УДК 539.3

ОЦЕНКА КОНЦЕНТРАЦИИ НАПРЯЖЕНИЙ В СВАРНОМ ШВЕ, ОБРАЗУЮЩЕМСЯ ПРИ СВАРКЕ ВЗРЫВОМ

А. Г. Колпаков, С. И. Ракин*

Сибирский государственный университет телекоммуникаций и информатики, 630102 Новосибирск, Россия * Новосибирский государственный университет путей сообщения,

630049 Новосибирск, Россия

E-mails: algk@ngs.ru, rakinsi@ngs.ru

Показано, что сварной шов, образующийся при сварке взрывом, на микроуровне (при длине волны порядка нескольких сотен микрометров) имеет волнообразную геометрию. Проводится расчет концентрации напряжений, обусловленной локальной геометрией шва, для различных форм и амплитуд волны сварного шва и комбинаций соединяемых материалов.

Ключевые слова: упругость, концентрация напряжений, сварной шов, ячеечная задача.

DOI: 10.15372/PMTF20180322

Постановка задачи. При сварке взрывом поверхность раздела (сварного шва) на микроуровне имеет волнообразную геометрию. Длина волны составляет порядка нескольких сотен микрометров [1, 2]. Форма волны меняется от практически симметричной (синусоидальной) (рис. 1,*a* [3]) до волны с гребнем (рис. 1,*6*). Промежуточной является несимметричная форма волны (рис. 1,*6*). На макроуровне сварной шов имеет вид прямой линии.

При соединении двух тел по прямой линии (вид сварного шва на макроуровне) при деформации свариваемых фрагментов в области сварного шва возникли бы затухающие пограничные слои. Однако в действительности область раздела имеет волнообразную структуру на микроуровне, причем выделяется некоторая область волны P_0 (рис. 2), которую будем называть соединительной областью. Между соединительной областью и основным материалом напряженно-деформированное состояние имеет характер напряженно-деформированного состояния в пограничных слоях. Разделение зон с различным напряженно-деформированным состоянием невозможно. Описать напряженнодеформированное состояние одновременно в соединительной области и в пограничных слоях позволяет использование техники "локального возмущения" [4, 5]. Будем полагать, что поверхность раздела является периодической с периодом T по переменной x_2 (рис. 2). Вследствие периодичности сварного шва по переменной x_2 вся задача по этой переменной также является периодической.

Представляет интерес вопрос о типе свариваемых материалов и возможном изменении их свойств в сварном шве. Согласно данным, приведенным на рис. 3, микроструктура материалов при сварке взрывом меняется незначительно в отличие от случая сварки плав-

Рис. 1. Вид сварного шва на микроуровне:

a — симметричная волна, b — несимметричная волна, b — волна с гребнем

Рис. 2. Период Р и область Р₀ соединительного шва

Рис. 3. Микроструктура материалов, свариваемых взрывом

лением [6]. Поэтому в первом приближении прочность сварного соединения определяется концентрацией напряжений, обусловленной различием значений упругих постоянных свариваемых материалов и волнообразной геометрией шва.

Данные об изменении свойств материалов (возникновении зон перемешивания и т. п.) в области шва приведены в работах [6, 7].

Приведем некоторые данные о размере зерна металлов. Размер зерна принимает значения в интервале 1000,0 ÷ 2,7 мкм. Крупными зернами считаются зерна с диаметром порядка 62 мкм, мелкими — с диаметром 44,0 ÷ 2,7 мкм [8]. Зерна алюминия имеют диаметр 10 ÷ 100 мкм. Таким образом, материал является композиционным и в случае крупных зерен характерный размер неоднородности материала [8] сравним с размером волны сварного шва (\approx 100 мкм). В случае мелких зерен свариваемые материалы можно считать однородными [9].

Период волны сварного шва, размер зерен металлов являются микроскопическими, однако для них применимы модели классической механики сплошной среды [10]. Для расчета на микроуровне напряженно-деформированного состояния необходимо решить задачу теории упругости для материалов, соединяемых волнообразной линией периодического строения. При условии, что в соединяемых материалах имеется макроскопическое осредненное поле перемещений $u_0(x)$, определяемое из решения макроскопической задачи о деформировании материалов, соединенных по макроскопически прямой (не волнообразной) линии, следуя [4, 5], решение задачи находим в виде

$$\boldsymbol{u}(\boldsymbol{x}) = \boldsymbol{u}_0(\boldsymbol{x}) + \varepsilon \boldsymbol{u}_1(\boldsymbol{x}/\varepsilon).$$

Введем "быстрые" переменные $\boldsymbol{y} = \boldsymbol{x}/\varepsilon$ [11] и будем считать, что корректор $\varepsilon \boldsymbol{u}_1(\boldsymbol{x}/\varepsilon)$ представляет собой локальное возмущение, т. е. периодическую функцию с периодом T по переменной y_2 , где $\boldsymbol{y} = (y_1, y_2) = \boldsymbol{x}/\varepsilon$, обладающую свойством

$$oldsymbol{u}_1(oldsymbol{y})
ightarrow 0$$
 при $|y_1|
ightarrow \infty.$

Вследствие периодичности сварного шва по переменной y_2 вся задача по переменной y_2 также является периодической. Получаем следующую ячеечную задачу:

$$(a_{ijkl}(\boldsymbol{y})u_{1k,ly} + a_{ij\alpha\beta}(\boldsymbol{y})u_{0\alpha,\beta x}(\boldsymbol{x}))_{,iy} = 0 \quad \mathbf{B} \quad P,$$

$$(1)$$

 $\boldsymbol{u}_1(\boldsymbol{y})$ периодическая по y_2 с периодом T, $\boldsymbol{u}_1(\boldsymbol{y}) \to 0$ при $|y_1| \to \infty$.

Задача (1) отличается от ячеечной задачи теории осреднения наличием условия затухания: $u_1(y) \to 0$ при $|y_1| \to \infty$ (в ячеечной задаче теории осреднения имеет место периодичность по всем переменным [11]). Это обусловливает существенные различия осредненных задач. Во-первых, в задаче о соединении макроскопические условия на шве не зависят от микроскопических свойств соединения [4, 5], которые в теории осреднения определяют осредненные коэффициенты [11]. Во-вторых, макроскопические деформации являются разрывными (именно им соответствует член $u_{0\alpha,\beta x}(x)$ в (1)). Вследствие невозможности применения процедуры разделения "быстрых" и "медленных" переменных (член $u_{0\alpha,\beta x}(x)$ рассматривается в качестве параметра и "выносится" из задачи (1) как множитель), являющейся основной в классической теории осреднения [11], решается задача (1).

Результаты численных расчетов. В первом приближении можно считать, что структура сварного шва не зависит от переменной x_3 (направленной перпендикулярно плоскости рис. 1–3), поэтому ограничимся рассмотрением двумерной задачи (задачи о плоском деформированном состоянии). В качестве характеристики концентрации микроскопических напряжений используем концентрацию напряжений по Мизесу, значения которых часто используются в качестве критерия прочности пластических материалов, в частности металлов [10].

При "нарезке" материала на ячейки периодичности (эта "нарезка" определяется периодической структурой сварного шва) возникает задача о деформировании двух материалов, соединенных вдоль оси Oy. При этом при растяжении вдоль оси Ox и сдвиге макроскопические напряжения слева и справа от оси Oy являются непрерывными, макроскопические деформации — разрывными, при растяжении вдоль оси Oy напряжения слева и справа от оси являются разрывными, макроскопические деформации — непрерывными. Таким образом, имеют место деформации типа деформаций Фойгхта и Рейса, возникающие в слоистом материале, однако в рассматриваемом случае эти деформации локализованы вблизи сварного шва. При макроскопическом растяжении по оси Ox и сдвиге концентрация напряжений по Мизесу в окрестности сварного шва вычисляется по формуле

$$k(\boldsymbol{x}) = \sigma_{\mathrm{M}}(\boldsymbol{x}) / \sigma_{\mathrm{M}}(\infty),$$

при макроскопическом растяжении по оси Oy — по следующим формулам:

— слева от сварного шва

$$k(\boldsymbol{x}) = \sigma_{\mathrm{M}}(\boldsymbol{x}) / \sigma_{\mathrm{M}} \Big|_{x_1 = -\infty};$$

Рис. 4. Распределения концентрации напряжений по Мизесу для шва в виде симметричной волны при растяжении по оси Ox (*a*), растяжении по оси Oy (*б*) и сдвиге по оси Oy (*b*)

— справа от сварного шва

$$k(\boldsymbol{x}) = \sigma_{\mathrm{M}}(\boldsymbol{x}) / \sigma_{\mathrm{M}} \big|_{x_1 = +\infty}.$$

Здесь $\sigma_{\rm M}$ — интенсивность напряжений; $\sigma_{\rm M}|_{x_1=\pm\infty}$ — напряжения справа и слева от шва на расстояниях, "достаточных" для того, чтобы считать их значения постоянными. Согласно результатам численных расчетов эти расстояния равны $(3 \div 5)T$. Данная величина, как правило, используется для оценки протяженности пограничных слоев в соединениях материалов с незначительно различающимися значениями упругих постоянных. Для материалов с существенно различающимися значениями упругих постоянных эта оценка неприменима [12].

Максимальная концентрация напряжений по Мизесу определяется по формуле $k = \max k(\boldsymbol{x})$.

Поверхность раздела строилась на основе данных обработки (измерений) приведенных на рис. 1 фотографий шлифов сварных швов различной формы: практически симметричной (синусоидальной), несимметричной, волны с гребнем.

Приведем результаты численных расчетов концентрации напряжений по Мизесу для трех типовых форм волн, образующихся при сварке взрывом. Расчеты проводились с использованием конечно-элементной программы ANSYS для следующих материалов: слева — медь (модуль Юнга $E_{\pi} = 10^{11}$ Па, коэффициент Пуассона $\nu = 0.35$), справа — алюминий (модуль Юнга $E_{\pi} = 0.5 \cdot 10^{11}$ Па, коэффициент Пуассона $\nu = 0.34$).

Для шва в виде волны, форма которой близка к симметричной (см. рис. 1,a), результаты расчетов представлены на рис. 4. На рис. 5 приведены результаты численных расчетов концентрации напряжений по Мизесу для шва в виде несимметричной волны (см. рис. $1,\delta$), на рис. 6 — для шва в виде волны с гребнем (см. рис. $1, \epsilon$).

В табл. 1 приведены максимальные значения концентрации напряжений по Мизесу для трех основных типов поверхностей, образующихся при сварке взрывом. Приведенные данные свидетельствуют о достаточно малых (1,1 ÷ 1,3) значениях концентрации локальных напряжений во всех типовых швах, образующихся при сварке взрывом, при всех типах макроскопических внешних нагрузок.

Рис. 5. Распределения концентрации напряжений по Мизесу для шва в виде несимметричной волны при растяжении по оси Ox(a), растяжении по оси Oy(b) и сдвиге по оси Oy(a)

Рис. 6. Распределения концентрации напряжений по Мизесу для шва в виде волны с гребнем при растяжении по оси Ox (*a*), растяжении по оси Oy (*б*) и сдвиге по оси Oy (*b*)

Таблица 1

Tur upo	k					
тип шва	Растяжение по оси Ох	Растяжение по оси Оу	Сдвиг по оси Оу			
Симметричная волна	1,21	$1,\!48$	$1,\!25$			
Несимметричная волна	1,31	$1,\!54$	1,28			
Волна с гребнем	1,13	$1,\!69$	1,20			

Максимальные значения концентрации напряжений по Мизесу k для различных швов при различной деформации

Таблица 2

	k					
$E_{\mathrm{ff}} \cdot 10^{-11}$	11 Сдвиг по оси Оу		Растяжение по оси Ох		Растяжение по оси Оу	
	H/3	H	H/3	Н	H/3	Н
0,9	1,024	1,035	1,012	1,035	1,036	1,070
0,8	$1,\!053$	1,079	1,023	1,070	1,076	$1,\!150$
0,7	1,086	$1,\!127$	1,034	$1,\!109$	$1,\!122$	1,242
$0,\!6$	$1,\!121$	$1,\!191$	1,049	$1,\!156$	$1,\!174$	$1,\!349$
0,5	1,165	1,288	1,063	1,207	1,239	$1,\!482$
0,4	1,213	$1,\!430$	1,087	1,267	1,313	$1,\!639$
0,3	1,282	$1,\!647$	1,111	1,341	1,401	1,829
0,2	1,360	1,996	1,140	1,430	1,509	2,069

Максимальная концентрация напряжений по Мизесу k для симметричной волны при различных упругих характеристиках материала и амплитуде волны

Зависимость концентрации напряжений от упругих характеристик свариваемых материалов и амплитуды волны. В табл. 2–4 представлены результаты расчетов максимальных концентраций напряжений по Мизесу для трех рассматриваемых форм сварных швов (симметричная волна, несимметричная волна, волна с гребнем) и всех типов макроскопических деформаций (сдвиг по оси Oy, растяжение по оси Ox, растяжение по оси Oy) при различных значениях амплитуды (высоты) волны H и упругих характеристик материалов (модуль Юнга материала слева от шва равен $E_{\pi} = 10^{11}$ МПа, справа от шва — E_{π}).

Показанные на рис. 1 волны сварного шва имеют значительные амплитуды, поэтому расчеты проводились также для волн меньшей амплитуды. Амплитуда в расчетах уменьшалась в два или три раза по сравнению с рис. 1.

Результаты численных расчетов показывают, что концентрация напряжений в волнообразном шве в большей степени зависит от отношения модулей Юнга [12] свариваемых материалов и в меньшей — от геометрии волны (симметричная, несимметричная, с гребнем) и ее амплитуды. В случае если отношение модулей Юнга составляет порядка $0,4\div0,5$, максимальная концентрация напряжений по Мизесу в области волнообразной поверхности может достигать значения $k \approx 2 \div 3$, которое следует учитывать при оценке прочностных свойств сварного шва.

В случае если прочность каждого материала определяется критерием $\sigma_{\rm M} = \sigma_{\pi}^*$, $\sigma_{\rm M} = \sigma_{\pi}^*$ (пределы прочности по Мизесу материалов слева и справа от шва), прочность соединения в целом определяется условием $k_{\rm n}\sigma_{\rm M}\big|_{x_1=\mp\infty} = \sigma_{\pi}^*$, $k_{\rm n}\sigma_{\rm M}\big|_{x_1=\mp\infty} = \sigma_{\pi}^*$, где $\sigma_{\rm M}\big|_{x_1=\mp\infty}$ — интенсивность напряжений, вычисленная на "бесконечном" (3–5 периодов волны для материалов с незначительно различающимися значениями упругих постоян-

Таблица 3

	k						
$E_{\mathrm{II}} \cdot 10^{-11}$	$E_{\rm m} \cdot 10^{-11}$ Сдвиг по оси Oy		Растяжение по оси Ох		Растяжение по оси Оу		
	H/2	H	H/2	Н	H/2	Н	
0,9	1,032	1,035	1,031	1,049	1,061	1,075	
$0,\!8$	1,075	1,079	1,066	1,132	1,131	1,163	
0,7	$1,\!128$	$1,\!127$	1,102	1,160	1,213	1,267	
$0,\!6$	$1,\!193$	$1,\!191$	$1,\!143$	1,231	1,309	1,392	
$0,\!5$	1,282	1,288	$1,\!195$	1,311	1,424	$1,\!546$	
0,4	$1,\!397$	$1,\!430$	1,252	1,408	1,554	1,729	
0,3	1,557	$1,\!647$	$1,\!324$	1,533	1,721	1,973	
0,2	$1,\!805$	$1,\!996$	1,413	$1,\!684$	1,934	2,299	

Максимальная концентрация напряжений по Мизесу k для несимметричной волны при различных упругих характеристиках материала и амплитуде волны

Таблица 4

Максимальная концентрация напряжений по Мизесу k для волны с гребнем при различных упругих характеристиках материала и амплитуде волны

	k					
$E_{\rm m} \cdot 10^{-11}$	$_{\rm I} \cdot 10^{-11}$ Сдвиг по оси Oy		Растяжение по оси Ох		Растяжение по оси Оу	
	H/2	Н	H/2	Н	H/2	Н
0,9	1,018	1,027	1,012	1,017	1,093	1,091
0,8	1,042	1,062	1,028	1,039	1,203	$1,\!198$
0,7	1,069	1,103	1,048	1,063	1,342	1,327
$0,\!6$	$1,\!105$	1,160	1,075	1,097	1,514	1,485
$_{0,5}$	$1,\!150$	1,216	1,108	$1,\!141$	1,738	1,695
0,4	1,212	1,309	1,156	1,201	2,042	1,959
0,3	$1,\!299$	1,446	1,224	1,298	2,478	2,339
0,2	1,447	1,676	1,356	1,476	3,164	2,901

ных) расстоянии от шва или по макроскопической модели, в которой не учитывается волнообразный характер шва, а полагается, что шов является прямолинейным. Анализ прочности следует проводить для каждого материала с использованием аналога осредненного критерия прочности [9], определяя точку, в которой концентрация напряжений максимальна.

Данные выводы применимы для материалов с мелкозернистой структурой, для которой может быть использовано понятие осредненного критерия прочности [9].

ЛИТЕРАТУРА

- 1. Волнообразование при косых соударениях: Сб. науч. тр. / Под ред. И. В. Яковлева, Л. Д. Сиротенко, А. М. Ханова. Новосибирск: Изд-во СО РАН, 2000.
- 2. Crossland B. Explosive welding of metals and its application. Oxford: Clarendon Press, 1982.
- Аннин Б. Д. Элементы механики композитов / Б. Д. Аннин, Е. В. Карпов. Новосибирск: Ред.-изд. центр Новосиб. гос. ун-та, 2016.
- Kolpakov A. G., Andrianov I. V. Asymptotic decomposition in the problem of joined elastic beams // Z. angew. Math. Mech. 2014. Bd 94, N 18. S. 818–836.

- Kolpakov A. G., Gaudiello A. Influence of non degenerated joint on the global and local behavior of joined rods // Intern. J. Engng Sci. 2011. V. 49, N 6. P. 295–309.
- 6. Рыбаков В. М. Сварка и резка металлов. М.: Высш. шк., 1979.
- 7. Волкова А. Ю., Гринберг Б. А., Иванов М. А. и др. Электронно-микроскопическое исследование зоны перемешивания биметаллических соединений алюминий тантал (сварка взрывом) // Физика металлов и металловедение. 2014. Т. 115, № 4. С. 406–418.
- ГОСТ 5639-82. Стали и сплавы. Методы выявления и определения величины зерна. Введ. 01.01.83.
- Аннин Б. Д. Расчет и проектирование композиционных материалов и элементов конструкций / Б. Д. Аннин, А. Л. Каламкаров, А. Г. Колпаков, В. З. Партон. Новосибирск: Наука. Сиб. издат. фирма, 1993.
- 10. Работнов Ю. Н. Механика деформируемого твердого тела. М.: Наука, 1988.
- 11. Санчес-Паленсия Э. Неоднородные среды и теория колебаний. М.: Мир, 1984.
- 12. Kolpakov A. A. Capacity and transport in contrast composite structures: asymptotic analysis and applications / A. A. Kolpakov, A. G. Kolpakov. Boca Raton: CRC Press, 2009.

Поступила в редакцию 28/VII 2017 г.