2016. Том 57, № 6

Июль – август

C. 1195 – 1201

УДК 546.72:544.169

ОСОБЕННОСТИ СТРУКТУРЫ ГИДРАТНЫХ ФОРМ ОКСАЛАТА ЖЕЛЕЗА(III)

П.Ю. Тяпкин^{1,2}, С.А. Петров¹, А.П. Чернышев^{1,3}, А.И. Анчаров^{1,2,4}, Л.А. Шелудякова⁵, Н.Ф. Уваров^{1,2,3}

¹Институт химии твердого тела и механохимии СО РАН, Новосибирск, Россия E-mail: p.yu.tyapkin@gmail.com

²Новосибирский национальный исследовательский государственный университет, Россия

³Новосибирский государственный технический университет, Россия

⁴Институт ядерной физики им. Г.И. Будкера СО РАН, Новосибирск, Россия

⁵Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия

Статья поступила 19 октября 2015 г.

Обнаружено существование гидратных форм оксалата железа(III), заметно отличающихся друг от друга параметрами мессбауэровских спектров (изомерным сдвигом и квадрупольным расщеплением). В предположении формирования фаз с разными структурными характеристиками проведено исследование образцов рассматриваемого вещества методами рентгенофазового анализа (в том числе с привлечением синхротронного излучения), мессбауэровской и ИК спектроскопии. Показано, что фаза, характеризующаяся новыми значениями мессбауэровских параметров, имеет собственный ИК спектр, рентгеноаморфна и метастабильна.

DOI: 10.15372/JSC20160611

Ключевые слова: оксалат железа, мессбауэровская спектроскопия, рентгеновская дифракция, синхротронное излучение, ИК спектроскопия, метастабильная аморфная фаза.

введение

Оксалат железа(III) является одним из возможных прекурсоров для получения наноразмерных частиц оксидов железа [1-3]. В сравнительно недавних работах по его разложению было показано, что независимо от состава окружающей атмосферы процесс протекает через стадию образования оксалата двухвалентного железа [4, 5]. В литературе опубликовано большое число работ, посвященных оксалату железа(II) $FeC_2O_4 \cdot 2H_2O_5$, описана его кристаллическая структура, детально изучены его свойства. Что касается оксалата железа(III), то это соединение легко разлагается на свету и гигроскопично, а проведению рентгеноструктурного эксперимента препятствует чрезвычайная сложность получения монокристалла подходящего качества и размера. Тем не менее недавно была опубликована работа, содержащая структурные данные для кристаллогидрата Fe₂(C₂O₄)₃·4H₂O [6]. Авторы статьи, основываясь на результатах рентгеновской и нейтронной порошковой дифракции, установили, что данное соединение образует кристаллическую решетку, характеризующуюся пространственной группой симметрии Р-1 (рис. 1). К катионам железа(III) координируются три оксалат-иона (два бидентатно-циклически и один монодентатно) и одна молекула воды. Бидентатные лиганды, попарно объединенные общими катионами железа, образуют систему параллельно ориентированных зигзагообразных цепочек, которые соединяются друг с другом посредством монодентатных оксалатных лигандов. В эле-

[©] Тяпкин П.Ю., Петров С.А., Чернышев А.П., Анчаров А.И., Шелудякова Л.А., Уваров Н.Ф., 2016

Рис. 1. Изображение структуры тетрагидрата оксалата железа(III), построенное по данным из работы [6]

ментарной ячейке также присутствуют две молекулы воды, связанные водородными связями с оксалатными группами. В результате образуется открытая слоистая структура, в которой находятся два сорта молекул воды, отличающихся положением и силой связи с кристаллической решеткой.

Вследствие хорошей растворимости рассматриваемого соединения в воде и с учетом полученных ранее результатов исследования кинетики и продуктов термолиза оксалатов железа [7—15], нами было решено использовать оксалат трехвалентного железа в качестве прекурсора для получения простым и экологически чистым способом нанокомпозитов на основе мезопористых матриц, содержащих наночастицы оксидов железа. При синтезе оксалата железа(III) нами были получены данные, свидетельствующие об образовании неизвестной ранее формы этого соединения. В настоящей работе были изучены свойства двух форм оксалата железа(III), а полученная информация была сопоставлена с литературными данными.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Фазовый анализ образцов проводился с помощью рентгеновской порошковой дифрактометрии на дифрактометре Bruker D8 Advance (Си K_{α} -излучение). Информация о локальном окружении и зарядовом состоянии катионов железа была получена методом мессбауэровской спектроскопии с использованием спектрометра, работающего в режиме постоянных ускорений (NZ-640, производство Венгрия) с реверсом скорости, в режиме движущегося источника излучения ⁵⁷Со в матрице металлического родия (химические сдвиги даны относительно α -Fe). Дополнительно нами были проведены дифракционные исследования оксалата железа(III) с использованием синхротронного излучения на станции четвертого канала СИ накопителя ВЭПП-3 в СЦСТИ (ИЯФ СО РАН) [16]. ИК спектры были получены с помощью спектрометра Scimitar FTS 2000. Содержание воды было определено методом гравиметрии по изменению массы после прогрева образцов на воздухе при 500 °С в течение 1 ч, в этом случае единственным продуктом разложения оксалата железа является Fe₂O₃.

Используемые в работе образцы были синтезированы двумя различными способами, указанными ниже.

Способ 1: Синтез из порошка стандартного гидроксида железа(III) и щавелевой кислоты (серия A_i). В стакан помещали порошок стандартного реактива гидроксида железа(III) (XЧ) и добавляли небольшими порциями раствор щавелевой кислоты с концентрацией 100 г/л при

интенсивном перемешивании и температуре 60 °C до полного растворения образца. Затем раствор оксалата железа(III) помещали в темное место, где он высушивался на воздухе при комнатной температуре с образованием твердого продукта (образец A_1). При длительном хранении происходит частичное удаление воды, приводящее к незначительным изменениям его структурных и спектральных характеристик (образец A_2).

Способ 2: Синтез из свежеприготовленного гидроксида железа(III), полученного путем перевода Fe₂O₃ в хлорид с последующим осаждением Fe(OH)₃ аммиачной водой (серия B_i). В стеклянный стакан помещали стандартный реактив оксид железа(III) (XЧ) и полностью растворяли добавлением соляной кислоты. В полученный раствор приливали 25%-ый раствор гидроксида аммония до видимого прекращения образования осадка. Осадок свежеосажденного гидроксида железа(III) был многократно промыт дистиллированной водой. Затем в стакан с осадком небольшими порциями добавляли раствор щавелевой кислоты с концентрацией 100 г/л при перемешивании и температуре 60 °C до полного растворения осадка. Полученный раствор оксалата железа(III) помещали в темное место на воздухе, после испарения жидкой фазы оставался высохший осадок (образец B_1). Результаты исследования данного образца заметно отличались от таковых для образца A_1 , однако после его осушки (образец B_2) не наблюдалось существенных отличий от образца A_2 . Для проверки воспроизводимости результатов таким же образом был получен образец B_3 , после осушки этого образца промывкой этанолом получали образец B_4 .

Существенными различиями двух указанных способов является возможное отличие характеристик исходного гидроксида железа(III), используемого для синтеза оксалата железа, и различные условия осушки продукта.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Мессбауэровская спектроскопия. В немногочисленной литературе по оксалату железа(III) упоминаются кристаллогидраты вида $Fe_2(C_2O_4)_3 \cdot nH_2O$, где n = 4, 5, 6 [4, 18—21], однако в связи с наблюдаемой сильной зависимостью содержания гидратной воды от условий синтеза и влажности окружающей среды, значения *n* являются приблизительными. Приведенные в указанных работах параметры мессбауэровских спектров гидратных форм оксалата железа(III) (табл. 1), при значениях n < 6, изменяются незначительно и лежат в диапазоне $\varepsilon = 0,40\pm0,03$; $\delta = 0,38\pm0,01$. С ростом содержания воды в образцах (при n = 6) величина квадрупольного расщепления резко возрастает [20].

Таблица 1

$10_2(0_20_{4/3}, 111_{20}, 111_{20})$						
п		Г, мм/с	δ, мм/с	ε, мм/с	Литература	
4		—/0,28 (±0,01)	0,38(±0,01)	0,40/0,39 (±0,01)	[4]/[21]	
≈5			0,385	0,43	[18]	
5			0,37(±0,01)	0,375 (±0,015)	[19]	
6			0,377	0,57	[20]	
Образец	n^*					
A_1	4,1	0,36	0,378	0,45	Данная работа	
A_2	2,2	0,31	0,373	0,40		
B_1	6,1	0,36	0,396	0,60	Γ: ±0,01	
B_2	—	0,27	0,375	0,38	δ: ±0,005	
B_3	—	0,86	0.399	0,70	ε: ±0,01	
B_4		0,42	0,375	0,47		

Параметры мессбауэровских спектров гидратных фаз оксалата железа(III) $Fe_2(C_2O_4)_3 \cdot nH_2O$, литературные данные и результаты наших исследований

Рис. 2. Изменение мессбауэровского спектра образца A_1 в процессе самопроизвольной дегидратации: A_1 (исходный) (1), промежуточный (3 мес.) (2), A_2 (10 мес.) (3)

Рис. 3. Сравнение мессбауэровских спектров образцов *А*₁, *А*₂, *B*₁, *B*₂

Мессбауэровские спектры образцов гидратных фаз оксалата железа(III), полученных нами, представлены на рис. 2 и 3. Параметры спектров приведены в табл. 1. Сравнение наших данных с литературными [4, 21] показывает, что образец A_1 характеризовался слегка повышенной величиной квадрупольного расщепления. Однако, находясь в негерметично закрытой емкости, образец претерпевал самопроизвольную дегидратацию и после 10 месяцев хранения (образец A_2) параметры его мессбауэровских спектров стали идентичными параметрам, опубликованным ранее [4, 19, 21]. Изменение спектров продемонстрировано на рис. 2.

При синтезе оксалата железа(III) вторым способом были получены образцы B_1 и B_3 , заметно отличающиеся параметрами мессбауэровских спектров ($\varepsilon = 0,6-0,7$ и $\delta = 0,396-0,399$ мм/с) от литературных значений (см. табл. 1). После осушки образцов как при хранении в сухой атмосфере, так и при отмывке этанолом, параметры мессбауэровского спектра указанных образцов существенно изменились и приблизились по своим значениям к литературным данным (образцы B_2 и B_4).

В целом, результаты исследования образцов методом мессбауэровской спектроскопии свидетельствуют о более сильном искажении октаэдрического окружения катионов Fe^{3+} в образцах, полученных способом 2 и характеризующихся повышенным содержанием воды. Этот факт может быть объяснен существованием новой гидратной формы оксалата железа(III), отличающейся структурными особенностями ближайшего окружения катионов железа, оказывающими влияние на плотность электронного заряда в месте нахождения мессбауэровских ядер.

Рентгенофазовый анализ. На рис. 4 представлена порошковая дифрактограмма образца A_1 , полученная с использованием синхротронного излучения, в сравнении с теоретической дифрактограммой гидрата Fe₂(C₂O₄)₃·4H₂O, построенной на основе данных работы [6]. Обе дифрактограммы хорошо согласуются друг с другом. Аналогичный вид имеет дифрактограмма, приведенная в работе [22]. Дифрактограммы образцов A_1 и A_2 , снятые на дифрактометре D8 Advance (излучение Cu K_{α}), оказались практически идентичными, за исключением небольшого увеличения интенсивности рефлексов для более сухого образца A_2 (рис. 5). Близость кристаллической структуры этих образцов подтверждается результатами уточнения параметров кристаллической решетки по методу Ритвельда (табл. 2). Хотя состав гидрата при длительной сушке

Рис. 4. Сравнение теоретической дифрактограммы $Fe_2(C_2O_4)_3 \cdot 4H_2O(1)$ с дифрактограммой образца $A_1(2)$. Для съемки использовалось синхротронное излучение с длиной волны $\lambda = 0,3685$ Å

Рис. 5. Сравнение дифрактограмм образцов A_1, A_2, B_1, B_2

меняется до $Fe_2(C_2O_4)_3 \cdot 2H_2O$, его кристаллическая структура остается такой же, как у тетрагидрата $Fe_2(C_2O_4)_3 \cdot 4H_2O$.

В отличие от образца A_1 , на дифрактограмме образца, приготовленного вторым способом (B_1) , имеются лишь два очень широких максимума с низкой интенсивностью в области углов 20: 16—26° и 36—44° (см. рис. 5). И хотя в этом диапазоне углов находятся наиболее интенсивные брэгговские пики тетрагидрата оксалата железа(III), вид дифрактограммы предположительно соответствует аморфному состоянию гидратной фазы. Дифрактограммы осушенных образцов $(A_2 \ и B_2)$ оказались похожи как друг на друга, так и на дифрактограмму образца A_1 .

ИК спектроскопия. Отнесение полос поглощения (табл. 3) проведено на основании литературных данных [21, 23—25]. На рис. 6 приведены ИК спектры образцов A_2 и B_1 . Положения полос поглощения образца A_2 хорошо согласуются со спектром тетрагидрата оксалата железа(III) [21]. Широкая структурированная полоса (3700—2500 см⁻¹) соответствует валентным колебаниям групп ОН, связанных водородными связями различной силы. Деформационное колебание H₂O перекрывается полосами поглощения оксалатных групп. Наличие в структуре тетрагидрата оксалата железа(III) связей СО различной длины (1,23—1,31 Å) приводит к появлению нескольких полос в ИК спектре образца A_2 . Полоса валентных колебаний терминальной

Таблица 2

		÷ ,	1	1			2 3
Параметр	A_1	A_2	$Fe_2(C_2O_4)_3 \cdot 4H_2O[6]$	Параметр	A_1	A_2	$Fe_2(C_2O_4)_3 \cdot 4H_2O[6]$
a, Å	5,323(1)	5,318(1)	5,3065(1)	U	0,5	0,0556	
<i>b</i> , Å	6,632(1)	6,633(1)	6,6373(1)	V	1,7448	1,9199	
c, Å	9,135(1)	9,139(1)	9,1381(1)	W	-0,075	-0,0428	
α, град.	91,38(1)	91,47(1)	91,793(1)	$\Delta \theta_0$	0	0,0007	
β, град.	97,81(1)	97,77(1)	97,583(1)	$R_{\rm p},\%$	7,0	4,87	
ү, град.	92,61(1)	92,91(1)	93,323(1)	$R_{\rm wp}$,%	9,33	6,51	
V, Å ³	319,01(13)	318,83(13)	318,26(1)	$R_{\rm exp},\%$	6,27	4,77	

Уточненные по методу Ритвельда структурные параметры образцов A_1, A_2 и соответствующие значения для тетрагидрата оксалата железа(III) из [6]

Рис. 6. ИК спектры образцов A₂ и B₁ (сдвинут вверх на 10 % по шкале пропускания)

группы C=O наблюдается при 1734 см⁻¹. Спектры образцов A_2 и B_1 имеют различия как в области колебаний v(OH), так и в диапазонах колебаний связей CO и C—C. Также наблюдается смещение полос поглощения.

Опираясь на результаты дифракционных и мессбауэровских исследований, мы считаем, что отличия в ИК спектрах образцов A_2 и B_1

обусловлены различием изучаемых форм оксалата железа(III), а именно тем, что образец B_1 представляет собой метастабильную аморфную фазу. Причиной изменения мессбауэровских параметров, а также появления в ИК спектре образца B_1 новых полос поглощения является деформация оксалатных групп, приводящая к существенному искажению кислородного октаэдрического окружения катионов Fe³⁺.

Причиной образования аморфной фазы гидрата оксалата железа(III), по-видимому, является низкая скорость кристаллизации гидратных форм. В результате, первичный осадок не успевает закристаллизоваться, захватывает избыточное количество воды и может длительное время существовать в аморфном состоянии. Возможно, на скорость кристаллизации влияют примеси в растворе, в частности примесь ионов Cl⁻, попадающая в раствор из свежеполученного гидроксида железа (синтезированного из хлорида железа). В таком случае аморфная фаза может существовать более длительное время. Следует отметить, что нам не удалось зафиксировать одновременного существования в одном и том же образце аморфной и кристаллической фаз, что указывает на то, что процесс кристаллизации лимитируется стадией образования зародышей кристаллической фазы.

ЗАКЛЮЧЕНИЕ

Обнаружена новая аморфная гидратная форма оксалата железа(III). Рентгенограмма данной формы рассматриваемого соединения не содержит явных брэгговских пиков, в отличие от кристаллических образцов, содержащих от двух до четырех молекул H₂O в формульной единице Fe₂(C₂O₄)₃, структура которых соответствует приведенной в работе [6]. Параметры мессбауэровских спектров оксалата железа(III) свидетельствуют о нахождении ионов трехвалентного железа в искаженном октаэдрическом окружении, причем в аморфных образцах степень искажения кислородных октаэдров выше. Деформация оксалатных групп приводит к заметным изменениям в ИК спектрах по сравнению с тетрагидратом оксалата железа(III). При длительном хранении или сушке аморфный гидрат оксалата железа(III) самопроизвольно переходит в стабильные формы, соответствующие составам Fe₂(C₂O₄)₃·4H₂O и Fe₂(C₂O₄)₃·2H₂O.

Таблица З

Положение	линий, см ⁻¹		Положение линий, см ⁻¹		
A_2	B_1	Отнесение полос	A_2	B_1	Отнесение полос
3700—2500	3700—2500	ν(OH)	815	794	$v(FeO) + \delta(O - C=O)$
1734	1713	v _a (C=O) _{term}	758	—	$v(C - C) + \delta(OCO)$
1658, 1617	1681, 1607	v(CO)	553, 528	546	v(FeO) + v(C - C)
	1441, 1393	ν(CO)	487	501	δ(Ο—С—Ο)
1349, 1263	1319, 1271	v(CO)	441	435	v(FeO)
	908	v(C—C)			

Отнесение полос в ИК спектрах образцов А2 и В1

Авторы выражают благодарность Н.В. Булиной за проведение дифракционных экспериментов, И.Ю. Просанову, А.А. Сидельникову, А.А. Матвиенко и С.В. Цыбуле за полезные советы и обсуждение результатов.

Работа выполнена при поддержке Российского научного фонда, проект № 14-23-00037.

СПИСОК ЛИТЕРАТУРЫ

- 1. Суздалев И.П., Максимов Ю.В., Имшенник В.К. // Рос. нанотехнол. 2007. 2, № 5-6. С. 73 84.
- 2. Barinova T.V., Borovinskaya I.P. // Int. J. Self-Propag. High-Temp. Synth. 2012. 21, N 1. P. 1 6.
- 3. Suzdalev I.P., Buravtsev V.N., Imshennik V.K. et al. // Z. Phys. D. 1996. 36. P. 163 169.
- 4. Hermankova P., Hermanek M., Zboril R. // Eur. J. Inorg. Chem. 2010. 2010, N 7. P. 1110 1118.
- Praharaj J., Moharana S.C., Bhatta S., Bhatta D. // Indian J. Chem., Sect A. 2002. 41A. P. 1837 1840.
- 6. Ahouari H., Rousse G., Rodriguez-Carvajal J. et al. // Chem. Mater. 2015. 27, N 5. P. 1631 1639.
- 7. Angermann A., Topfer J. // J. Mater. Sci. 2008. 43. P. 5123 5130.
- 8. Zhou W., Tang K., Zeng S., Qi Y. // Nanotechnology. 2008. 19, N 6. article id. 065602. 9 pp.
- 9. Суздалев И.П., Максимов Ю.В., Имшенник В.К. // Рос. нанотехнол. 2006. 1, № 1-2. С. 134 141.
- 10. Zhabrova G.M., Suzdalev I.P., Gol'danskii V.I. et al. // Theor. Exp. Chem. 1967. 3, N 4. P. 278 281.
- 11. Broadbent D., Dollimore D., Dollimore J. // J. Chem. Soc. A. 1967. P. 451 454.
- 12. Yatsenko D.A., Pakharukova V.P., Tsybulya S.V. et al. // J. Struct. Chem. 2012. 53, N 3. P. 548 556.
- 13. Чуриков А.В., Леенсон И.А. // Электрохимическая энергетика. 2012. 11, № 1. С. 14 20.
- 14. Hermanek M., Zboril R., Mashlan M. et al. // J. Mater. Chem. 2006. 16. P. 1273 1280.
- 15. Frost R.L., Weier M.L. // J. Therm. Anal. Calorim. 2004. 75, N 1. P. 277 291.
- 16. Ancharov A.I., Manakov A.Yu., Mezentsev N.A. et al. // Nucl. Instrum. Methods Phys. Res., Sect. A. 2001. **470**, N 1-2. P. 80 83.
- 17. Химический энциклопедический словарь / И.Л. Кнунянц. М.: Сов. энцикл., 1983.
- 18. Saito N., Sano H., Tominaga T., Ambe F. // Bull. Chem. Soc. Jpn. 1965. 38, N 4. P. 681 682.
- 19. Белозерский Г.Н., Болдырев В.В., Луцкина Т.К. и др. // Кинетика и катализ. 1972. **13**, № 1. С. 73 79.
- 20. Gallagher P.K., Kurkjian C.R. // Inorg. Chem. 1966. 5, N 2. P. 214 219.
- 21. Maria C.D., Alejandra W., Daniel P. et al. // J. Braz. Chem. Soc. 2009. 20, N 3. P. 445 450.
- 22. *Hay M., King W.* Alternative enhanced chemical cleaning basic studies results FY09. USA, Savannah River National Laboratory, 2010.
- 23. Edwards H.G.M., Russell N.C. // J. Mol. Struct. 1998. 443. P. 223 231.
- Накамото К. ИК спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1991.
- 25. Begun G.M., Fletcher W.H. // Spectrochim. Acta. 1963. 19. P. 1343 1349.