УДК 532.529.5

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ДИССИПАТИВНЫХ СВОЙСТВ ВОДНОЙ ПЕНЫ НА ДИНАМИКУ УДАРНЫХ ВОЛН

Р. Х. Болотнова, Э. Ф. Гайнуллина

Институт механики им. Р. Р. Мавлютова Уфимского федерального исследовательского центра РАН, 450054 Уфа, Россия E-mails: bolotnova@anrb.ru, elina.gef@yandex.ru

С использованием новых экспериментальных данных исследовано распространение ударной волны в слое водной пены и проведена визуализация динамики водосодержания в пене под воздействием этой волны. Разработана математическая модель, описывающая поведение пены как неньютоновской жидкости. В модели учитываются эффективная вязкость Гершеля — Балкли, межфазные теплообменные процессы в рамках модели Ранца — Маршалла и уравнения состояния, описывающие термодинамические свойства компонентов водной пены. Модель численно реализована в разработанном решателе в пакете OpenFOAM. Проанализировано влияние водной пены на эволюцию ударной волны.

Ключевые слова: ударная волна, водная пена, пакет OpenFOAM, численное моделирование.

DOI: 10.15372/PMTF20200402

Введение. Использование водных пен, высокая сжимаемость которых позволяет значительно уменьшать скорость и амплитуду ударной волны (УВ), является современным эффективным способом противоударной защиты. Исследование динамики УВ в пенных структурах имеет большое значение [1] при разработке методов защиты от разрушающего ударного воздействия в различных технологических процессах.

Среди первых работ, посвященных исследованию распространения УВ в газожидкостных смесях, в том числе водных пенах, следует отметить работы [2–4], в которых анализируется влияние рассматриваемых двухфазных сред на эволюцию УВ. Энергопоглощающие свойства водных пен в условиях сферического взрыва экспериментально исследовались в [5, 6]. В работах [7–10] принималось допущение, что пена в УВ разрушается на микрокапли и ее динамика описывается моделью газожидкостной смеси. Динамика сферической УВ в водной пене для условий, принятых в экспериментальной работе [5], численно исследована в [7] с использованием метода сквозного счета в лагранжевых переменных с учетом объемной вязкости и межфазного теплообмена в одномерном сферическом приближении. Моделирование взаимодействия сферической УВ с барьером из водной пены в двумерном осесимметричном приближении проведено в [8] с использованием модели газожидкостной смеси и метода подвижных лагранжевых сеток. В работах [9, 10] сферический взрыв в

Работа выполнена в рамках Государственного задания № 0246-2019-0052.

[©] Болотнова Р. Х., Гайнуллина Э. Ф., 2020

газовой области, ограниченной барьером из водной пены, исследовался с использованием решателя пакета OpenFOAM на основе модели газокапельной смеси с учетом динамической вязкости, силы межфазного взаимодействия и контактного теплообмена. Показано, что взаимодействие ударного импульса с водной пеной приводит к значительному уменьшению скорости и амплитуды УВ. При наличии пенного барьера прохождение ударноволнового импульса сквозь пенный слой блокируется и в газовой области за фронтом УВ образуются вихри.

В настоящей работе исследована динамика слабых УВ при их распространении в слое водной пены с использованием экспериментальных данных [11], полученных с помощью метода визуализации динамики водосодержания в пене под влиянием УВ. В отличие от работ [7–10] при численном моделировании рассматриваемых процессов в среде разработанного авторами данной работы решателя на базе открытого программного комплекса OpenFOAM учитываются вязкоупругие свойства водной пены как неньютоновской жидкости и контактный межфазный теплообмен, а также при описании термодинамических свойств ее компонентов используются реалистичные уравнения состояния.

1. Математическая модель. Поведение водной пены описывается моделью двухфазной среды [2]. Система дифференциальных уравнений представленной модели в односкоростном двухтемпературном приближении записывается следующим образом:

— закон сохранения массы фаз

$$\frac{\partial \left(\alpha_i \rho_i\right)}{\partial t} + \operatorname{div}\left(\alpha_i \rho_i \boldsymbol{v}\right) = 0; \tag{1}$$

— закон сохранения импульса фаз

$$\frac{\partial \left(\alpha_i \rho_i \boldsymbol{v}\right)}{\partial t} + \operatorname{div}\left(\alpha_i \rho_i \boldsymbol{v} \boldsymbol{v}\right) = -\alpha_i \nabla p + \operatorname{div}\left(\alpha_i \tau_i\right),\tag{2}$$

где τ_i — тензор вязкоупругих напряжений:

$$\tau_i = \mu_{i,eff} (\nabla \boldsymbol{v} + \nabla \boldsymbol{v}^{\mathrm{T}}) - (2/3) (\mu_{i,eff} \operatorname{div} \boldsymbol{v}) I,$$

эффективная вязкость $\mu_{i,eff}$ описывается в соответствии с моделью Гершеля — Балкли [11]:

$$\mu_{i,eff} = \begin{cases} k' \dot{\gamma}^n, & \mu_{i,eff} \leq \tau_0, \\ \mu_i, & \mu_{i,eff} > \tau_0, \end{cases}$$

 au_0 — предел текучести; $\dot{\gamma}$ — скорость сдвига; k' — коэффициент консистенции; n — показатель отклонения от свойств ньютоновской жидкости;

— закон сохранения внутренней энергии фаз

$$\frac{\partial \left(\alpha_{i}\rho_{i}(e_{i}+K_{i})\right)}{\partial t} + \operatorname{div}\left(\alpha_{i}\rho_{i}(e_{i}+K_{i})\boldsymbol{v}\right) = \\ = -p\frac{\partial\alpha_{i}}{\partial t} - \operatorname{div}\left(\alpha_{i}\boldsymbol{v}p\right) + \operatorname{div}\left(\alpha_{i}\frac{c_{p,i}}{c_{V,i}}\lambda_{i}\nabla h_{i}\right) + K_{ht}(T_{j}-T_{i}).$$
(3)

Теплообмен на межфазной поверхности описан с использованием модели Ранца — Маршалла [12], в которой коэффициент теплообмена K_{ht} задается в виде

$$K_{ht} = \varkappa_1 \text{Nu}/d_{20}, \qquad \text{Nu} = 2 + 0.6 \,\text{Re}^{1/2} \,\text{Pr}^{1/3}$$

Уравнение динамики объемного водосодержания пены [12] имеет вид

$$\frac{\partial \alpha_1}{\partial t} + \operatorname{div}\left(\alpha_1 \boldsymbol{v}\right) - \alpha_1 \operatorname{div} \boldsymbol{v} = \alpha_1 (1 - \alpha_1) \left(\frac{1}{\rho_2} \frac{d\rho_2}{dt} - \frac{1}{\rho_1} \frac{d\rho_1}{dt}\right). \tag{4}$$

1 10

В уравнениях (1)–(4) α_i — объемное содержание; ρ_i — плотность; v — вектор скорости; p — давление; e_i, K_i — внутренняя и кинетическая энергии; $c_{p,i}, c_{V,i}$ — удельные теплоемкости при постоянных давлении и объеме; λ_i — температуропроводность; h_i — энтальпия; T_i — температура; \varkappa_i — теплопроводность; d_{20} — диаметр пузырька; индексы i, j = 1, 2соответствуют жидкой и газовой фазам; I — единичный тензор.

В качестве уравнения состояния газового компонента пены (воздуха) выбрано уравнение Пенга — Робинсона [13]

$$p = \frac{RT_2}{V_m - b} - \frac{a(T_2)}{V_m(V_m + b) + b(V_m - b)}.$$
(5)

При описании водной фазы пены использовалось уравнение состояния воды [14] в форме уравнения Ми — Грюнайзена с упругим потенциалом типа потенциала Борна — Майера:

$$p = p^{(p)} + p^{(T)}, \qquad e = e^{(p)} + e^{(T)}; \qquad (6)$$

$$p^{(p)}(\rho) = A\left(\frac{\rho}{\rho_0}\right)^{-\beta+1} \exp\left[b\left(1 - \left(\frac{\rho}{\rho_0}\right)^{-\beta}\right)\right] - K\left(\frac{\rho}{\rho_0}\right)^{\xi+1}, \qquad \rho = \frac{1}{V},$$

$$e^{(p)}(\rho) = \int_{\rho^{\circ}}^{\rho} \frac{p^{(p)}(\rho)}{\rho^2} d\rho = \frac{A}{\beta\rho_0 b} \exp\left[b\left(1 - \left(\frac{\rho}{\rho_0}\right)^{-\beta}\right)\right] - \frac{K}{\xi\rho_0} \left(\frac{\rho}{\rho_0}\right)^{\xi} + e^{\circ},$$

$$\frac{\xi_V(\rho)}{\rho} = \Gamma(\rho)c_V = \frac{R}{M} \left[a^{(0)} + (1 - a^{(0)})\exp\left(-\left(\frac{\rho}{\rho^{(0)}}\right)^{-3,5}\right) + a^{(2)}\exp\left(-\left(\frac{\rho}{\rho^{(2)}}\right)^{-5,0}\right)\right]$$

 $(e^{\circ} -$ константа интегрирования, соответствующая граничным условиям $e^{(p)}(\rho^{\circ}) = 0$, $p^{(p)}(\rho^{\circ}) = 0$).

2. Постановка задачи и метод решения. Исследуется процесс распространения воздушной УВ в газе и водной пене в ударной трубе при условиях, заданных в экспериментальной работе [11] (рис. 1). Установка представляет собой ударную трубу длиной 4 м с квадратным сечением размером 0.08×0.08 м, состоящую из камер высокого и низкого давления, разделенных тонкой диафрагмой, за которыми расположен прозрачный сегмент трубы, содержащий слой водной пены. В воздухе УВ с числом Маха M = 1,43 инициируется при прорыве диафрагмы из камеры высокого давления. Датчики, фиксирующие давление, расположены в прозрачной части установки с интервалом 0,1 м от ее левой границы. Датчик 1 ($l_1 = 0.7$ м) расположен в воздушной зоне, датчики 2–5 ($l_2 = 0.6$ м, $l_3 = 0.5$ м, $l_4 = 0.4$ м, $l_5 = 0.3$ м) — в сегменте, заполненном водной пеной. В этой части трубы установлена также высокоскоростная камера, позволяющая визуализировать процесс прохождения УВ в водной пене. В серии экспериментов начальное объемное водосодержание пены варьировалось в диапазоне $\alpha_{10} = 0.02 \div 0.08$.

При моделировании рассматриваемого процесса полагалось, что в начальный момент в камере высокого давления $\alpha_{10} = 0.05$, $p_0 = 6 \cdot 10^5$ Па. Граничные условия соответствовали условиям эксперимента [11].

Система уравнений (1)–(6) численно реализована с применением решателя, разработанного авторами данной работы на базе открытого программного комплекса OpenFOAM.

3. Анализ результатов. В ходе численных исследований в первой серии расчетов проведено моделирование распространения УВ в воздухе при условиях, заданных в экспериментальной работе [11]. На рис. 2 приведены расчетные и экспериментальные зависимости от времени избыточного давления Δ*p* в воздухе в точках, где расположены датчики 1–5

Рис. 1. Схема экспериментальной установки: 1, 2 — камеры высокого и низкого давления соответственно, 3 — диафрагма, 4 — область, заполненная пеной, 5 — прозрачная область для визуализации с использованием высокоскоростной камеры, l_1, \ldots, l_5 — точки, в которых расположены датчики давления

(см. рис. 1), начиная с момента времени прихода УВ на датчик 1. На рис. 2 видно, что после разрыва диафрагмы формируется УВ с амплитудой $\Delta p = 1,5 \cdot 10^5$ Па, за которой следует УВ, отраженная от левой границы трубы. Сравнение расчетных и экспериментальных данных [11] показывает, что они удовлетворительно согласуются. Скорость фронта УВ в газе равна $D_f \approx 500$ м/с, что соответствует числу Маха $M = D_f/a \approx 1,45$ (a — скорость звука в невозмущенной среде).

Во второй серии расчетов моделировалась динамика УВ, инициированной в газовой области и распространяющейся в пенный слой высотой $L_{TS} \approx 0.63$ м с начальным объемным содержанием воды $\alpha_{10} = 0,05$. На рис. 3 представлено распределение объемного водосодержания в пене $\alpha_1(x)$ на участке 5 экспериментальной установки (см. рис. 1) при t = 0.35 мс, начиная с момента прихода УВ на датчик 1. На рис. 3, *а* приведены экспериментальные данные, полученные с использованием высокоскоростной камеры [11], на рис. 3, б — соответствующие численные решения. Непосредственно за фронтом УВ формируется область, в которой значительно (до $\alpha_1 = 0,2$) увеличено объемное водосодержание и которая фиксируется в экспериментах и расчетах на расстоянии от левой границы трубы, приблизительно равном 0,575 м. Непосредственно за этой областью формируется область, свободная от пены: правая граница участка, занимаемого пеной, смещается вслед за фронтом УВ. На рис. 4 показаны расчетные и экспериментальные зависимости избыточного давления Δp от времени в точках, где расположены датчики 1–5. Для датчика 1, расположенного в газе, профиль давления имеет двухволновую структуру. Первый пик давления по амплитуде совпадает с УВ, распространяющейся в газовой области в первой серии экспериментов (см. рис. 2). Второй пик давления формируется в результате взаимодействия воздушной УВ с границей участка, занимаемого водной пеной, плотность которой больше плотности газа. На датчиках давления фиксируется ослабление УВ по мере ее прохождения вглубь пены, фронт УВ становится более пологим, что свидетельствует о диссипативных процессах, которые учитываются в предлагаемой модели с помощью слагаемых, описывающих межфазный теплообмен и вязкоупругие свойства водной пены. Расчетная скорость фронта УВ в пене ($D_f \approx 200 \text{ м/c}$) в 2,5 раза меньше, чем в газе, что соответствует экспериментальным данным [11].

Рис. 2. Зависимости от времени избыточного давления Δp в газе в точках l_1, \ldots, l_5 , где расположены датчики: 1 — экспериментальные данные [11], 2 — результаты расчетов

1 — экспериментальные данные [11],

2 — результаты расчетов

Заключение. Рассмотрена задача о распространении в пенном слое воздушной УВ малой интенсивности при условиях, заданных в экспериментах [11], проведенных в ударной трубе, оснащенной сенсорами давления и прозрачным сегментом, позволяющим визуализировать процесс прохождения УВ в водной пене с использованием высокоскоростной камеры. Предлагаемая модель водной пены учитывает межфазный контактный теплообмен и описывает ее поведение как неньютоновской жидкости, обладающей вязкоупругими свойствами. Численное моделирование поставленной задачи реализовано в двумерном плоском приближении в разработанном авторами данной работы решателе на базе открытого пакета OpenFOAM.

Показано, что изменение структуры водной пены за фронтом УВ приводит к формированию в пенном слое зоны с более высоким объемным содержанием воды. Установлено, что по мере прохождения вглубь пены УВ ослабевает, ее фронт становится более пологим, в дальнейшем волна вырождается.

Полученные результаты численных расчетов удовлетворительно согласуются с экспериментальными данными [11], что подтверждает адекватность предлагаемой модели водной пены и используемого метода ее численной реализации.

ЛИТЕРАТУРА

- Britan A., Shapiro H., Liverts M., et al. Macro-mechanical modelling of blast wave mitigation in foams. Pt 1. Review of available experiments and models // Shock Waves. 2013. V. 23. P. 5–23.
- 2. Нигматулин Р. И. Динамика многофазных сред. М.: Наука, 1987. Ч. 1, 2.
- 3. **Кедринский В. К.** Гидродинамика взрыва: эксперимент и модели. Новосибирск: Изд-во СО РАН, 2000.
- Губайдуллин А. А., Ивандаев А. И., Нигматулин Р. И. Исследование нестационарных ударных волн в газожидкостных смесях пузырьковой структуры // ПМТФ. 1978. № 2. С. 78–86.
- Del Prete E., Chinnayya A., Domergue L., et al. Blast wave mitigation by dry aqueous foams // Shock Waves. 2013. V. 23. P. 39–53.
- Hartman W., Boughton B., Larsen M. Blast mitigation capabilities of aqueous foam: Tech. Rep. Sandia Nat. Lab. N SAND2006-0533. Albuquerque, 2006.
- Болотнова Р. Х., Гайнуллина Э. Ф. Влияние теплообменных процессов на снижение интенсивности сферического взрыва в водной пене // Прикладная математика и механика. 2019. Т. 83, № 3. С. 468–477.
- 8. Агишева У. О., Болотнова Р. Х., Гайнуллина Э. Ф., Коробчинская В. А. Особенности вихреобразования при воздействии импульса давления на газовую область, ограниченную пенным слоем // Изв. РАН. Механика жидкости и газа. 2016. № 6. С. 47–55.
- 9. Bolotnova R. Kh., Gainullina E. F. Dynamics of a spherical explosion in aqueous foam taking into account heat-exchange and dissipative processes // J. Phys. Conf. Ser. 2019. V. 1400. 077027.
- Bolotnova R. Kh., Gainullina E. F. Wave dynamics and vortex formation under the impact of a spherical impulse on the boundary between gas and aqueous foam // J. Phys.: Conf. Ser. 2019. V. 1268. 012015.
- Monloubou M., Le Clanche J., Kerampran S. New experimental and numerical methods to characterise the attenuation of a shock wave by a liquid foam // Actes of the 24ème Congrès Français de Mécanique, Brest (France), 26–30 Août. 2019. Brest: Assoc. Française de Mécanique, 2019. 255125.
- 12. Zeno Tacconi. Feasibility analysis of a two-fluid solver for cavitation and interface capturing as implemented in OpenFOAM: Tesi di Laurea Magistrale in Ingegneria Energetica. Milan, 2018.
- Peng D. Y., Robinson D. B. A new two-constant equation of state // Industr. Engng Chem. Fundamentals. 1976. V. 15. P. 59–64.
- 14. **Нигматулин Р. И., Болотнова Р. Х.** Широкодиапазонное уравнение состояния воды и пара. Упрощенная форма // Теплофизика высоких температур. 2011. Т. 49, № 2. С. 310–313.

Поступила в редакцию 27/IV 2020 г., после доработки — 27/IV 2020 г. Принята к публикации 25/V 2020 г.