УДК 620.178.6

РАЗВИТИЕ УСТАЛОСТНЫХ ТРЕЩИН СМЕШАННОГО ТИПА В ОБРАЗЦАХ ИЗ СТАЛИ

В. М. Тихомиров, П. Г. Суровин

Сибирский государственный университет путей сообщения, 630049 Новосибирск

На образцах из рельсовой стали проведены экспериментальные исследования развития усталостных трещин смешанного типа. Изучалось направление роста усталостных трещин при трех видах нагружения: знакопеременном поперечном сдвиге, поперечном и продольном сдвигах при сжимающих напряжениях. Для всех исследованных образцов установлена общая закономерность развития усталостных трещин: направление роста трещин совпадает с направлением траектории главных напряжений, минимальных по модулю.

Ключевые слова: усталостная трещина, поперечный сдвиг, продольный сдвиг.

В механике разрушения различают три основных типа трещин по виду их нагружения: 1) трещина нормального отрыва; 2) трещина поперечного сдвига; 3) трещина продольного сдвига. В отличие от трещин 1-го типа механизмы распространения усталостных трещин 2-го, 3-го и смешанного типов изучены недостаточно. Известно, что направление развития таких трещин не совпадает с направлением первоначально инициированного надреза (трещины). Существуют различные критерии определения этого направления — так называемые локальные критерии, основанные на асимптотическом распределении напряжений в окрестности вершины трещины или острого надреза [1, 2]. Экспериментальные исследования докритического роста и дальнейшего неустойчивого распространения трещин смешанного типа подтвердили справедливость предложенных критериев для хрупких материалов (плексигласа, стекла) [3].

Направление развития трещин смешанного типа в конструкционных материалах (стали, сплавах алюминия) при циклическом нагружении отличается от направления развития в случае медленного подрастания трещин при статическом приложении усилий [4, 5]. Однако практически все известные эксперименты проводились при знакопостоянном цикле нагружения. Также недостаточно исследовано распространение усталостных трещин в зоне сжимающих номинальных напряжений.

В реальных конструкциях, например при взаимодействии колеса и железнодорожного рельса, в основном наблюдаются знакопеременные циклические нагрузки, а усталостные трещины развиваются в зоне преимущественно сжимающих напряжений. В данной работе на образцах, изготовленных из рельсовой стали, проведены исследования роста усталостных трещин трех типов: 1) поперечный сдвиг при знакопеременном цикле нагружения; 2) поперечный сдвиг в зоне сжимающих номинальных напряжений; 3) продольный сдвиг в зоне сжимающих номинальных напряжений.

1. Направление роста эллиптических трещин. Направление роста трещины из дефектов, радиус кривизны которых в вершине не равен нулю, определяется напряженным состоянием вблизи вершины. Рассмотрим задачу о сложном нагружении бесконечной пластины с эллиптическим отверстием (рис. 1), моделирующим трещину, в вершине которой наблюдается пластическая деформация.

Рис. 1. Схема нагружения пластины с эллиптическим отверстием

Воспользуемся известным решением задачи о растяжении напряжением p, приложенным на бесконечности, пластины с эллиптическим вырезом, большая ось которого наклонена к оси растяжения под углом β [6]. Окружные напряжения σ_{θ} на контуре выреза определяются следующей зависимостью:

$$\sigma_{\theta} = p \frac{1 - \cos 2(\theta - \beta) + m^2 + 2m \cos 2\beta}{1 - 2m \cos 2\theta + m^2}.$$

Здесь $m = (a - b)/(a + b); \theta$ — полярная координата контура эллипса при его конформном отображении на окружность; a, b — большая и малая полуоси эллипса.

Для того чтобы построить решение рассматриваемой задачи, просуммируем решение для четырех случаев нагружения: 1) $p = \tau_{yx}$, $\beta = 45^{\circ}$; 2) $p = -\tau_{yx}$, $\beta = -45^{\circ}$; 3) $p = \sigma_y$, $\beta = 90^{\circ}$; 4) $p = \sigma_x$, $\beta = 0$. В результате получим

$$\sigma_{\theta} = \frac{\sigma_y (1 + 2\cos 2\theta - m^2 - 2m) + \sigma_x (1 - 2\cos 2\theta - m^2 + 2m) - 4\tau_{yx} \sin 2\theta}{1 - 2m\cos 2\theta + m^2}.$$
 (1)

Считаем, что разрушение начинается в точке контура отверстия, где окружное напряжение достигает максимального значения. Из выражения (1) получим условие для определения положения максимума σ_{θ} :

$$\sin 2\theta [\sigma_x (1-m^2) - \sigma_y (1+m)^2] (1-m) - 2\tau_{yx} [\cos 2\theta (1+m^2) - 2m] = 0.$$
⁽²⁾

Если предположить, что трещина растет в направлении нормали к контуру отверстия, то для определения направления старта трещины (угла φ) можно использовать зависимость, приведенную в работе [7]:

$$\varphi = \operatorname{arctg}\left(\frac{1+m}{1-m} \operatorname{tg}\theta\right). \tag{3}$$

Выразив в уравнении (2) $\cos 2\theta$ и $\sin 2\theta$ через tg θ , получим

$$\operatorname{tg} \theta = \frac{1-m}{1+m} \frac{\sigma_y(1+m) - \sigma_x(1-m) - \sqrt{[\sigma_y(1+m) - \sigma_x(1-m)]^2 + 4\tau_{yx}^2}}{2\tau_{yx}}.$$
 (4)

Окончательно имеем

$$\operatorname{tg}\varphi = \frac{\sigma_y(1+m) - \sigma_x(1-m) - \sqrt{[\sigma_y(1+m) - \sigma_x(1-m)]^2 + 4\tau_{yx}^2}}{2\tau_{yx}}.$$
(5)

Из выражения (4) следует, что при m = 1, когда эллипс вырождается в трещину, в формуле (3) имеет место неопределенность типа "ноль на ноль", которую можно раскрыть с помощью асимптотического решения [1].

Рассмотрим случай острого надреза, когда $m \approx 1$. Из соотношения (5) следует, что на величину угла φ не влияет напряжение σ_x , действующее вдоль большой оси эллипса. Если в этом случае пластина растягивается напряжением на бесконечности в направлении β , то, подставив соотношения $\sigma_x = p \cos^2 \beta$, $\sigma_y = p \sin^2 \beta$, $\tau_{yx} = p \sin \beta \cos \beta$ в уравнение (5), получим

$$\varphi = (\beta - \pi/2)/2, \qquad \beta \neq 0. \tag{6}$$

Аналогичное соотношение получено в работе [3].

Направление роста трещины при чистом сдвиге определим по формуле (5), положив $\sigma_y = 0, \sigma_x = 0$. В этом случае при любом $m \neq 1$ угол $\varphi = -45^{\circ}$.

Результаты экспериментов, полученные при статическом растяжении пластин из органического стекла на основе полиметилметакрилата с наклонными прямолинейными вырезами [8], не соответствуют решению (6). Экспериментальные данные удовлетворительно описываются асимптотическим решением с дополнительным слагаемым, учитывающим влияние напряжения σ_x [8], а также с использованием градиентного критерия разрушения [6].

2. Развитие усталостных трещин смешанного типа при знакопеременном нагружении. Для изучения роста трещин смешанного типа испытывались образцы, геометрия которых показана на рис. 2. В пластине имелось два симметрично расположенных надреза шириной 0,8 мм и длиной L = 45, 60 мм. При циклическом нагружении из четырех концентраторов (рис. 2) развивались усталостные трещины. С помощью специального приспособления образцы предварительно растягивались усилием 50 кH, затем на гидравлическом пульсаторе ГРМ-1 осуществлялось циклическое нагружение ($P_{\text{max}} = -20$ кH, $P_{\text{min}} = -80$ кH). Реальное нагружение образца контролировалось с помощью четырех симметрично расположенных тензодатчиков и составляло $P_{\text{max}} = 30$ кH, $P_{\text{min}} = -30$ кH

Рис. 3. Вид усталостных трещин, развивающихся из вершины надреза (концентратор 1):

a — трещина в образце 1 после 53 тыс. циклов нагружения (L = 45 мм); b — трещина в образце 2 после 100 тыс. циклов нагружения (L = 60 мм)

На разных этапах испытания с помощью микроскопа фиксировались направление и длина усталостных трещин, развивающихся из четырех концентраторов. На рис. 3, *а* показан вид усталостной трещины вблизи вершины надреза (концентратор 1 на рис. 2) после 53 тыс. циклов нагружения. Видно, что из вершины надреза развиваются две усталостные трещины. Радиус закругления в вершине концентратора равен 0,5 мм.

В другом эксперименте радиус закругления у вершины надреза был уменьшен до 0,15 мм, длина надреза составляла L = 60 мм. Направление развития усталостных трещин в этом образце практически не изменилось (рис. 3, δ). Скорость роста трещин при тех же параметрах цикла нагружения возросла примерно в три раза по сравнению с первым образцом.

Из результатов численного расчета напряженно-деформированного состояния исследуемой пластины методом конечных элементов следует, что усталостные трещины зарождаются в зонах наибольшей концентрации растягивающих напряжений. В течение первой половины цикла нагружения, когда пластина растягивается, направление нормали к траектории максимального главного напряжения σ_1 соответствует направлению роста левой усталостной трещины (см. рис. 3), в течение второй половины цикла, когда осуществляется сжатие образца, — направлению развития правой трещины. Таким образом, усталостные трещины развиваются в тех направлениях, в которых отсутствует сдвиг.

В работе [4] предполагается, что рост усталостных трещин происходит в направлении так называемого вектора перемещения вершины трещины. Из данного предположения следует, что угол φ меняется в пределах от 0 (трещина нормального отрыва) до 45° (трещина чистого сдвига). Эти выводы не согласуются с экспериментальными данными, полученными в настоящей работе.

В таблице представлены экспериментальные данные о направлении роста усталостных трещин, полученные при совместном циклическом растяжении и кручении тонкостенных труб с острыми надрезами [5], результаты расчета угла φ в соответствии с критерием, принятым в [4], а также результаты вычисления угла ψ между направлением номинальных напряжений σ_3 , действующих в данных образцах, и большой полуосью надреза по формуле

$$\operatorname{tg} 2\psi = 2\Delta\tau/\Delta\sigma$$

 $(\Delta \sigma, \Delta \tau - \text{амплитуды напряжений при растяжении и кручении образцов соответственно}).$

Номер образца	Параметры нагружения		$\varphi,$ град		,
	$\Delta \sigma$, MIIa	$\Delta \tau$, ΜΠα	Экспериментальные данные [5]	Результаты расчета по [4]	ψ , град
1	113,5	25,3	12,0	10,3(14,2)	12,0(0)
2	86,0	49,7	$24,\!6$	20,1 (18,3)	24,57(0,1)
3	31,5	67,9	38,5	34,3(10,9)	38,5(0)
4	0	62,8	45,0	45,0(0)	45,0(0)

Примечание. В скобках указано отличие (в процентах) численных результатов от экспериментальных данных.

Рис. 4. Вид усталостной трещины после 480 тыс. циклов нагружения

Результаты, приведенные в таблице, позволяют сделать вывод, что усталостные трещины смешанного типа развиваются в направлении действия номинальных главных напряжений σ_3 . Следует отметить, что при чистом сдвиге ($\Delta \sigma = 0$) величина угла φ незначительно отличается от значений, полученных по формуле (5).

3. Развитие усталостных трещин поперечного сдвига при сжимающих напряжениях. С целью исследования зарождения и развития усталостных трещин поперечного сдвига при сжимающих напряжениях проведено испытание стальной пластины с размерами $100 \times 100 \times 8$ мм. В центре пластины, изготовленной из рельсовой стали, имелась сквозная прорезь длиной 40 мм под углом 43° к направлению нагружения (рис. 4). При этом надрез имитировал трещину поперечного сдвига в условиях сжатия берегов.

Испытания проводились при следующих параметрах цикла нагружения: $P_{\text{max}} = -20 \text{ kH}$, $P_{\text{min}} = -100 \text{ kH}$, частота нагружения 600 цикл/мин (10 Гц). После 180 тыс. циклов зафиксированы усталостные трещины, развивающиеся из вершин надреза и направленные под углом 42,9° к первоначальному направлению надреза. В дальнейшем трещины распространялись в том же направлении и после 480 тыс. циклов достигали размеров $1,0 \div 1,6$ мм (рис. 4). При увеличении амплитуды цикла в 1,56 раза направление развития трещин не изменилось, а после 200 тыс. циклов нагружения длина усталостной трещины увеличилась на 2 мм. Таким образом, скорость ее роста возросла почти в три раза.

Численный расчет на основе конечно-элементной модели данного образца показал, что рост усталостной трещины происходит в направлении, перпендикулярном направле-

Рис. 5. Распределение минимальных главных напряжений σ_3

Рис. 6

нию действия минимальных главных напряжений σ_3 в вершине концентратора. На рис. 5 показано распределение главных напряжений при сжимающей нагрузке 100 кН. Вблизи вершины надреза концентрация сжимающих напряжений почти в 2,5 раза больше концентрации растягивающих напряжений. Усталостная трещина зарождается в зоне максимальных сжимающих напряжений, в отличие от случая, рассмотренного в п. **2**.

Исследование излома образца после разрушения показало, что усталостная трещина развивалась в одной плоскости. Фронт трещины оказался вогнутым. Таким образом, усталостная трещина поперечного сдвига в зоне сжимающих напряжений начинает движение со свободной поверхности образца, в отличие от усталостных трещин нормального отрыва, движение которых начинается в срединной плоскости пластины [1].

4. Развитие усталостных трещин продольного сдвига при сжимающих напряжениях. Для исследования усталостных трещин продольного сдвига испытывался образец, который отличался от рассмотренного в п. 3 только типом концентратора. В пластине ($100 \times 100 \times 8$ мм) с каждого края были выполнены два острых надреза, расположенных под углом 45° в плоскости пластины (рис. 6). При этом надрез глубиной 20 мм имитировал трещину продольного сдвига в условиях сжатия берегов.

На рис. 7 показан излом образца после 200 тыс. циклов нагружения ($P_{\text{max}} = -20$ кH, $P_{\text{min}} = -100$ кH). С одной стороны усталостная трещина выросла на $6 \div 7$ мм, с другой — на $3 \div 4$ мм.

Рис. 7. Вид усталостной трещины при продольном сдвиге

Изучение поверхности усталостной трещины после разрушения образца показало, что на начальном этапе зарождается множество трещин, ориентированных под углом $50 \div 30^{\circ}$ к плоскости образца и распространяющихся в различных направлениях. По мере продвижения трещины сливаются, меняют ориентацию и направление роста. В конечном счете фронт усталостной трещины становится плоским и движется в направлении, перпендикулярном направлению приложения нагрузки.

5. Выводы. Результаты проведенных исследований позволяют сделать следующие выводы.

Трещины смешанного типа стремятся в процессе роста ориентироваться в поле напряжений таким образом, чтобы отсутствовал сдвиг берегов трещины.

Когда концентрации растягивающих и сжимающих напряжений одного порядка (образцы 1-го типа), усталостная трещина растет в направлении, перпендикулярном направлению действия максимальных главных напряжений.

Когда концентрация сжимающих напряжений выше концентрации растягивающих, усталостная трещина развивается в направлении, перпендикулярном направлению действия минимальных главных напряжений (образцы 2-го и 3-го типов).

В исследованных случаях усталостная трещина в конечном счете развивалась в направлении касательной к траектории минимальных по модулю главных напряжений (либо σ_3 , либо σ_1).

В образцах с острыми надрезами в однородном поле напряжений усталостные трещины в основном растут в одном направлении, которое даже в момент старта не совпадает с направлением, определенным по асимптотическим локальным критериям.

Усталостные трещины в поле сжимающих циклических напряжений начинают движение из точек, лежащих на свободной поверхности образца, где реализуется плоское напряженное состояние.

ЛИТЕРАТУРА

- 1. Партон В. З., Морозов Е. М. Механика упругопластического разрушения. М.: Наука, 1985.
- 2. Шлянников В. Н. Смешанные моды развития трещин при сложном напряженном состоянии (обзор) // Завод. лаб. 1990. Т. 56, № 6. С. 77–90.
- Erdogan F., Sih G. C. On the crack extension in plates under plane loading and transverse shear // Trans. ASME. J. Basic Engng. 1963. N 85. P. 519–527.
- Chingshen Li. Vector CTD criterion applied to mixed mode fatigue crack growth // Fatigue Fract. Mater. Struct. 1989. V. 12, N 1. P. 59–65.
- Yokobori A. T., Yokobori T., Sato K., Syoji K. Fatigue crack growth under mixed mode I and II // Fatigue Fract. Mater. Struct. 1985. V. 8, N 8. P. 315–325.

- 6. **Мусхелишвили Н. И.** Некоторые основные задачи математической теории упругости. М.: Наука, 1966.
- 7. **Леган М. А.** Определение разрушающей нагрузки, места и направления разрыва с помощью градиентного подхода // ПМТФ. 1994. Т. 35, № 5. С. 117–124.
- Williams J. G., Ewing P. D. Fracture under complex stress the angled crack problems // Intern. J. Fract. Mech. 1972. V. 8, N 4. P. 441–446.

Поступила в редакцию 18/IV 2003 г.