УДК 536.46

ВЗРЫВНЫЕ ХАРАКТЕРИСТИКИ НАНОЧАСТИЦ ПОЛИМЕТИЛМЕТАКРИЛАТА

В. Гао, Ц. Ли, Ю. Ли, С.-Ц. Янь, Цз.-Л. Юй, С.-Я. Чжан

Даляньский технологический университет, 116024 Далянь, Ляонин, Китай, gaoweidlut@dlut.edu.cn

Экспериментально исследованы взрывчатые свойства порошков частиц полиметилметакрилата (ПММА) диаметром 100, 800 нм и 30 мкм. Установлено, что при низкой концентрации, благодаря высокой удельной поверхности, максимальная скорость роста давления взрыва и его значения для частиц размером 100 нм значительно больше, чем у частиц размером 800 нм и 30 мкм. При концентрации больше 250 г/м³ интенсивность взрыва частиц размером 100 нм становится меньше, чем у частиц размером 800 нм, но остается выше, чем у 30-микронных частиц, из-за склонности первых к агломерации. Наибольшие значения давления взрыва увеличиваются с ростом концентрации для всех типов частиц, достигая максимума при концентрации 250 г/м³, но при концентрации больше 500 г/м³ они меняются незначительно. В соответствии с классификацией материалов на основе индекса дефлаграции наночастицы ПММА представляют бо́льшую опасность взрыва и дают бо́льшую его интенсивность, чем частицы микронного размера.

Ключевые слова: взрыв пыли, наночастицы ПММА, максимальное давление взрыва, индекс дефлаграции, эффект агломерации.

DOI 10.15372/FGV20160116

ВВЕДЕНИЕ

Наноматериалы широко используются в различных областях: при производстве магнитных материалов для записи информации, материалов солнечных батарей, высокопрочной керамики и т. д. Однако по сравнению с микроматериалами они имеют бо́льшую удельную поверхность, бо́льшую поверхностную энергию и большее число атомов на поверхности частицы по отношению к числу атомов в объеме частицы, что ведет к потенциальной опасности возникновения взрыва.

Предыдущие исследования в основном были сосредоточены на определении избыточного давления и скорости его нарастания при взрыве металлических наночастиц. Авторы работы [1] пришли к заключению, что давление при взрыве пыли наночастиц алюминия безусловно выше, чем при взрыве частиц микронного размера. Кроме того, они предположили, что высокая удельная поверхность частиц прямо влияет на поступление кислорода к ним и, следовательно, определяет развитие взрыва. В работах [2, 3] установлено, что уменьшение размера частиц увеличивает риск воспламенения и

взрыва нанопыли. В [4] отмечалось, что во многих исследованиях воспламеняемости и взрывчатости металлической пыли отсутствует информация о размере частиц высокодисперсной фракции, между тем такие измерения необходимы, по крайней мере для частиц размером вплоть до 1 мкм. В [5] не обнаружено явного различия в максимальном давлении взрыва и скорости его нарастания при изменении диаметра наночастиц, в то время как для частиц микронного размера максимальное давление взрыва быстро уменьшается с ростом их размера. В [6] установлено, что интенсивность взрыва наночастиц не обязательно будет больше, чем взрыва микрочастиц, из-за сильного взаимодействия между частицами, которое приводит к их сильной агломерации. В работе [7] показано, что большинство наночастиц могут быть агрегированы и характерный размер агрегированных частиц может стать доминирующим фактором при взрыве пыли.

В настоящее время взрывные характеристики органических наночастиц изучены намного меньше по сравнению с металлическими наночастицами. В данной работе исследуется различие взрывных характеристик микро- и наночастиц полиметилметакрилата (ПММА) и, кроме того, влияние агломерации частиц размером 100 и 800 нм на эти характеристики.

[©] Gao Wei, Li Jian, Li Yue, Yan Xingqing, Yu Jianliang, Zhang Xinyan, 2016.

School of Chemical Machinery, Dalian University of Technology, 116024 Dalian, China.

ЭКСПЕРИМЕНТ

Схема экспериментальной установки показана на рис. 1. Двухслойная взрывная камера объемом 20 л сконструирована согласно требованиям ASTM E1226 [8] и изготовлена из нержавеющей стали. Для установления начальной температуры в камере перед опытом ее оболочку заполняли водой или другой жидкостью. Подача пыли осуществлялась сжатым воздухом при давлении p = 15 бар через быстродействующий клапан в нижней части камеры. Чтобы избежать эффектов пересжатия, для инициирования взрыва использовали химический воспламенитель с энергией 0.5 кДж [9–12]. Эксперименты проводили при давлении 1.01 бар и температуре окружающей среды 25 °C следующим образом. После установки воспламенителя и заполнения камеры для порошка нужным количеством частиц ПММА 20-литровую камеру вакуумировали до давления 0.6 бар. Затем камеру для порошка заполняли воздухом под давлением 15 бар. После этого открывался быстродействующий клапан, и через 60 мс инициировался воспламени-

Рис. 1. Схема сферической взрывной камеры:

1 — химический воспламенитель, 2 — электроды, 3 — выводы воспламенителя, 4 — ввод воды, 5 — герметичное вентиляционное отверстие, 6 — отбойник, 7 — вентиль для газа и порошка, 8 — камера для порошка, 9 — датчик давления, 10 — линия повышенного давления, 11 — выход воды, 12 — вакуумированная линия, 13 — выпускной вентиль, 14 — датчик давления

Молекулярная структура	Марка образца	Заданный размер частиц
	MP-300 MX-80H3wT MZ-30H	100 нм 800 нм 30 мкм

Таблица 1 Характеристики частиц ПММА

тель.

Для экспериментов использовали частицы ПММА, поставленные фирмой Soken Chemical Co., Ltd. Характеристики частиц представлены в табл. 1. Распределение частиц по размерам получено на Malvern Mastersizer 2000 и приведено на рис. 2, а также в табл. 2. Из гистограммы видно, что для частиц ПММА размерами $d_p = 30$ мкм и 800 нм расхождение между измеренными и регламентированными фирмой величинами незначительное. Однако оно оказалось существенным для частиц размером 100 нм. Например (см. табл. 2), средние диаметры Саутера D_{3.2} для трех видов частиц ПММА равны 10.486, 0.870 и 24.080 мкм. На основании этих результатов сделан вывод, что сильное взаимодействие между 100нанометровыми частицами приводит к их агломерации, в результате чего регистрируются бо́льшие диаметры, чем указаны в паспорте поставки. Регистрацию микроструктуры частиц и измерение их диаметров проводили с использованием сканирующего электронного микро-

Рис. 2. Распределение частиц по размерам

Рис. 3. Фотографии со сканирующего электронного микроскопа частиц ПММА различных диаметров

Таблица 2	2
Измеренные гранулометрические характеристики	
частиц ПММА	

Марка образца	Диаметр, мкм					
	$D_{4,3}$	$D_{3,2}$	D[10]	D[50]	D[90]	
МР-300 (100 нм)	24.9	10.5	6.2	22.5	46.8	
MX-80H3wT (800 нм)	0.97	0.9	0.6	0.9	1.4	
MZ-30H (30 мкм)	28.974	24.1	16.5	24.5	43.2	

 Π римечания. $D_{4,3}$ и $D_{3,2}$ — средние диаметры, вычисляемые по формуле

$$D_{m,n} = \sqrt[m-n]{\left(\sum_{i=1}^{k} D_i^m N_i\right) / \left(\sum_{i=1}^{k} D_i^n N_i\right)}$$

где m, n — целые числа, задающие порядок среднего диаметра, k — число размерных интервалов в гистограмме, N_i — число частиц в *i*-м интервале гистограммы, D_i — середина *i*-го интервала. Числовые параметры D[10], D[50], D[90] характеризуют кумулятивные функции распределения по размерам объемной (в процентах) доли частиц. Так, например, значение D[10] = 6.2 мкм показывает, что суммарный объем частиц размером мельче 6.2 мкм составляет 10 % общего объема всех частиц, остальное — частицы крупнее этого размера.

скопа. Как видно из представленных на рис. 3 фотографий, частицы всех трех типов сферические.

Для определения термостабильности частиц ПММА рассматриваемых размеров проведен термогравиметрический анализ при скорости нагрева 10 К/мин (рис. 4). Видно, что частицы номинального размера 800 нм начинают разлагаться раньше, чем частицы двух других типов, при этом максимальная скорость потери массы лежит в диапазоне температуры $T = 250 \div 300$ °C. В отличие от этого, скорость

Рис. 4. Кривые ТГА (10 К/мин) для частиц ПММА различных диаметров

разложения частиц размером 100 нм оказалась наименьшей из-за сильной связи между частицами. При T > 500 °C потеря массы частиц всех трех типов достигла $m/m_0 = 100$ %.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Характер изменения давления

Профили давления при взрыве пыли в камере при различных концентрациях частиц представлены на рис. 5. Каждый эксперимент повторялся по меньшей мере три раза.

Из рис. 5, *a* следует, что при концентрации $C = 100 \text{ г/m}^3$ раньше всего инициируется взрыв в смеси частиц размером 800 нм, но скорость роста давления и его максимум меньше, чем у 100-нанометровых частиц ($p_{\text{max}} = 6.6$ бар). Максимальное давление при взры-

Рис. 5. Профили давления при концентрации пыли 100 (a), 250 (b), 500 (c) и 750 г/м³ (c)

ве 30-микронных частиц ПММА оказалось минимальным среди всех типов частиц: $p_{\text{max}} =$ 3.5 бар. С одной стороны, после того как частицы полностью диспергируются, влияние агломерации уменьшается из-за увеличения расстояния между взвешенными частицами при более низких концентрациях. С другой стороны, достаточное количество кислорода контактирует с большей площадью 100-нанометровых частиц, обеспечивая бо́льшую полноту сгорания частиц. Оба этих обстоятельства приводят к росту максимального давления взрыва и скорости повышения давления.

При увеличении концентрации до 250 г/m^3 развитие взрыва пыли 800-нанометровых частиц проходит практически так же, как у частиц размером 100 нм, но максимальное давление при этом больше, чем при взрыве 100-нанометровых частиц. Следует заметить, что хотя максимальное давление у всех трех типов частиц достигается при $C = 250 \text{ г/m}^3$, оно, а также скорость роста давления остаются выше, чем при взрыве микрочастиц ПММА любой концентрации.

Ограниченное количество кислорода в камере приводит к неполному взрыву распыленных частиц при дальнейшем росте концентрации до 500 и 750 г/м³, что, в свою очередь, уменьшает время горения (от инициирования до достижения p_{max} , см. рис. 5,*6*,*г*). При этом максимальное давление несколько уменьшается по сравнению со взрывом частиц с концентрацией 250 г/м³. Отметим, что развитие взрыва 800-нанометровых частиц происходит быстрее, чем частиц размером 100 нм и 30 мкм, из-за высокой скорости разложения, что находится в соответствии с результатами термогравиметрического анализа. Развитие взрыва при $C > 500 \text{ г/м}^3$ мало меняется, поэтому результаты при $C = 1\,000$ г/м³ в работе не приведены, хотя взрыв также происходил.

Наночастицы обладают большей удельной поверхностью и более высокой поверхностной энергией по сравнению с микрочастицами. При низкой концентрации пыли между взвешенными частицами достаточно большое расстояние. В результате интенсивность взрыва наночастиц существенно зависит от их диаметра. В противоположность этому, при высокой концентрации частиц небольшое расстояние между ними и высокая поверхностная энергия оказывают благоприятное влияние на агломерацию наночастиц, что приводит к снижению скорости роста давления и его максимального значения. В целом интенсивность взрыва наночастиц ПММА больше, чем частиц микронного размера.

Максимальное давление взрыва

Зависимость максимального давления взрыва от концентрации пыли показана на рис. 6. При $C < 200 \text{ г/m}^3$ (зона I) максимальное давление взрыва возрастает с уменьшением размера частиц из-за меньшего влияния агломерации.

Максимальное давление взрыва частиц всех трех диаметров наблюдается в диапазоне $C = 200 \div 500$ г/м³ (зона II), т. е. при меньшей концентрации, чем у металлических частиц. С увеличением концентрации пыли ограниченный запас кислорода в камере приводит к меньшей скорости горения и в результате к взрыву с меньшей интенсивностью. При дальнейшем росте концентрации частиц и, соответственно, уменьшении концентрации кислорода в камере до определенного предела исследуе-

Рис. 6. Зависимость максимального давления от концентрации пыли

мые параметры взрыва практически не меняются (зона III на рис. 6). На практике сгорание было устойчивым при концентрации кислорода в воздухе выше 10 %.

Индекс дефлаграции

Максимальная скорость роста давления зависит от объема камеры. Произведение максимальной скорости роста давления на корень кубический из объема является постоянным (кубический закон) и называется индексом дефлаграции (K_{st}) [13, 14]:

$$\left(\frac{dp}{dt}\right)_{\max} V^{1/3} = \text{const} \equiv K_{st}.$$

Здесь V — объем камеры. В действительности, K_{st} зависит от скорости горения и пикового давления и может использоваться для сравнения и оценки горения частиц разных диаметров.

На рис. 7 показана зависимость K_{st} от концентрации пыли ПММА. При любой концентрации частиц размером 30 мкм K_{st} < 100 бар · м/с, однако для частиц ПММА диаметром 100 и 800 нм K_{st} > 150 бар · м/с при всех экспериментальных концентрациях, за исключением C = 100 г/м³. Хотя значение K_{st} было самым большим для частиц размером 100 нм при C = 250 г/м³, интенсивность взрыва этих частиц ниже, чем 800-нанометровых при других концентрациях. На этом основании

Рис. 7. Зависимость параметра K_{st} от концентрации пыли

Таблица З

· · ·							
K_{st} , бар · м/с	Ранг	Интенсивность	Рост взрываемости				
$0 < K_{st} < 200$	Группа St1	Слабая					
$200 \leqslant K_{st} < 300$	Γ руппа St2	Сильная	\downarrow				
$K_{st} \geqslant 300$	Γ руппа St3	Очень сильная					

сделан вывод, что поверхностная энергия связи и межатомные силы стимулируют агломерацию частиц пыли диаметром 100 нм, что влияет на интенсивность взрыва.

В соответствии с критерием интенсивности взрывов пыли K_{st} , в Испытательном центре Германии по исследованию взрыва пыли материалы были разделены на три группы по степени взрывоопасности (табл. 3). Несмотря на то, что частицы размером 800 и 100 нм отнесены к одной и той же группе, при низкой концентрации риск взрыва выше у 100нанометровых частиц пыли, что, очевидно, отличается от результатов экспериментов с наночастицами металла.

В работе [2] установлено, что при взрыве алюминиевого порошка с размером частиц 200 нм максимальное давление намного больше, чем при взрыве порошка с размером частиц 100 нм (рис. 8). На интенсивность взрыва наночастиц органических веществ существенное влияние оказывает также степень агломерации. В [15] выдвинуто предположение, что порошки содержат определенное число связей между частицами и, за исключением тех слу-

Рис. 8. Взрывные характеристики наночастиц ПММА и алюминия

чаев, когда агломераты частиц подвергаются воздействию очень больших сил сдвига, эти связи не могут быть разрушены. Именно поэтому агломерация в описанных выше экспериментах играла значительную роль при взрыве наночастиц ПММА.

ЗАКЛЮЧЕНИЕ

Среди всех типов исследованных частиц ПММА при низкой концентрации пыли скорость роста давления и пик давления достигают максимальных значений при взрыве частиц размером 100 нм из-за меньшего влияния агломерации. Наоборот, при высокой концентрации частиц усиление агломерации приводит к тому, что максимальное давление при взрыве 800-нанометровых частиц больше, чем 100-нанометровых. Эти результаты отличаются от наблюдаемых в экспериментах с металлическими наночастицами.

Максимальное давление взрыва всех трех типов частиц достигается при концентрации 250 г/м³. При концентрациях, бо́льших 500 г/м³, давление становится постоянным. Согласно критерию K_{st} частицы размером 800 и 100 нм относятся к группе более опасных (St2 в табл. 3). Это означает, что при промышленном использовании следует уделять больше внимания предотвращению взрывов пыли из наночастиц.

Авторы выражают благодарность Фонду фундаментальных исследований ведущих университетов Китая (NO. DUT14RC (3)061) и Китайскому фонду поддержки докторских диссертаций (№ 201 4М560213) за финансовую помощь, а также компании «Soken Chemical Co., Ltd» за предоставленные образцы частиц ПММА.

ЛИТЕРАТУРА

1. Li W. X., Wei W. J. Experimental study on the explosive characteristics of nano-aluminum pow-

Классификация взрывов пыли

der // J. China Univ. Min. Technol. — 2010. — V. 39, N 4. — P. 475–479.

- Bouillard J., Vignes A., Dufaud O., Perrin L., Thomas D. Ignition and explosion risks of nanopowders // J. Hazard. Mater. 2010. V. 181, N 1-3. P. 873–880.
- Dufaud O., Vignes A., Herry F., Perrin L., Bouillard J. Ignition and explosion of nanopowders: something new under the dust // J. Phys.: Conf. Ser. — 2011. — V. 304. — 012076. — (Intern. Conf. on Safe Production and Use of Nanomaterials, 2011).
- Eckhoff R. K. Dust explosion hazards in the ferro-alloys industry // Proc. 52nd Electric Furnace Conf., November, 13–16 1994, Nashville, TN, USA. — Warrendale, PA, USA: The Iron and Steel Soc. Inc., ISBN 0-932897-97-5, 1995. — P. 283– 302.
- Li Q. Z., Lin B. Q., Li W. X., Zhai C., Zhu C. Explosion characteristics of nanoaluminum powder-air mixtures in 20 L spherical vessels // Powder Technol. — 2011. — V. 212, N 2. — P. 303–309.
- Eckhoff R. K. Does the dust explosion risk increase when moving from μm-particle powders to powders of nm-particles // J. Loss Prev. Process Ind. 2012. V. 25, N 3. P. 448–459.
- Dobashi R. Risk of dust explosions of combustible nanomaterials // J. Phys.: Conf. Ser. — 2009. — V. 170. — 012029. — (Intern. Conf. on Safe Production and Use of Nanomaterials, 2009).

- E1226. Standard Test Method for Explosibility of Dust Clouds / Amer. Soc. for Testing Materials. — West Conshohocken, USA, 2010.
- Dastidar A. G., Amyotte P. Explosibility boundaries for fly ash/pulverized fuel mixtures // J. Hazard. Mater. — 2002. — V. 92, N 2. — P. 115–126.
- Meyers T. J. Reducing aluminum dust explosion hazards: case study of dust inerting in an aluminum buffing operation // J. Hazard. Mater. 2008. V. 159, N 1. P. 72–80.
- Yan X. Q., Yu J. L. Dust explosion venting of small vessels at the elevated static activation overpressure // Powder Technol. — 2014. — V. 261. — P. 250–256.
- Gao W., Zhong S. J., Miao N., Liu H. Y. Effect of ignition on the explosion behavior of 1-Octadecanol/air mixtures // Powder Technol. — 2013. — V. 241. — P. 105–114.
- Bartknecht W. Brenngas- und Staubexplosionen, Forschungsbericht F45.Koblenz Bundesinstitut f
 ür Arbeitsschutz. — Federal Republic of Germany, 1978.
- Bartknecht W. Explosionen, Ablauf und Schutzmassnahmen. — Berlin: Springer Verlag, 1981.
- Eckhoff R. K. Understanding dust explosions. The role of powder science and technology // J. Loss Prev. Process Ind. — 2009. — V. 22. — P. 105–116.

Поступила в редакцию 11/IX 2014 г., в окончательном варианте — 9/III 2015 г.