2015. Том 56, № 3

Май – июнь

C. 556 – 564

УДК 541.6:541.49

МОДЕЛИРОВАНИЕ РЕНТГЕНОВСКИХ ЭМИССИОННЫХ И ФОТОЭЛЕКТРОННЫХ СПЕКТРОВ H₂Pc С ПОМОЩЬЮ МЕТОДА ФУНКЦИОНАЛА ПЛОТНОСТИ

Г.И. Семушкина¹, Л.Н. Мазалов^{1,3,4}, С.А. Лаврухина¹, Т.В. Басова¹, Р.В. Гуляев²

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия E-mail: spectroscopy@mail.ru

²Институт катализа им. Г.К. Борескова СО РАН, Новосибирск, Россия

³Новосибирский национальный исследовательский государственный университет, Россия

⁴Новосибирский государственный архитектурно-строительный университет, Россия

Статья поступила 30 января 2015 г.

Проведено рентгеноспектральное, рентгеноэлектронное и квантово-химическое исследование электронного строения H₂Pc. Выполнен сравнительный анализ экспериментальных и теоретических параметров энергетического спектра и парциального состава ВЗМО молекул фталоцианина. Показано, что ВЗМО H₂Pc в основном построена из $2p_{\pi}$ - АО углерода Сүб. Наилучшее согласие экспериментальных и теоретических кривых распределения парциальной плотности для ВЗМО наблюдается в случае использования метода функционала плотности в приближении Z+1. Метод DFT-ZORA с модельным функционалом LB94 в базисе QZ4P позволяет с высокой точностью рассчитывать энергии 1*s*-уровней неэквивалентных атомов углерода и азота H₂Pc.

DOI: 10.15372/JSC20150320

Ключевые слова: фталоцианин, рентгеновская эмиссионная спектроскопия, фотоэлектронная спектроскопия, метод функционала плотности.

введение

Фталоцианин (H₂Pc) является универсальным модельным соединением, исследуя которое можно получить представление о различных свойствах более сложных веществ, например, таких как фталоцианины переходных металлов (МРс), широко используемые в электронной промышленности [1-7]. Одним из важнейших факторов, учитываемых при отборе веществ с целью создания электронных и сенсорных устройств, является энергетическое положение и атомный состав верхних занятых молекулярных орбиталей (ВЗМО) и нижних свободных молекулярных орбиталей (НСМО). В настоящее время большое внимание уделяется исследованию занятых [8,9] и свободных [10,11] состояний пленочных структур на основе H₂Pc и MPc. В работе [12] изучен состав ВЗМО с помощью метода фотоэлектронной спектроскопии с использованием синхротронного излучения. Показано, что теоретический расчет энергий связи валентных уровней методом DFT-ZORA (ADF 2012) дает хорошее согласие с данными, полученными при изучении фотоэлектронных спектров. Из расчета энергии связи внутренних уровней следует, что формально три неэквивалентные группы атомов азота можно разделить на две, где мезо-атомы азота, не связанные с атомами водорода, эквивалентны аза-атомам азота (разница в энергии связи не превышает 0,36 эВ). Существует и другая точка зрения, согласно которой протоны находятся в поле всех четырех внутрициклических атомов азота [13, 14]. Поэтому

[©] Семушкина Г.И., Мазалов Л.Н., Лаврухина С.А., Басова Т.В., Гуляев Р.В., 2015

вопрос о природе химической связи между иминоводородными атомами и атомами лиганда является до настоящего времени дискуссионным.

Таким образом, в литературе имеется обширный экспериментальный и теоретический материал по исследованию электронной структуры H₂Pc [10, 11, 15]. Однако комплексный анализ структуры B3MO для H₂Pc на основе изучения мягких рентгеновских эмиссионных спектров всех атомов, входящих в состав соединения, в настоящее время отсутствует. Важной задачей при интерпретации рентгеновских спектров является также выбор метода квантовохимического расчета, который бы позволил описать электронное строение вещества с учетом процессов возбуждений, возникающих при рентгеновском излучении.

В настоящей работе проведена интерпретация экспериментальных рентгеновских эмиссионных и фотоэлектронных спектров H_2Pc , характеризующих энергетическое положение и парциальный атомный состав B3MO, с помощью метода функционала плотности. Расчеты выполнены с использованием программы Jaguar 6.0 в приближении замороженных орбиталей и с учетом дырки (модели Z+1), а также в программе ADF 2013 с учетом релятивистских поправок (метод DFT-ZORA).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Рентгеновские фотоэлектронные спектры (РФЭС) порошкового образца H₂Pc получены на приборе ES300 KRATOS. Перед съемкой образец был размолот в агатовой ступке и нанесен на двусторонний проводящий углеродный скотч. В качестве первичного излучения применяли $K\alpha$ -линию алюминия с энергией фотонов 1486,6 эВ. Запись РФЭС проводили в режиме работы рентгеновской трубки 15 кВ×13 мА, что соответствует рассеиваемой мощности ≈200 Вт. Для определения качественного химического состава и наличия примесей были сняты обзорные спектры в диапазоне энергий 0÷1300 эВ с шагом 1 эВ при постоянной энергии пропускания анализатора hv = 50 эВ. Для определения количественного химического состава и состояний индивидуальных элементов были получены спектры основных фотоэлектронных линий элементов с шагом по энергии 0,1 эВ при постоянной энергии пропускания анализатора hv = 25 эВ. Рабочее значение вакуума поддерживали на уровне 2×10⁻⁸ Торр.

Процедуру обработки РФЭС проводили с помощью программы XPSpeak [16]. Разложение экспериментальных спектров на отдельные компоненты осуществляли с учетом наличия неэквивалентности атомов, входящих в состав H_2 Pc. Для моделирования линии РФЭС использовали сумму функций Гаусса и Лоренца в различном процентном соотношении. Фон учитывался по методу Shirlay [17].

Рентгеновские эмиссионные спектры (РЭС), характеризующие строение ВЗМО, были получены на рентгеновском спектрометре "Стеарат". В качестве кристалл-анализатора для линий С($K\alpha$) и N($K\alpha$) использовали псевдокристалл меристат (2d = 80 Å). Режим работы рентгеновской трубки: U = 8 кВ, I = 0,4 А. Порошкообразный H₂Pc размещали на вторичный анод рентгеновской трубки. Спектры регистрировали пропорциональным счетчиком с метановым наполнением. Соответствующие спектры (рис. 4) представляли собой усреднение десяти экспериментальных спектров. Погрешность определения энергетического положения рентгеновских линий была равна ~0,3 эВ.

Квантово-химические расчеты молекулы H_2Pc использовали для интерпретации тонкой структуры рентгеновских фотоэлектронных и эмиссионных спектров. Для расчета электронной структуры H_2Pc на первом этапе использовали структурные данные для CuPc, взятые из Кембриджского банка структурных данных, с заменой атома меди на атомы водорода и с последующей оптимизацией геометрии молекулы в симметрии D_{2h} . Расчеты проводили с помощью программных комплексов Jaguar 6.0 [18] и ADF 2013 [19]. Для оптимизации геометрии молекулы фталоцианина был использован метод теории функционала плотности (Jaguar 6.0) с гибридным обменно-корреляционным функционалом B3LYP в расширенном базисе 6-31(TM)+G*. Расчеты осуществляли в приближении замороженных орбиталей и с учетом дырки (модель

Z+1). На основании соответствующих расчетов построены модельные эмиссионные спектры с учетом и без учета дырки. Энергию рентгеновских переходов рассчитывали как разницу энергий между одноэлектронными энергиями Кона—Шэма валентных (*i*) и внутренних уровней (*j*): $E_{ij} = \varepsilon_j - \varepsilon_i$. Интенсивность отдельных переходов в пределах рентгеновской *К* α -линии для каждого атома молекулы H₂Pc (N, C) определяли квадратами коэффициентов $|c_{ik}|^2$ для тех или иных AO (ϕ_k), входящих в состав определенной *i*-ой B3MO ($\Psi_i = \sum c_{ik} \phi_k$).

Оптимизацию геометрии молекулы H_2Pc в программе ADF проводили методом теории функционала плотности с функционалом PW86x PW91c в базисе TZP, показавшим свою эффективность для аналогичных систем [20]. Далее оптимизированную структуру H_2Pc использовали для расчета рентгеновских фотоэлектронных (C1s и N1s) и эмиссионных спектров (N(K α) и C(K α)) методом DFT-ZORA с модельным функционалом LB94 в базисе QZ4P. Результаты расчетов представляли в виде модельных спектров, полученных с помощью программы ADFview, и сопоставляли с экспериментальными данными.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В настоящей работе изучены РЭС С($K\alpha$) и N($K\alpha$) ($2p \rightarrow 1s$ переход) (рис. 4), которые дают информацию об энергетическом положении и парциальном составе ВЗМО для H₂Pc. Полученные спектры изображены в единой шкале потенциалов ионизации. Взаимную энергетическую привязку спектров к уровню вакуума осуществляли с помощью РФЭС, позволяющих определить энергии связи внутренних 1*s*-уровней атомов (C1*s* и N1*s*) фталоцианина.

Рентгеновские фотоэлектронные спектры. На рис. 1, *а* показан экспериментальный РФЭС N(1*s*)-спектр для H₂Pc. В рассматриваемом спектре наблюдаются две основных линии с энергией связи 399,1 и 400,7 эВ. Соответствующие экспериментальные данные подтверждают ту точку зрения, что каждый атом водорода связан ковалентными связями с атомами азота противоположных пиррольных колец и расположен в плоскости внутреннего макроцикла [21]. Отношение площади данной компоненты (400,7 эВ) ко всей линии N1*s* соответствует соотношению 3,5, что близко к теоретическому, равному 4. Ранее аналогичные результаты были представлены в статье [13], где показано, что в данной компоненте присутствует дополнительная интенсивная сателлитная особенность, возникающая в результате фотоэмиссии с *аза*-атомов азота (N β). Кроме того, отметим наличие достаточно выраженных shake-up сателлитов в линии N1*s* при энергиях 402,8 и 405,3 эВ, ответственных за π — π^* -переходы в макроцикле.

Рис. 1. Экспериментальный РФЭС N1s (*a*) и теоретический РФЭС N1s (сплошная линия) (δ) для H₂Pc с учетом неэквивалентности атомов азота: N $\alpha_{(1,2)}$ (штриховая линия), N $\alpha_{(3,4)}$ (штрихпунктирная линия) и N β (пунктирная линия)

На рис. 1, б приведен модельный РФЭ спектр N1s, рассчитанный методом DFT—ZORA. Можно предположить, что высокоинтенсивная линия в спектре является суперпозицией двух линий с очень близкими энергиями 403,4 и 403,8 эВ, отвечающих *мезо*-атомам азота (N $\alpha_{(3,4)}$) и *аза*-атомом азота (N β), не связанным с атомами водорода. Высокоэнергетическая компонента (405 эВ) обусловлена иминоводородными атомами азота (N $\alpha_{(1,2)}$). Сопоставление энергетического положения экспериментального и модельного спектров, рассчитанного с помощью модельного функционала LB94, показывает разницу энергий 4,3 эВ. В то же время данная величина, полученная на основе расчета в модельном функционале SAOP, превышает 14 эВ. Относительная энергетическая разница между высокоинтенсивными компонентами модельного РФЭС N(1s) H₂Pc (см. рис. 1, δ) хорошо согласуется с экспериментальными значениями (см. рис. 1, *a*) в пределах ошибки эксперимента 0,2 эВ, вне зависимости от выбранного функционала.

На рис. 2, *а* приведен экспериментальный РФЭС C(1s) для H_2Pc . В данной молекуле можно выделить две неэквивалентные группы атомов углерода. Наиболее интенсивный пик А с $E_{cB}(C1s) = 285,1$ эВ соответствует атомам углерода в составе бензольных колец (Сбуб), в то время как второй пик $B c E_{cB}(C1s) = 286,5 эВ$ отвечает атомам углерода в составе макроцикла С₈N₈ (Сα). Полученные данные согласуются с результатами работ, в которых изучали распределение электронной плотности на атомах углерода H₂Pc [22]. В отличие от экспериментальных данных, свидетельствующих об эквивалентности атомов углерода (С α) в составе макроцикла, теоретический расчет показывает (см. рис. 2, б), что соответствующая эквивалентность наблюдается только для атомов углеродов противоположных пиррольных колец. Энергетическая разница между атомами 1*s*-уровнями атомов углерода Сα неэквивалентных пиррольных колец составляет ~0,4 эВ. Аналогичная тенденция наблюдается и в случае атомов Сβ. Периферийные атомы углерода Сүб полностью эквивалентны друг другу вне зависимости от пространственного расположения. Малоинтенсивные дополнительные пики в области более высоких энергий связи 288—293 эВ (см. рис. 2, *a*) являются *shake-up* сателлитами [23]. Дополнительнительный сателлит, возникающий в результате фотоэмиссии с атомов углерода бензольных колец, входит в состав высокоэнергитической линии В (см. рис. 2, а) [13, 24]. Сопоставление энергетического положения экспериментального (см. рис. 2, a) и модельного РФЭ (см. рис. 2, δ) спектров углерода (функционал LB94) показывает разницу энергий ~5,1 эВ.

Рис. 2. Экспериментальный РФЭС С1s (a) и теоретический РФЭС С1s (сплошная линия) (б) для H₂Pc с учетом неэквивалентности атомов углерода: Сα (штриховая линия), Сβ (пунктирная линия), Сγб (штрихпунктирная линия)

Соединение	Энергия, эВ						
	C(1 <i>s</i>)				N(1 <i>s</i>)		
	Сα	Cβ	Сү	Сδ	Nα _(1,2)	$N\alpha_{(3,4)}$	Νβ
H ₂ Pc	286,5	285,1			400,7	399,1	

Энергетическое положение основных РФЭС линий H₂Pc

В таблице приведены энергетические положения основных экспериментальных РФЭС линий H₂Pc, которые использовали для привязки РЭС к единой шкале потенциалов ионизации.

Рентгеновские эмиссионные спектры. Вследствие наличия в H₂Pc неэквивалентных групп атомов азота и углерода (см. таблицу) экспериментальные РЭС NK α и CK α необходимо рассматривать как суперпозицию K α -спектров соотвутствующих групп атомов (С α , С $\beta\gamma\delta$ и N $\alpha_{(1,2)}$, N $\alpha_{(3,4)}$, β). Так как 1*s*-уровни данных атомов имеют сильно различающиеся энергии связи, то в суперпозиционном экспериментальном спектре положение уровней вакуума для каждой группы атомов будет отличаться. Положение пределов ионизации ($E(C\alpha)$, $E(C\beta\gamma\delta)$, $E(N\alpha_{(1,2)})$, $E(N\alpha_{(3,4)},\beta)$) для K α РЭС азота и углерода H₂Pc показано на рис. 3. Различия в энергии связи 1*s*-уровня H₂Pc неэквивалентных групп атомов С и N достигает 1,4 и 1,6 эВ соответственно (см. таблицу).

Энергия валентных уровней ε_i и энергии, соответствующие им, рентгеновских эмиссионных переходов $(hv)_i$ связаны соотношением:

$$\varepsilon_i = I(1s)_i - (hv)_i,\tag{1}$$

где $I(1s)_i$ — потенциал ионизации 1*s*-уровня атома, спектр которого рассматривается.

Согласно (1), энергетическое положение *i*-го уровня ε_i в экспериментальном спектре на шкале энергий рентгеновских переходов $(hv)_i$ зависит от энергии связи (потенциала ионизации) внутреннего 1*s*-уровня, т.е. $(I(1s)_i)$. Следовательно, для того чтобы определить область расположения валентных МО в *K* α -спектрах углерода, в которых имеется, например, вклад С α атомов и тех или иных атомов азота, необходимо границу, соответствующую потенциалу ионизации $I(C\alpha)$ (см. рис. 3, δ), совместить с пределами ионизации в *K* α -спектрах, отвечающих неэквивалентным атомам азота в *K* α -спектре азота (см. рис. 3, a). Аналогично, для определения положения уровней атомов углерода $I(C\beta,\gamma,\delta)$ относительно *K* α -спектров азота граница $I(C\beta,\gamma,\delta)$ в *K* α -спектре углерода должна быть совмещена с пределами ионизации атомов азота (N α , N β) в *K* α -спектре азота.

Рис. 3. Экспериментальный рентгеновский *К*α-спектр азота (*a*) и *К*α-спектр углерода (*б*) для H₂Pc

Для более детального анализа строения B3MO молекулы H₂Pc наряду с экспериментальными РЭС и РФЭС были получены модельные РЭС. На рис. 4 приведены РЭС N(K α), C(K α), построенные на основе теоретических расчетов электронной структуры H₂Pc в основном состоянии (см. рис. 4, *г*, *д*), с использованием дырочного приближения (см. рис. 4, *e*, *ж*), а также с учетом релятивистских поправок (см. рис. 4, *s*, *u*). Жирные сплошные линии на модельных спектрах (см. рис. 4, *c*, *d*, *e*, *ж*, *s*, *u*) показывают энергетическое положение и вклад в B3MO 2*p*-атомных орбиталей (AO) атомов азота N $\alpha_{(3,4)}$, N β и атомов углерода С $\beta\gamma\delta$. Штриховыми линиями обозначены вклады в B3MO 2*p*-AO атомов N $\alpha_{(1,2)}$ и С α . Тонкие сплошные линии характеризуют суммарные теоретические спектры N(K α) и C(K α) для H₂Pc. Рентгеновские эмиссионные спектры соответствуют спектральным переходам системы между двумя дырочными состояниями (дырка на 1*s*-уровне – дырка на B3MO). Наибольшее влияние на электронную систему оказывает дырка на 1*s*-уровне. Дырка в конечном состоянии не приводит к существенным изменениям системы (приближение Купманса) [25]. В этой связи на рис. 4, *e*, *ж* приведены РЭС с учетом внутренней 1*s*-дырки (модель Z+1).

На РФЭС валентной полосы H₂Pc (см. рис. 4, *a*) присутствуют три основные особенности (*A*, *B*, *C*) с энергетическим положением максимумов –5,0, –10,7 и –20,0 эВ соответственно. Сопоставляя экспериментальный РФЭС валентной полосы (см. рис. 4, *a*) и экспериментальные спектры РЭС С($K\alpha$) и N($K\alpha$) (см. рис. 4, *b*, *b*), можно видеть, что максимальный вклад валентных 2*p*-орбиталей азота N $\alpha_{(3,4)}$ и N β наблюдается в МО с энергией связи –10,7 эВ, что проявляется в $K\alpha$ -спектре азота наличием особенности *B*' (см. рис. 4, *b*), соответствующей максимуму *B*" в $K\alpha$ -спектре углерода (С $\beta\gamma\delta$) (см. рис. 4, *b*) и пику *B* валентной полосы (см. рис. 4, *a*). Данная особенность также характерна и для $K\alpha$ -спектров других неэквивалентных групп атомов углерода и азота, которая расположена на ~1,6 эВ глубже. Граничная ВЗМО H₂Pc расположена при энергиях связи –1,5±0,3 эВ и включает 2*p*-АО азота (см. рис. 4, *b*, *A*'₁) и 2*p*-АО углерода (см. рис. 4, *b*, *A*"). Особенность *A* РФЭС валентной полосы (см. рис. 4, *a*) связана с МО, которые

Рис. 4. Экспериментальный РФЭС валентной полосы (a), РЭС NKα (б) и CKα (в), а также теоретические РЭС в приближении основного состояния N(Kα) (г), C(Kα) (d) в модели Z+1 N(Kα) (e), C(Kα) (ж) и спектры N(Kα) (3), C(Kα) (u), рассчитанные в модели DFT-ZORA для H₂Pc

также построены в равной степени как из 2*p*-AO атомов азота (см. рис. 4, δ , A'), так и из 2*p*-AO атомов углерода (см. рис. 4, β , A''). Наиболее глубокий уровень включает в основном 2*p*-AO азота (см. рис. 4, δ , пик C').

Наряду с экспериментальными РЭС на рис. 4 представлены модельные спектры $N(K\alpha)$ и $C(K\alpha)$, построенные на основе модели замороженных орбиталей (см. рис. 4, *г*, *д*) и в модели Z+1 (см. рис. 4, *е*, *ж*) соответственно. Спектры построены с учетом вкладов всех неэквивалентных групп атомов углерода и азота (вертикальные особенности). Для моделирования спектров на основе квантово-химических расчетов основного состояния использовали приближение Купманса.

Согласно теоретическим расчетам электронной структуры H_2Pc в модели замороженных орбиталей, ВЗМО соответствует МО симметрии a_u , основной вклад в которую вносят $2p\pi$ -AO углерода группы С α и С $\gamma\delta$ (см. рис. 4, ∂ , пик A_1''). Пики A'' и A''' (см. рис. 4, c, ∂) связаны с МО, которые построены из $2p\pi$ -AO атомов азота (N $\alpha_{(3,4)}$ и N β) и $2p\pi$ -AO атомов углерода внутреннего макроцикла (С α). Вклад 2p-AO атома углерода в ВЗМО энергетического интервала -5,0-7,5 эВ варьируется в диапазоне 62,5—86,2 %. В рамках рассматриваемой модели последующие пики B', C'' и B'', C'' (см. рис. 4, c, ∂) характеризуют орбитали как π -, так и σ -типа всех неэквивалентных групп, но со значительным вкладом атомов N $\alpha_{(1,2)}$ и С α .

Моделирование РЭС N(K α) и C(K α) в приближении Z+1 показывает лучшее согласие по форме спектров, что проявляется в возникновении дополнительных низкоинтенсивных особенностей (см. рис. 4, *e*, *ж*, пики A'_1 , A''_1), характерных также для экспериментальных спектров N(K α) и C(K α) (см. рис. 4, *b*, *b*, пики A'_1 , A''_1). Согласно теоретическому расчету в модели Z+1, пик A''_1 (см. рис. 4, *ж*) соответствует граничной ВЗМО с энергией связи –8,7 эВ, где основной вклад (16,5 %) вносят 2*p* π -AO атомов углерода С α . ВЗМО со значительным вкладом атомов азота (пик A'_1 на рис. 4, *e*) располагается на 2,1 эВ глубже и характеризует 2*p* π -AO атомов азота (N $\alpha_{(1,2)}$). Особенности A' и A'' (см. рис. 4, *e*, *ж*) связаны с МО, которые построены из 2*p* π -AO атомов азота и 2*p* π -AO атомов углерода всех неэквивалентных групп. Более глубокие MO имеют орбитали как π -, так и σ -типа всех неэквивалентных групп атомов азота и углерода, со значительным участием 2*p*-AO группы атомов N $\alpha_{(3,4)}$, N β и С $\beta\gamma\delta$.

Наряду с квантово-химическими расчетами валентной полосы Н₂Рс, рассчитанными методом DFT в программе Jaguar 6.0, на рис. 4, з, и представлен расчет РЭС $N(K\alpha)$ и $C(K\alpha)$, выполненный методом функционала плотности с учетом релятивистских поправок DFT-ZORA в программе ADF. Анализ вкладов $2p\pi$ и $2p\sigma$ азота и углерода показывает, что основной вклад в граничные B3MO вносят 2*p*π-AO азота и углерода, что коррелирует с данными, полученными методом замороженных орбиталей и Z+1. Что касается сопоставления формы экспериментальных и теоретических спектров $N(K\alpha)$ и $C(K\alpha)$, то в данном случае совпадения не наблюдается. В случае N(Kα)-спектра (см. рис. 4, 3) отсутствует низкоинтенсивная особенность, характерная для экспериментального спектра РЭС (см. рис. 4, δ , пик A_1), и несколько занижен вклад 2*p*-AO азота в ВЗМО с энергией связи от -15,0 до -23,0 эВ (см. рис. 4, з, пик С"). Расчет парциальной плотности углерода в ВЗМО H_2 Рс показывает, что пик A_1'' (см. рис. 4, u), как и в случае модели замороженных орбиталей, имеет симметрию а_и (-10,3 эВ), основной вклад в которую вносят 2рπ-АО углерода группы Сα (6,5 %) и Сүб (4 %). Пики А' и А" (см. рис. 4, з, и) связаны с МО, которые построены из 2*p*π-AO и из 2*p*σ-AO атомов азота (Nα_(3,4)) и атомов углерода (Сγδ). Более глубокие ВЗМО, лежащие в энергетическом интервале от -15,0 до -23,0 эВ (рис. 4, з, и, пики В', В" и С', С") имеют как π-, так и σ-характер всех неэквивалентных групп атомов азота и углерода с преимущественным вкладом $2p_{\sigma}$ -AO N α и C α , C γ .

Таким образом, сравнительный анализ результатов квантово-химических расчетов в сопоставлении с экспериментальными данными показывает, что ВЗМО H₂Pc в основном построена из 2*p*π-AO углерода Сγδ. Наилучшее согласие между экспериментальными и теоретическими данными по характеру распределения парциальной плотности в B3MO получено методом функционала плотности в приближении Z+1. Состав и энергетическое положение граничной B3MO H₂Pc варьируется в зависимости от выбранного метода расчета. Так, расчет методом DFT в модели замороженных орбиталей и методом DFT-ZORA показывает, что граничная B3MO имеет симметрию a_u , основной вклад в которую вносят $2p\pi$ -AO углерода группы Са и Сүб с энергетическим положением –5,3 и –10,2 эВ соответственно. Согласно теоретическому расчету, в модели Z+1, основной вклад (16,5 %) в граничную B3MO с энергией связи –8,7 эВ вносят $2p\pi$ -AO атомов углерода Са.

ЗАКЛЮЧЕНИЕ

Проведено рентгеноспектральное, рентгеноэлектронное и квантово-химическое исследование электронного строения H₂Pc. Показано, что атомы азота N $\alpha_{(3,4)}$ и N β групп эквивалентны, тогда как энергия связи 1*s*-уровня иминоводородных атомов азота отличается на 1,6 эВ. Согласно экспериментальному анализу 1*s*-уровней атомов углерода установлено, что в H₂Pc имеются две неэквивалентные группы атомов углерода С α и С $\beta\gamma\delta$. Кроме того, энергетическая разница между 1*s*-уровнями атомов углерода С α неэквивалентных пиррольных колец ~0,4 эВ. Аналогичная тенденция наблюдается и в случае атомов С β . Периферийные атомы углерода С $\gamma\delta$ полностью эквивалентны друг другу вне зависимости от пространственного расположения. Метод DFT-ZORA позволяет с высокой точностью моделировать относительное энергетическое положение 1*s*-уровней неэквивалентных атомов H₂Pc относительно друг друга, однако абсолютное значение энергий связи отличается от экспериментальных более чем на 5,0 эВ.

Рентгеноспектральное и рентгеноэлектронное исследование электронной структуры H₂Pc показало, что граничная B3MO ($-1,5\pm0,3$ эB) включает 2*p*-AO азота и 2*p*-AO углерода. Наилучшее согласие между экспериментальными и теоретическими данными по характеру распределения парциальной плотности в B3MO получено методом функционала плотности в приближении Z+1. Атомный состав и энергетическое положение граничной B3MO H₂Pc варьируется в зависимости от выбранного метода расчета. Так, расчет методом DFT в основном состоянии и методом DFT-ZORA показывает, что граничная B3MO имеет симметрию a_u , основной вклад в которую вносят 2*p* π -AO углерода группы С α и С $\gamma\delta$ с энергиями –5,3 и –10,2 эB соответственно. Согласно теоретическому расчету в рамках модели Z+1, в граничную B3MO с энергией –8,7 эВ основной вклад (16,5 %) вносят 2*p* π -AO атомов углерода С α . Следующая B3MO со значительным вкладом атомов азота располагается на 2,1 эВ глубже и характеризует 2*p* π -AO атомов азота (N $\alpha_{(1,2)}$).

СПИСОК ЛИТЕРАТУРЫ

- 1. Waltera M.G., Rudine A.B., Wamser C.C. // J. Porphyrins Phthalocyanines. 2010. 14. P. 759 792.
- 2. Xue J., Rand B.P., Uchida S., Forrest S.R. // Adv. Mater. 2005. 17. P. 66 71.
- 3. Hohnholza D., Steinbrecherb S., Hanacka M. // J. Mol. Struct. 2000. 521. P. 231 237.
- 4. Itoh E., Ohmori Y., Miyairi K. // Jpn. J. Appl. Phys. 2004. 43, N 2. P. 817 821.
- 5. Cho S.W., Piper L.F.J., DeMasi A. et al. // J. Phys. Chem. C. 2010. 114. P. 1928 1933.
- 6. *Blochwitz J.* Organic light-emitting diodes with doped charge transport layers. Doctoral dissertation. Dresden, 2001.
- 7. *Юрре Т.А., Рудая Л.И., Климова Н.В., Шаманин В.В.* // Физика и техника полупроводников. 2003. **53**, № 7. С. 835 843.
- 8. Cook P., Liu X., Yang W., Himpsel F. // Chem. Phys. 2009. 131. P. 194701 (1-10).
- 9. Kroll T., Kraus R., Schonfelder R., Aristov V.Yu., Molodtsova O.V. // J. Chem. Phys. 2012. 137. P. 054306 (1-7).
- 10. Berkowitz J. // J. Chem. Phys. 1979. 70, N 6. P. 2819 2828.
- 11. Alfredsson G., Brena B., Nilson K. et al. // Chem. Phys. 2005. 122. P. 214723 (1-6).
- 12. Nardi M.V., Detto F., Aversa L. et al. // Phys. Chem. Chem. Phys. 2013. 15. P. 12864 12881.
- 13. Enderman H. // J. Phys. Chem. 1940. **190**. P. 129 131.
- 14. Березин Б.Д. // Изв. вузов. Химия и хим. технология. 1982. 2, № 5. С. 165 172.

- 15. Nilson K., Ahlund J., Shariati M.-N. et al. // J. Chem. Phys. 2012. 137. P. 044708 (1-9).
- 16. XPSpeak program package, version 4.1, The Chinese University of Hong Kong, Hong Kong, 2000.
- 17. *Shirley D.A.* // Phys. Rev. B. 1972. **5**. P. 4709 4714.
- 18. Jaguar program package, version 6.0, Schrodinger, LLC, New York, 2005.
- 19. ADF program package, version 2013.01c, Vrije Universities, Theoretical chemistry, HV Amsterdam, Nitherlands, 2013.
- 20. Zhang Y., Wang S., Demasi A. et al. // J. Mater. Chem. 2008. 18. P. 1792 1798.
- 21. Шапошников Г.П., Кулинич В.П., Майзлиш В.Е. Модифицированные фталоцианины и их структурные аналоги. – М.: КРАСАНД, 2013.
- 22. Guangming Liu, Klein A., Thissen A., Jaegermann W. // Surf. Sci. 2003. 539. P. 37 48.
- 23. Brena B., Luo Y. // Radiat. Phys. and Chem. 2006. 75. P. 1578 1581.
- 24. *Shariati M.-N.* Electronic and geometric structure of phthalocyanines on Metals. Digital Comprehensive summaries of Uppsals Dissertations from the faculty of science and technology. Uppsala, 2012.
- 25. Мазалов Л.Н., Федоренко А.Д. и др. // Журн. структур. химии. 2013. 54, № 5. С. 860 869.