2013

Nº 5

ОБОГАЩЕНИЕ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

УДК 622.765.061.28

НОВЫЕ СПОСОБЫ ЭКСПЕРИМЕНТАЛЬНОЙ ОЦЕНКИ СЕЛЕКТИВНОСТИ РЕАГЕНТОВ-СОБИРАТЕЛЕЙ ДЛЯ ФЛОТАЦИИ ЗОЛОТА И ПЛАТИНЫ ИЗ ТОНКОВКРАПЛЕННЫХ РУД БЛАГОРОДНЫХ МЕТАЛЛОВ

Т. А. Иванова, В. А. Чантурия, И. Г. Зимбовский

Институт проблем комплексного освоения недр РАН, Крюковский тупик, 4, 111020, г. Москва, Россия E-mail: tivanova06@mail.ru, zumbofff@gmail.com

Для изучения флотационных и сорбционных свойств новых реагентов предложены методики искусственного нанесения микро- и наночастиц Au и Pt на измельченные минералы. Получены образцы пирита, арсенопирита и кварца, искусственно обогащенные наноразмерными частицами (HPЧ) золота. Методом восстановительной адсорбции из растворов Na₂[PtCl₆] и Na[AuCl₄] получены образцы пирротина с равномерно нанесенными микрочастицами платины. Рассмотрены области применения, методы исследования образцов и механизма взаимодействия реагента с микро- и наночастицами золота и платины в зависимости от условий обогащения сульфидов благородными металлами и свойств минерала носителя. Комплекс современных методов исследования взаимодействия реагента МТХ с золотом подтвердил селективные свойства нового комплексообразующего собирателя МТХ по отношению к золоту за счет его химического взаимодействия с золотом.

Минералы, флотационное обогащение, сорбция, собиратели, искусственное нанесение, платина, золото, новообразования благородных металлов, собиратели, микро- и наноразмерные частицы, электронная микроскопия

Эффективность реагентов при флотации благородных металлов обычно оценивают на концентратах и продуктах переработки руд. Такой метод исследования является дорогостоящим из-за высокой стоимости проведения анализов на содержание золота или платиновых металлов в полученных продуктах флотации и недостаточно информативен для получения достоверных сведений о селективности закрепления реагентов на частицах благородных металлов микро- и наноразмеров.

Работа проводилась при финансовой поддержке Министерства образования и науки Российской Федерации (в соответствии с требованием государственного контракта № 14.515.11.0068 на выполнение поисковых научно-исследовательских работ).

Для изучения флотационных и сорбционных свойств новых реагентов в ИПКОН РАН впервые предложено использовать природный измельченный минерал флотационной крупности с искусственно нанесенными на его поверхность благородными металлами [1, 2]. Для искусственного нанесения золота или платины на минеральные порошки пирита и пирротина разработаны методики, основанные на опыте ряда авторов, которые изучали механизм взаимодействия сульфидов с растворами золота на минеральных шлифах, сколах и монокристаллах с целью моделирования природных процессов минералообразования [3, 4].

Благородные металлы наносили на измельченные сульфидные минералы методом восстановительной адсорбции из растворов золото- или платинохлористоводородной кислоты (H[AuCl₄]; H₂[PtCl₆]6H₂O) при комнатной температуре. Содержащиеся на поверхности сульфидов S–H и S_x–H ионы, способные окисляться, восстанавливали ионы Au⁺³, Au⁺¹ или Pt⁺⁴, Pt⁺², что приводило к образованию на поверхности сульфидных минералов частиц металлического золота или платины. Размеры островковых выделений Au⁰ и Pt⁰ на частицах FeS₂ или FeS_{1-x} регулировали, используя растворы различной концентрации и pH, а также изменяя время контакта минералов, скорость перемешивания суспензии и количество твердой фазы. Количество Au или Pt в полученных образцах определяли с помощью атомно-адсорбционного анализа.

Анализируя результаты сорбционных и флотационных опытов [1, 2], сделан вывод, что методика иммобилизации Au и Pt при восстановительной адсорбции из растворов хлорсодержащих кислот имеет ряд недостатков. В частности, заметно изменяются свойства поверхности минерала-носителя. Первичные зародыши золота и платины образуют скопления или островки размером от единиц до сотен микрон, формирующие неравномерную структуру покрытия. Неоднородность поверхности полученных образцов ухудшает воспроизводимость результатов экспериментов.

Предложены новые и усовершенствованные методики искусственного нанесения благородных металлов на минералы, позволяющие получить образцы, имитирующие природные объекты для экспериментального изучения свойств новых реагентов.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЙ

Опыты проводились на мономинеральных порошках пирита, пирротина, халькопирита, галенита, арсенопирита и кварца крупностью (-0.16 + 0.08 мм) и (-0.08 + 0.04 мм). Минералы после измельчения промывали водой и обесшламливали. Для нанесения золота или платины использовали растворы золото- или платинохлористоводородной кислоты или их соли (Na[AuCl4], Na₂[PtCl₆]). Скорость осаждения и длительность процесса адсорбции на минеральных порошках определяли фотометрическим методом по остаточной концентрации золота или платины в водном растворе по методике [5] в присутствии SnCl₂. При получении золей растворы анализировали на спектрофотометре UV-1700 Shimadzu.

Флотационные опыты проводили во флотокамерах объемом 20 и 100 мл. Навеску минерала (1 г) или руды с искусственно нанесенным золотом или платиной промывали водой и высушивали на воздухе, помещали в камеру флотомашины при Т : $\mathcal{K} = 1$: 15, вводили собиратель бутиловый ксантогенат (БКс) или исследуемый собиратель, подавали вспениватель МИБК, перемешивали по 1–5 мин с каждым реагентом, затем флотировали в течение 3 мин. Аналогично флотировали природную руду во флотомашине при Т : $\mathcal{K} = 1$: 5. Морфологию и элементный состав минеральных частиц и новообразований на них изучали на аналитическом сканирующем электронном микроскопе (РЭМ) LEO 1420VP, оснащенном рентгеновским энергодиспер-

сионным микроанализатором INCA 350, а также JED (JSM-6610LV). Использовали также лазерную микроскопию (KEYNCE с VK-9700)*. Тонкослойную хроматографию (TCX) выполняли на хроматографических пластинках Sorbofil (50×75 мм).

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ И ИХ ОБСУЖДЕНИЕ

Установлено, что после осаждения золота и платины из хлоридных растворов кислот гидрофобность и флотоактивность минеральных образцов пирита и пирротина снижается вследствие окисления поверхности сульфида. После перемешивания в воде образовавшиеся продукты окисления частично удаляли с поверхности минералов. Авторами методом РФЭС показано [6], что после воздействия растворов HAuCl₄ на шлиф пирита на его поверхности появляются продукты окисления тиосульфат-, сульфит-, сульфат-ионы и продукты, включающие Fe (III).

В настоящей работе для снижения воздействия растворов кислот на поверхность сульфидов при восстановительной адсорбции их заменили на менее активные нейтральные растворы солей Na₂[PtCl₆], K₂[PtCl₆] и Na[AuCl₄], синтезированные по методикам [7].

МЕТОДИКА ИСКУССТВЕННОГО НАНЕСЕНИЯ НА СУЛЬФИДЫ Pt ИЗ РАСТВОРА НАТРИЕВОЙ СОЛИ ПЛАТИНОХЛОРИСТОВОДОРОДНОЙ КИСЛОТЫ

К 1 % раствору Na₂[PtCl₆] (pH 7) прибавляли измельченный пирротин (-0.16 + 0.08 мм) при Т : Ж = 1 : 5. Через 60 мин после начала перемешивания отделяли твердую фазу. На поверхности промытого водой и высушенного минерала с помощью РЭМ на отдельных зернах пирротина обнаружены сферические частицы размером менее 1 мкм. Помимо Pt рентгеновский спектр показал присутствие в новообразованиях S и Cl (рис. 1).

Рис. 1. Поверхность пирротина с частицами платины, осажденными из раствора $Na_2[PtCl_6]$ через 60 мин после начала перемешивания (*a*); рентгеновский спектр новообразования платины (δ)

УФ-спектр фильтрата суспензии отличался от спектра исходного раствора Na₂[PtCl₆]. Вместо характерного для [PtCl₆]²⁻ максимума при 261 нм в спектре появился максимум при 215–216 нм, который, возможно, соответствует платине в коллоидном состоянии [4, 8]. Более продолжительный контакт минерала с раствором (4 ч с перемешиванием) приводил к появлению новообразований металлической платины 1-3 мкм, равномерно рассредоточенных на 15-20 % всех частиц минерала. В этом случае безреагентная флотоактивность исходного пирротина и

^{*} Исследования на РЭМ LEO 1420VP и КЕҮNCE с VK-9700 проводились в Центре изучения природного вещества при Институте проблем комплексного освоения недр РАН.

пирротина, модифицированного солью Na₂[PtCl₆], различалась всего на 2-3 %. При замене HAuCl₄ на соль Na[AuCl₄], которую использовали для нанесения золота на пирит, также получено равномерное распределение частиц золота по поверхности пирита.

РАЗРАБОТКА МЕТОДИК НАНЕСЕНИЯ НАНОРАЗМЕРНЫХ ЧАСТИЦ (НРЧ) БЛАГОРОДНЫХ МЕТАЛЛОВ НА ИЗМЕЛЬЧЕННЫЕ МИНЕРАЛЫ

Благодаря развитию аналититических методов, использующих микрозонды, в рудах российских месторождений удалось идентифицировать микро- и наночастицы золота, локализованные на поверхности и в объеме наиболее часто встречающихся сульфидных минералов [9].

Известно, что нанообразования Pt и Au активнее взаимодействуют с реагентами, вступая в реакции комплексообразования, чем более крупные зерна и включения [4].

В настоящее время неизвестны примеры нанесения НРЧ благородных металлов на измельченные минералы, предназначенные для оценки взаимодействия флотореагентов с минералами платины и золота. В ряде работ описано несколько способов получения и нанесения НРЧ золота на различные носители [10, 11].

Нанесение золота на пирит. На неокисленном пирите после 3-5 мин осаждения золота из 10⁻⁴ М раствора HAuCl₄ обнаружены наночастицы золота размером 60-150 нм. При этом большая часть золота оставалась в водной фазе, а на отфильтрованном и просушенном пирите выявлены единичные, неравномерно распределенные наноостровки золота. В случае более длительного контакта раствора с минералом частицы золота стремились к ассоциации. На измельченном пирите с окисленной поверхностью ассоциация НРЧ происходит практически мгновенно.

В связи с этим нанесение на минеральную поверхность тонкодисперсного золота осуществляли, помещая измельченный пирит в золь, содержащий коллоидные частицы золота. Стабильные золи обычно формируются при повышенной температуре в среде, препятствующей коагуляции и быстрому росту размеров частиц металла [10, 11]. Из нескольких известных методов выбран цитратный способ получения золя Au. Цитрат натрия (Na₃C₆H₅O₇) одновременно служит восстановителем и стабилизатором коллоидных частиц, предотвращающих их агрегацию, и при этом он считается слабым лигандом [4].

При кипячении нейтрализованного карбонатом калия раствора HAuCl₄ (2.85·10⁻⁴ M) в присутствии цитрата натрия с помощью УФ-спектрофотометрии отслеживали формирование коллоидных частиц золя Аu. Рост коллоидных частиц характеризовался переходом окраски раствора из желтой через красную в лилово-красную, появлением максимума в спектре поглощения в области 516-540 нм и снижением поглощения при максимуме 313 нм, который соответствует исходному раствору HAuCl₄. В результате изменения соотношения концентраций восстановителя и восстанавливаемых ионов наблюдался рост интенсивности поглощения в видимой области спектра (рис. 26).

Измельченный пирит, предназначенный для флотационных и сорбционных исследований, помещали в золь Au при соотношении T : $\mathcal{K} = 1:(5-20)$, интенсивно перемешивали в течение 15 мин, затем промывали водой и высушивали на воздухе.

Сорбционные и флотационные исследования комплексообразующих собирателей на полученном пирите обнаружили индукционный период, составляющий 5-10 мин. Замедление адсорбции вызвано, очевидно, образованием лигандной шубы цитрата на частицах при получении золя. Стабилизирующие лиганды блокировали активные центры на поверхности частиц золота, препятствуя протеканию реакции комплексообразования с молекулами собирателя и их сорбции [8].

В связи с этим исследовано влияние концентрации стабилизатора на дисперсионные характеристики наночастиц золота и индукционный период при адсорбции собирателя на минерале. Известно, что при снижении концентрации стабилизатора формируются более крупные части-130

цы золота. Концентрацию цитрата натрия варьировали в интервале 7–0.7 мг/л. Анализ результатов показал, что для образования золя с частицами Au порядка 60 нм достаточна концентрация цитрата натрия 0.7 мг/л. Золь окрашивался в фиолетовый цвет, а максимум в видимой области спектра проявлялся при 540 нм. Индукционный период сорбции собирателя при этом снизился до 3 мин. Воздействие стабилизатора на гидрофобно-гидрофильные свойства минеральных частиц оказалось возможным снизить дополнительно за счет перемешивания в дистиллированной воде в течение 1–3 мин, либо выдерживая минерал в воде в течение 20 мин перед проведением исследований.

Рис. 2. Поверхность частицы пирита с частицами коллоидного золота (60–100 нм) (*a*); УФ-спектры золя коллоидного золота (1 — исходный раствор H[AuCl₄]; 2-4 — раствор через 1, 10 и 15 мин после добавления цитрата Na₃C₆H₅O₇) (δ)

На поверхности частиц пирита после их перемешивания в полученном золе с помощью электронной зондовой микроскопии обнаружены частицы металлического золота в виде полусфер со средним диаметром 60-100 нм (рис. 2a). Полученный образец пирита (0.07-0.045 мм), содержащий около 1.8 мг Au в 1 г FeS₂, характеризовался равномерностью распределения и относительной монодисперсностью новообразований золота. Воспроизводимость результатов флотационных и адсорбционных опытов стала лучше, чем на пирите, обогащенном Au по методу восстановительной адсорбции.

Нанесение золота на кварц. Значительная часть запасов золота связана с кварцевыми и сульфидными рудами коренных месторождений. Встречается золото, заключенное в ожелезненном кварце и раздробленном друзовидном кварце [12, 13]. Нанесение золота на измельченный кварц Раменского ГОКА (-0.063) проводили в условиях, аналогичных выбранным для пирита. Различие заключалось во внесении в нейтральный раствор HAuCl₄ при получении золя золота помимо цитрата 0.5 мл 1 % раствора сернистого натрия Na₂S. Белый кварц, помещенный в золь золота (при T : $\mathcal{K} = 1$: 3), окрасился в серый цвет после 15-минутного перемешивания. На РЭМ изображении видно, что новообразования Au распределены на частицах кварца равномерно, а рентгеновский спектр обнаружил помимо кремния и кислорода только Au⁰ (рис. 3).

Нанесение золота на арсенопирит проводили по аналогичной методике. В горячий раствор 200 мл золя золота, полученного цитратным способом, помещали 20 г арсенопирита Дальнегорского месторождения крупностью (-0.1 + 0.063 мм) и перемешивали 15 мин. На рентгеновском

спектре частиц золота, нанесенного на арсенопирит, видны четкие пики, отвечающие как золоту в металлической форме, так и сульфиду мышьяка. Золото высадилось на минерале достаточно равномерно в виде как НРЧ, так и микрочастиц со средним диаметром около 60 мкм (рис. 4).

Рис. 3. Золото, равномерно распределенное на частицах кварца, нанесенное из золя золота HAuCl₄ в присутствии цитрата натрия (a); рентгеновский спектр новообразования золота (δ)

Рис. 4. РЭМ-изображение зерна арсенопирита с искусственно нанесенным золотом (*a*); рентгеновские спектры новообразований металлического $Au^0(\delta)$ и сульфида золота [AuS]⁻ (*в*)

Нанесение платины на пирротин. Образцы пирротина с платиной, искусственно нанесенной в виде НРЧ, получены с использованием платинохлористоводородной кислоты H₂[PtCl₆]6H₂O и танина (C₇₆H₅₂O₄₆) — стабилизатора с восстановительными свойствами. Для обеспечения более 132 равномерного распределения частиц Pt по поверхности носителя коллоидный золь получали непосредственно в присутствии носителя. В нагретые до 60°С 100 мл деионизированной воды добавляли 5 мл 0.2 % раствора $H_2[PtCl_6]6H_2O$ и 2.5 мл 1.4 % раствора карбоната калия, смесь доводили до кипения. Затем при интенсивном перемешивании вводили 5 мл 0.1 % раствора танина и одновременно к раствору прибавили 10 г пирротина (-0.063 + 0.044). По результатам, полученным на РЭМ LEO 1420VP, средний диаметр новообразований платины сферической формы, осажденной на частицы пирротина, составил 100 нм.

МЕТОДЫ ИССЛЕДОВАНИЯ И ОЦЕНКИ ФЛОТАЦИОННЫХ, СОРБЦИОННЫХ И КОМПЛЕКСООБРАЗУЮЩИХ СВОЙСТВ НОВОГО РЕАГЕНТА НА МИНЕРАЛЬНЫХ ОБЪЕКТАХ, ИСКУССТВЕННО ОБОГАЩЕННЫХ БЛАГОРОДНЫМИ МЕТАЛЛАМИ

В табл.1 показаны области применения и методы исследования образцов, обладающих различными свойствами, в зависимости от условий нанесения на них благородных металлов и свойств минерала носителя. Размер новообразований, равномерность их распределения по поверхности частиц, а также суммарное количество нанесенного металла являются определяющими факторами при выборе образцов для конкретного метода исследования.

На примере нового реагента пергидро1,3,5-дитиазин-5-ил-метана (МТХ) [14] рассмотрены варианты использования нескольких физико-химических методов исследований для оценки его технологических свойств на разных образцах с искусственно нанесенным золотом.

Сравнительные флотационные исследования МТХ и БКс проведены на образцах пирита с НРЧ золота (1.8 мг Au/г). Приведенные в табл. 2 результаты свидетельствуют о селективности действия реагента МТХ по отношению к золоту при более слабой его собирательной активности, а также о хорошей воспроизводимости результатов опытов. При полной замене ксантогената на МТХ выход получали на 15 % ниже, чем с одним БКс. Сочетание реагента МТХ с БКс позволило повысить выход золотосодержащего пирита в пенный продукт флотации на 10-15 % по сравнению с одним БКс. При визуальной оценке и сравнении РЭМ-изображений поверхности частиц пенного продукта флотации частота выделений золота на пирите после флотации, проведенной в присутствии МТХ, намного выше, чем после флотации с БКс. Визуальная оценка и сравнение продуктов флотации при использовании ОПДТК с помощью электронного микроскопа показали, что в пенном продукте содержится существенно больше частиц пирита с выделениями золота на поверхности, чем в хвостах флотации.

С целью подтверждения селективности реагента МТХ по отношению к Au на природных продуктах проведена флотация отвальных хвостов Гайской обогатительной фабрики после добавления к материалу хвостов пирита с фиксированным содержанием искусственно нанесенного золота в виде НРЧ.

Золото в руде Гайского месторождения содержится главным образом в пирите. Исходное содержание золота в хвостах 0.80–0.82 г/т. К материалу хвостов добавляли пирит Гайского месторождения с нанесенным на поверхность золотом при весовом отношении 19 : 1. После тщательного перемешивания приготовлены образцы для флотации в виде навесок по 20 г со средним содержанием золота 83.59 г/т. Результаты флотации образцов при использовании сочетания реагентов МТХ (20 г/т) и БКс (40 г/т) показали повышение содержания золота в концентрате на 26 %. При этом извлечение золота увеличилось на 2 % по сравнению с результатами флотации с одним БКс (табл. 3).

ТАБЛИЦА 1. Методы обогащ механизма взаимодействия ре-	ения природных сульф агентов с минералами	ридов микро- и наночастицами благородных металлов и об , содержащими золото и платину	ласти их применения при изучении
Метод нанесения, размер новообразований Аu или Pt	Минерал-носитель	Область применения при исследовании свойств флотореатенгов	Методы исследований, приборы
Восстановительная ад- сорбция Аu из раствора Na[AuCl4], > 0.5 мкм	Пирит, арсенопи- рит, халькопирит	Исследование селективности адсорбции реагентов на новообразованиях Au ⁰ или Pt ⁰	(РЭМ) LEO 1420VP (INCA350); JED(JSM-6610LV) Лазерная микроскопия (KEYNCE с
Восстановительная ад- сорбция Рt из раствора Na ₂ [PtCl ₆] или K ₂ [PtCl ₆], > 0.5 мкм	Пирротин, галенит, халькопирит (0.15-0.063 мм)	Оценка толщины слоя реагента на частицах Au и Pt Идентификация комплексного соединения реагента с металлом, образовавшегося на поверхности минераль- ных частиц и полученного в водном растворе	VK-9700) Тонкослойная хроматография (TCX) Визуальная оценка количества частиц Аu или Pt в продуктах флотации (PЭM)
Адсорбция наноразмерных частиц (НРЧ) Аu на носи- тель из золя, полученного питратным или сульфил-	Пирит, кварц, ар- сенопирит флота- ционной крупности	Исследование адсорбции реагента на Au-или Pt- со- держащих минералах фотометрическим методом (по остаточной концентрации реагента в растворе)	Спектрофотометр UV-1700 Shimadzu
ным способом (40 – 100 нм)		Изучение влияния реагентов на флотацию минералов с искусственно нанесенными НРЧ Аu или Pt	Флотомашина $V = 15 - 50$ мл (по вы- ходу продукта)
Адсорбция наноразмерных частиц (НРЧ) Рt на носи- тель из золя, полученного с	Пирротин флота- ционной крупности	Изучение влияния реагентов на флотацию Au и Pt из природной руды, в которую добавлен минерал, искус- ственно обогащенный HPЧ Au или Pt	Флотомашина V = 50 – 1000 мл Атомно-адсорбционный анализ про- дуктов флотации
или сульфида натрия (40-100 нм)		Изучение растворимости и устойчивости соединений Аu или Pt с реагентами	(РЭМ) LEO 1420VP (INCA350); Спектрофотометр UV-1700 Shimadzu
Синтез твердых трудно- растворимых сульфидов золота Au ₂ S или платины PtS ₂	Крупность частиц Аu ₂ S и PtS ₂ (0.1–3 мкм)	Изучение флотационных свойств реагентов при флота- ции руды с низким содержанием Au или Pt после до- бавления микро- или наночастиц AuS и PtS ₂	Флотомашина V = 15-50 мл или V = 50-1000 мл Атомно-адсорбционный анализ про- дуктов флотации
Напыление тонких слоев золота на установке Emi- tech K550X Sputter Coater	Электрод из пири- та	Изучение влияния собирателей на электрохимические свойства золота	Измерение электродных потенциалов пирита и золота

Реагент	Соотношение реагентов БКс : МТХ	Извлечен	ние FeS ₂ (Au), %
БКс		75.0	73.8
MTX		50.3	51.0
БКc + MTX	3:1	84.6	83.5
БКc + MTX	2:1	91.5	89.9
БКc + MTX	1:1	82.6	80.8

ТАБЛИЦА 2. Результаты флотации пирита, искусственно обогащенного НРЧ золота (1.8 мг Au/г), в присутствии собирателей МТХ и БКс и их сочетаний в параллельных опытах

ТАБЛИЦА 3. Влияние МТХ на флотацию золота из материала хвостов при добавлении пирита, искусственно обогащенного наночастицами золота

Продукт	Выход, %	Содержание Аи, г/т	Извлечение Au, %	Условия флотации*
Концентрат	31.4	170.74	61.84	рН — 5.5; БКс — 60 г/т;
Хвосты	68.6	48.22	38.16	МИБК — 50 г/т
Концентрат	22.99	181.45	53.79	рН — 5.5; МТХ — 40 г/т;
Хвосты	77.01	46.52	46.21	БКс — 20г/т; МИБК — 50 г/т
Концентрат	29.63	195.86	63.27	рН — 5.5; МТХ — 20 г/т;
Хвосты	70.37	47.64	36.73	БКс — 40 г/т; МИБК — 50 г/т

*Кондиционирование с МТХ — 7 мин, флотация — 5 мин

С помощью УФ- и ИК-методов исследования обнаружена адсорбция МТХ на измельченном золотосодержащем пирите из нейтральных и кислых водных растворов. Селективность адсорбции исследуемого реагента МТХ установлена электронно-зондовым анализом. Исследования проведены на частицах пирита (0.08-0.04 мм) с искусственно нанесенными микрочастицами золота со средним диаметром 0.5-2 мкм. После перемешивания минерала в растворе МТХ, его промывки водой и высушивания РЭМ-анализом визуально установлена приуроченность островков адсорбировавшегося реагента преимущественно к выделениям золота. На микрофотографии участка поверхности зерна пирита через тонкий слой реагента МТХ просвечивают частицы золота (рис. 5).

Рис. 5. РЭМ-изображение крупного новообразования золота (30 мкм) на пирите после контакта с реагентом МТХ (*a*); рентгеновский спектр темных участков поверхности, покрытых реагентом (б)

Исследования этого образца на лазерном микроскопе KEYNCE с VK-9700 позволили получить цветные изображения пленки соединения МТХ с Au на поверхности золотых частиц. При этом пирит имеет серую окраску, а сквозь коричневый ажурный слой поверхностного органического соединения просвечивает золотая частица. Метод конфокальной лазерной микроскопии позволил измерить толщину новообразования Аu и толщину пленки адсорбировавшегося на нем реагента (рис. 6).

Идентификация соединения, образовавшегося на поверхности минеральных частиц в условиях флотации, и соединения реагента МТХ с золотом, полученного в водном растворе, проводилась методом тонкослойной хроматографии (TCX). Использован пирит с содержанием золота около 10 мг/г. После десорбции соединения пирита смесью четыреххлористого углерода и диметилформамида полученный экстракт наносили на хроматографическую пластинку. Идентификацию соединений осуществляли путем одновременного хроматографирования анализируемого раствора и свидетелей – MTX, соединения, синтезированного на основе MTX и Na[AuCl₄], и смыва с поверхности минерала без реагента (рис. 7).

Рис. 6. УФ-спектр коричневого соединения МТХ с Au в четыреххлористом углероде (a); коричневая пленка соединения МТХ с золотом, нанесенным на частицу пирита (б). Изображение в реальном цвете, полученное на лазерном сканирующем микроскопе КЕУNCE с VK-9700 анализатором, позволяющим выполнять бесконтактное измерение неровности поверхности

Рис. 7. Идентификация полученного в водной среде соединения МТХ с Аи и соединения, образовавшегося на поверхности пирита, искусственно обогащенного золотом, на пластинке для тонкослойной хроматографии: *I* — синтезированное комплексное соединение MTX с Au в отношении 2:1; 2 — МТХ; 3 — экстракт с поверхности пирита, искусственно обогащенного золотом; 4 экстракт MTX с Au с поверхности пирита, искусственно обогащенного золотом

На хроматографической пластинке среди пятен, соответствующих компонентам смыва с минеральной поверхности, обнаружено пятно, отвечающее соединению MTX с Au. Таким образом, с помощью ТСХ показано, что исследуемый реагент способен закрепиться на поверхности Au^0 в виде соединения, которое идентично соединению, полученному в воде. 136

выводы

В работе предложены новые методики искусственного нанесения микро- и наночастиц Au и Pt на измельченные минералы, позволяющие получить образцы, имитирующие природные объекты, что обеспечивает возможность экспериментального изучения свойств новых реагентов, предназначенных для флотации благородных металлов.

Методом восстановительной адсорбции из растворов Na₂[PtCl₆] и Na[AuCl₄] получены образцы пирротина с равномерно нанесенными микрочастицами платины и образцы пирита, арсенопирита и кварца, искусственно обогащенные наноразмерными частицами (HP4) золота.

Рассмотрены области применения, методы исследования образцов и механизма взаимодействия реагента с микро- и наночастицами золота и платины в зависимости от условий обогащения сульфидов благородными металлами и свойств минерала носителя.

Комплекс современных методов исследования механизма взаимодействия реагента МТХ с золотом — электронная микроскопия, УФ- и ИК-фурье-спектроскопия, тонкослойная хроматография и флотационные исследования на пирите и хвостах флотации, искусственно обогащенных золотосодержащим пиритом, — подтвердили селективные свойства нового комплексообразующего собирателя МТХ по отношению к золоту за счет его химического взаимодействия с золотом.

СПИСОК ЛИТЕРАТУРЫ

- 1. Чантурия В. А., Иванова Т. А., Копорулина Е. В. О механизме взаимодействия диизобутилдитиофосфината натрия с платиной в водном растворе и на поверхности сульфидов // ФТПРПИ. — 2009. — № 2.
- 2. Чантурия В. А., Иванова Т. А., Копорулина Е. В. Методика оценки эффективности взаимодействия флотационных реагентов с золотосодержащим пиритом // Цв. металлы. — 2010. — № 8.
- 3. Таусон В. Л., Овчинникова О. И., Бессарабова О. И., Смагунов Н. В., Пастушкова Т. М. Распределение золота, осажденного при восстановительной адсорбции из раствора HAuCl₄ на кристаллах магнетита, сфалерита и галенита // Геология и геофизика. 2000. Т. 41. № 10.
- **4.** Губин С. П., Юрков Г. Ю., Катаева Н. А. Наночастицы благородных металлов и материалы на их основе. М.: ИОНХ им. Н.С. Курнакова, 2006.
- **5.** Гинзбург С. И., Гладышевская К. А., Езерская Н. А. и др. Руководство по химическому анализу платиновых металлов и золота. М.: Наука, 1965.
- 6. Романченко А. С., Михлин Ю. Л., Махова Л. В. Физика и химия стекла. 2007. Т. 33. № 4.
- 7. Синтез комплексных соединений металлов платиновой группы: справочник. М.: Наука, 1964.
- **8. Ершов Б. Г.** Наночастицы платины и палладия в водных растворах / Современные проблемы физической химии наноматериалов. М.: Граница, 2008.
- 9. Меретуков М. А. Природные наноразмерные частицы золота // Цв. металлы. 2006. № 2.
- **10.** Свиридов В. В., Воробьева Т. Н., Гаевская Т. В., Степанова Л. И. Химическое осаждение металлов из водных растворов. Минск: Университетское, 1987.
- **11.** Дыкман Л. А., Богатырев В. А., Щеголев С. Ю., Хлебцов Н. Г. Золотые наночастицы. Синтез, свойства, биомедицинское применение. М.: Наука, 2008.
- 12. Власов Н. Г., Ожогин Д. О., Орлова Н. И. и др. Методы оценки технологических свойств минералов и их поведение в технологических процессах. Петрозаводск: ИГ КарНЦ РАН, 2012.
- **13.** Чантурия В. А., Трубецкой К. Н., Викторов С. Д., Бунин И. Ж. Наночастицы в процессах разрушения и вскрытия геоматериалов. М.: ИПКОН РАН, 2006.
- 14. Чантурия В. А., Иванова Т. А., Недосекина Т. В., Гапчич А. О., Зимбовский И. Г. Способ флотации сульфидных руд, содержащих благородные металлы. Решение о выдаче патента по Заявке № 2012110118/(015150) пр. от 16.03.2012.