалерит как основной промышленный минерал цинка содержится в полиметаллических и медно-цинковых сульфидных рудах, в данной работе проведен комплекс исследований, направленный на изучение взаимодействия реагента АМД с халькопиритом.

В процессе изучения сорбционных свойств реагента на халькопирите использованы современные методы с применением лазерной конфокальной сканирующей микроскопии (ЛКСМ) (Keyence VK-9700) и растровой электронной микроскопии (РЭМ) (LEO 1420VP), оснащенной рентгеновским энергодисперсионным микроанализатором (INCA 350). Для идентификации поверхностных соединений применялась УФ-спектроскопия (Shimadzu UV-1700) и ИК-фурье спектроскопия (Инфралюм FT-8).

Работа выполнена при поддержке гранта Президента Российской Федерации "Научная школа академика В. А. Чантурия" НШ-748.2014.5.

РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ ВЗАИМОДЕЙСТВИЯ РЕАГЕНТА АМД С МЕДЬЮ И ПОВЕРХНОСТЬЮ ХАЛЬКОПИРИТА

Реагент АМД достаточно подробно исследован в качестве аналитического реагента в химии красителей, а также как компонент лекарственных препаратов [3, 4]. В [5] представлены данные о возможности получения комплексных соединений АМД с катионами меди (+I и +II) в воде и в присутствии дополнительных лигандов, таких как Cl⁻, Br⁻, I⁻, SCN⁻. В частности, при добавлении роданид-ионов (NH₄SCN) к АМД в реакцию с ионами меди получено комплексное соединение (C13H17N3O·H)[Cu(SCN)2] серо-голубого или фиолетового цвета. В [6] исследованы комплексообразующие свойства АМД по отношению к цинку, меди и некоторым другим металлам.

Для идентификации образующегося при флотации АМД комплексного соединения 1-фенил-2,3-диметил 4-диметиламинопиразолона-5 на поверхности халькопирита синтезированы комплексные соединение меди с реагентом при соотношении CuCl₂: AMД = 1 : 1, а также в присутствии роданида аммония при соотношении CuCl₂ : AMД : NH₄SCN = 1 : 2 : 2. В ультрафиолетовой области спектры AMД и соединения AMД с медью в воде и в хлороформе имеют по два максимума поглощения. Характерные для исходного AMД в хлороформе максимумы поглощения при 277 и 245 нм у соединения с медью сдвинуты влево в область более низких значений длин волн и проявились при 273 и 243 нм. Характерный для исходного AMД в воде максимум поглощения при 264 нм у комплексных соединений AMД с медью проявился при 259 нм (рис. 1).

Рис. 1. УФ-спектры соединения: АМД с медью (1, 3) и АМД (2, 4); спектры 1, 2 — в воде; 3, 4 — в хлороформе

Близость характеристических максимумов исходного вещества и его соединения с металлом не позволила надежно идентифицировать их по УФ-спектрам в смывах при изучении адсорбции реагента на халькопирите. В связи с этим качественное исследование адсорбции АМД на поверхности халькопирита и идентификация поверхностного соединения проводились с помощью ИК-фурье спектроскопии (рис. 2) и электронной микроскопии.

Адсорбция реагента АМД на поверхности халькопирита идентифицирована по наличию в спектре ряда полос: 709, 848 см⁻¹ (v (CS), дуплет 950–964 см⁻¹, полоса 1058 см⁻¹, широкая полоса при 1330 см⁻¹ (v(CN), полосы 1436 и 1498 см⁻¹, 1683 см⁻¹ (v(CO). Ряд особенностей спектра, таких как положение максимума дуплета 950–964 см⁻¹, наличие полосы 1058 см⁻¹, свидетельствует о химической сорбции реагента АМД на халькопирите.

С помощью лазерной микроскопии на шлифе халькопирита после 10-минутного перемешивания с реагентом АМД обнаружены участки новообразований (рис. 3*б*, *в*, *г*), которые ранее не наблюдались (рис. 3*a*). Шлиф халькопирита обрабатывался 1 % раствором (50 мл) АМД при рН 7. После промывания дистиллированной водой минерал высушивался на воздухе. Судя по микрофотографиям, можно сделать вывод о неравномерном закреплении реагента АМД на поверхности.

Рис. 2. Ик-спектры АМД (1), комплексного соединения АМД с медью (2), соединения на поверхности халькопирита при расходе АМД 100 (3) и 1000 г/т (4)

Рис. 3. Микрофотографии шлифа халькопирита до обработки (*a*) (метка 100 мкм); после взаимодействия с реагентом АМД (б) (метка 100 мкм); (*в*, *г*) (метка 10 мкм) (ЛКСМ)

После изучения на лазерном микроскопе данный шлиф халькопирита в неизменном виде исследовался с помощью растрового электронного микроскопа, оснащенного рентгеновским микроанализатором.

По данным рентгеновского микроанализа в спектрах, снятых со шлифа халькопирита после обработки его реагентом, кроме основных элементов (Cu, Fe, S) халькопирита (рис. 4δ) появляются темные участки с повышенным содержанием кислорода О и углерода С, что может свидетельствовать о нахождении на поверхности халькопирита органического соединения (рис. 4ϵ).

Количественное исследование сорбции реагента на халькопирите (-0.08+0.045 мм) проводили в нейтральной среде при концентрации АМД в растворе 2.5 и 25 мг/л (100 и 1000 г/т) и мольном соотношении АМД и роданида аммония 1:1. Для сравнения использованы водные растворы исходного АМД и его соединения с медью.

Рис. 4. Микрофотография шлифа халькопирита: *а* — после взаимодействия с реагентом АМД (метка 20 мкм); *б* — рентгеновские спектры; *в* — РЭМ

С помощью УФ-спектрофотометрии по остаточной концентрации оценена адсорбция реагента АМД на мономинеральном порошке халькопирита. Результаты исследований показали, что на халькопирите в интервале концентраций АМД 5 — 60 мг/л в щелочной среде после 5-минутного перемешивания закрепляется реагента не менее $2.18 \cdot 10^{-5}$ мг/м². Максимальная сорбция АМД при рН 10 составила $3.69 \cdot 10^{-5}$ мг/м² (табл. 1).

Реагент	Сисх, мг/л	С _к , мг/л	Сорбция реагента на минерале, ×10 ⁻⁵ мг/м ²	рН
АМД	5	1.17	2.18	10
	20	1.30	2.41	10
	60	1.99	3.69	10
AMД + NH ₄ SCN	5	0.17	0.32	10
	20	1.30	2.41	10
	60	4,73	8.77	10
РАУ	5	1.11	2.07	4.85
	20	1.89	3.50	4.45
	60	4.53	8.39	4.2

ТАБЛИЦА 1. Адсорбция АМД на халькопирите из растворов АМД и сочетаний АМД с NH₄SCN и УК

Введение регулятора комплексообразования роданида аммония, играющего роль дополнительного лиганда при комплексообразовании, приводит к увеличению сорбции реагента до $8.77 \cdot 10^{-5}$ мг/м². Использование тройного сочетания реагентов РАУ (АМД : NH₄CNS : УК) при соотношении компонентов 1 : 1 : 1 не позволило дополнительно повысить сорбцию АМД на халькопирите, что может быть связано со значительным понижением pH в присутствии уксусной кислоты (УК). В целом результаты сорбционных опытов, проведенных на мономинеральных фракциях халькопирита в условиях, ранее апробированных на сфалерите, сохраняют общую тенденцию, полученную на мономинеральной фракции сфалерита [1].

Таким образом, экспериментально установлено, что на поверхности халькопирита реагент АМД закрепляется химически с образованием труднорастворимого комплексного соединения. Введение регулятора комплексообразования роданида аммония, играющего роль дополнительного лиганда при комплексообразовании, так же, как в случае со сфалеритом, приводит к увеличению сорбции реагента.

ИЗУЧЕНИЕ ФЛОТАЦИОННОЙ АКТИВНОСТИ РЕАГЕНТА АМД

Результаты флотационных исследований, проведенных на мономинеральных фракциях халькопирита и пирита (табл. 2), подтвердили сделанные выводы о механизме сорбции реагента АМД на данных сульфидах.

Минерал	Элемент, %						
	Fe	Cu	Zn	S	Ад, г/т		
Пирит	45.15	0.06	0.05	53.93	< 5		
Халькопирит	28.77	33.04	0.23	35.05	64.04		

ТАБЛИЦА 2. Химический состав мономинеральных фракций халькопирита и пирита

Установлено, что по сравнению с бутиловым ксантогенатом (БКК) (при расходе 50 г/т) АМД (при расходе 50 г/т) является более селективным собирателем по отношению к халькопириту (рис. 5).

Флотируемость халькопирита реагентом АМД в диапазоне pH 7–11 по сравнению с БКК падает на 7-10% при снижении извлечения пирита в тех же условиях на 55-75%, тогда как при использовании бутилового ксантогената разница в извлечении минералов составляет 25-45% (рис. 5).

При увеличении расхода реагента АМД до 500 г/т при pH 10 селективность флотации халькопирита и пирита увеличивается за счет того, что даже при высоком расходе АМД пирит не флотируется. В случае флотации минералов халькопирита и пирита БКК увеличение его расхода ведет к постепенному снижению селективности процесса обогащения за счет повышения флотируемости пирита (рис. 6).

Рис. 5. Влияние pH пульпы на флотируемость халькопирита: *l* — с БКК; *2* — с АМД; *3* — пирита с БКК; *4* — пирита с АМД

Рис. 6. Влияние расхода собирателя на флотируемость халькопирита: *1* — с БКК; *2* — АМД; *3* — пирита с БКК; *4* — пирита с АМД

Низкая флотируемость пирита реагентом АМД связана с особым механизмом взаимодействия АМД с поверхностью пирита и железом в целом, рассмотренным в работе [2], отличным от взаимодействия с медью и цинком.

Лабораторные флотационные исследования реагента АМД проводились на медной сульфидной руде с содержанием меди 1.3%. Перед проведением флотации руда измельчалась в шаровой мельнице до крупности 85% класса – 0.071 мм. Флотация проводилась при остаточной концентрации CaO 400–450 г/м³. Полученные результаты подтвердили флотационную активность нового реагента АМД по отношению к халькопириту. При замене 50% бутилового ксантогената на АМД повышается извлечение меди в концентрат на 2.2% (табл. 3). Качество получаемого концентрата при этом снижается незначительно на 0.25%. При проведении дальнейших перечистных операций возможно дополнительное повышение качества концентрата.

Номер	Продукт	Выход	Содержание Си	Извлечение Си	Реагентный режим	
	Концентрат	10.11	9.20	73.0	1 фл. БКК 40 г/т	
	Промышленный продукт	6.14	2.46	11.9	2 du 5KK 20 r/r	
1	Хвосты	83.75	0.23	15.1	Z (µJ). BKK 20171	
	Исходный	100,00	1.27	100	1-90 10 г/т Время флотации 5 + 3 мин	
2	Концентрат	10.91	8.95	75.2	1 фл. БКК 20 г/т+ АМД 20 г/т 2 фл. БКК 10 г/т+ АМД 20 г/т Т. 00.10 -/-	
	Промышленный продукт	7.39	2.02	11.5		
	Хвосты	81.70	0.21	13.3		
	Исходный	100.00	1.30	100	1-90 10 г/т Время флотации 5+3 мин	

ТАБЛИЦА 3. Результаты лабораторных флотационных испытаний АМД на медной сульфидной руде, %

выводы

Комплексом современных физических и физико-химических методов с учетом имеющихся литературных данных определено, что на поверхности халькопирита реагент 1-фенил-2,3-диметил-4-аминопиразолон-5 (АМД) сорбируется химически в виде комплексного соединения с медью.

Введение роданида аммония способствует повышению адсорбции реагента АМД на поверхности халькопирита.

Флотационными опытами показана возможность применения реагента АМД в качестве селективного собирателя для халькопирита.

Авторы выражают признательность за помощь в проведении исследований методами растровой электронной микроскопии Е. В. Копорулиной, лазерной конфокальной микроскопии А. Н. Краснову и ИК-фурье спектроскопии М. В. Рязанцевой.

СПИСОК ЛИТЕРАТУРЫ

- **1.** Чантурия Е. Л., Иванова Т. А., Зимбовский И. Г. О повышении селективности флотации сульфидов колчеданных руд // ФТПРПИ. — 2012. — № 1.
- 2. Чантурия В. А., Иванова Т. А., Чантурия Е. Л., Зимбовский И. Г. О механизме селективного действия 1-фенил-2,3-диметил-аминопиразолона-5 в процессе флотационного разделения сфалерита и пирита // Цв. металлы. 2013. № 1.
- **3. Каткова О. В.** Синтез и физико-химическое исследование комплексов изотиоционатов некоторых 3d-элементов с амидопирином: автореф. дис. ... канд. хим. наук. — Кемерово, 2005.
- **4.** Преображенский Н. А., Генкин Э. И. Химия органических лекарственных средств: учеб. пособие. М.; Л.: Госхимиздат, 1953.
- 5. Бусев А. И., Акимов В. К., Гусев С. И. Производные пиразолона как аналитические реагенты // Успехи химии. — 1965. — Т. XXXIV. — Вып. 3.
- 6. Okas A., Celechovsky J. Pyrazolone derivatives as analytical reagents, Chem. Listy, 1949, Vol. 43, No. 7.