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Рассмотрены динамические свойства объемно-структурированных образцов с разной топологи-
ей сетчатых структур из алюминиевого сплава АК6, синтезированных селективным лазерным
сплавлением. Испытания проведены при квазистатических скоростях деформации 102 ÷ 103 с−1

методом Кольского с использованием разрезного стержня Гопкинсона. Построены диаграммы

деформирования, и определены значения условного предела текучести и предела прочности.
Проведено сравнение результатов измерения свойств образцов с разной топологией сетчатых

структур — кубические типа ГЦК и ОЦК и трижды периодических поверхностей минимальной

энергии типа гироид. Исследовано влияние геометрических характеристик гироидов (размер
ячейки, толщина стенки) на прочностные свойства образцов. Показано, что при одной и той же
плотности материала гироиды обладают повышенными характеристиками. Сетчатые металли-
ческие материалы, полученные аддитивной технологией, могут быть использованы в технике
для уменьшения массы конструкций и ослабления разрушающих высокоэнергетических меха-
нических воздействий.
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ВВЕДЕНИЕ

В последние годы возросли техниче-
ские потребности промышленности в получе-
нии объемно-структурированных материалов

из керамики и различных металлов с пори-
стой структурой, которые характеризуются,
наряду с высокими механическими свойствами

[1–4], пониженной плотностью. Наиболее под-
ходящей технологией получения таких мате-
риалов является селективное лазерное сплав-
ление (СЛС), а перспективным материалом —
алюминий и его сплавы [5–9].

За счет низкой массы и высоких удельных

механических характеристик сетчатые струк-
туры, полученные 3D-печатью, представляют
собой перспективную замену монолитным де-
талям. Такие сетчатые материалы могут быть
востребованы в автомобильной, авиационной,
космической промышленности и машиностро-
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ении для защиты от внешних воздействий раз-
личных элементов и конструкций, подвергае-
мых в процессе эксплуатации высокоскорост-
ным деформациям и ударно-волновому нагру-
жению. На данный момент в качестве демп-
фирующих экранов при воздействии ударных

волн используются защитные слои из пенопла-
стов и металлических пеноматериалов (напри-
мер, пеноалюминий) [1]. Металлическая пена
характеризуется высокой эффективностью по-
глощения энергии при ударной нагрузке и луч-
шими по сравнению с пенопластами механиче-
скими свойствами. В процессе производства ме-
таллической пены образуется нежелательный

градиент плотности за счет неравномерного

распределения пор по размерам. Контроль од-
нородности пор улучшает прочностные свой-
ства материала. Пена с градиентом плотности
имеет более низкий уровень напряжения при

сжатии, чем пена с однородной структурой.
Плотность пеноалюминия зависит от способа

производства и размера пор: так, при размере
пор 1 ÷ 5 мм она составляет 0.35 ÷ 0.7 г/см3.
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Селективное лазерное плавление позволяет со-
здавать сетчатые структуры с соразмерными

порами и плотностями, при этом размер пор

контролируется и существенно более равноме-
рен в объеме материала. Таким образом, сет-
чатые структуры при использовании их в ка-
честве деталей, ослабляющих ударно-волновое
воздействие, имеют преимущества за счёт бо-
лее высоких механических свойств по сравне-
нию со вспененными металлическими матери-
алами.

Как показано ранее [10, 11], для изготов-
ления объемно-структурированных деталей с
сетчатой структурой целесообразно использо-
вать алюминиевый сплав марки АК6. Он от-
носится к сплавам системы Al—Mg—Si—Cu,
из которых изготавливают сложные штампов-
ки, поэтому применение аддитивной техно-
логии с использованием 3D-печати является

перспективным и позволяет не только сокра-
тить расходы на производство таких деталей,
но и повысить в два раза предел текучести

относительно предела текучести отожженного

сплава, полученного традиционной технологи-
ей [11].

Анализируя результаты работ по 3D-
печати алюминиевых сплавов, можно за-
ключить, что структура и свойства СЛС-
материалов в значительной степени зависят от

режимов их синтеза, в частности от плотности
энергии лазера [12, 13]. Неправильно подобран-
ные режимы приводят к формированию литей-
ных дефектов (пор, усадочных пустот, горя-
чих трещин, нерасплавленных частиц порош-
ка), которые, в свою очередь, снижают каче-
ство изделий и ухудшают их свойства [14–16].
С учетом того, что теплопроводности и отра-
жательные способности алюминиевых сплавов

различны в зависимости от химического соста-
ва, рекомендуемые значения плотности энер-
гии при их СЛС варьируют в широких преде-
лах: от Ψ = 40 Вт · с/мм3 для сплавов Al—
Si [12] до Ψ = 300÷ 340 Вт · с/мм3 для сплавов

Al—Cu—Mg [13].
Как показано в [17], в процессе построения

объемно-структурированных СЛС-образцов с
кубической структурой возникают (чаще все-
го в углах ребер квадратного сечения) зо-
ны с резким перепадом температуры, в ко-
торых значительны внутренние напряжения,
приводящие к появлению «горячих» трещин,
снижающих свойства изделия в целом. Появ-
ление таких дефектов наглядно показано на

объемно-структурированных изделиях из спла-
ва АК6 [11]. Установлено, что одним из спосо-
бов повышения технологичности и механиче-
ских свойств изделий является замена сетча-
той кубической структуры на структуру ти-
па гироид, относящуюся к трижды перио-
дическим поверхностям минимальной энергии

(ТППМЭ) [18–21]. Отличие гироида от дру-
гих топологий ТППМЭ состоит в том, что он
не имеет прямых линий и элементов симмет-
рии. Построение гироида осуществляется пу-
тем копирования его базового элемента в трёх

независимых направлениях. Изучение физико-
механических свойств керамики с такой то-
пологией показало, что при значительно бо-
лее низкой плотности, чем у сплошных образ-
цов, гироиды имеют более высокие прочност-
ные характеристики. Однако для металличе-
ских объемно-структурированных материалов
с топологией гироид такие сведения практиче-
ски отсутствуют, хотя их использование вме-
сто керамики в изделиях космической и оборон-
ной техники считается целесообразным [20].

Целью данной работы является изучение

и сравнение динамических свойств объемно-
структурированных образцов с разной топо-
логией — кубической или типа гироид, а

также выявление наилучшего конструктивно-
го дизайна сетчатых структур для повышения

прочностных характеристик сплава Al—Cu—
Mg—Si.

МАТЕРИАЛ И МЕТОДИКА ЭКСПЕРИМЕНТА

Объектами исследования служили образ-
цы из сплава Al—Сu—Mg—Si (марка АК6
или аналог А1360), синтезированные на 3D-
принтере по металлу RealizerSLM100. Химиче-
ский состав СЛС-сплава: Al — основа, Mg —
0.61, Cu — 2.25, Si — 0.98, Fe — 0.7 %.

Были синтезированы и исследованы сет-
чатые (объемно-структурированные) образцы
с разной топологией. Синтез осуществляли при
двух режимах работы принтера. Режим I: мощ-
ность лазера P = 100 Вт, скорость скани-
рования V = 380 м/с, межтрековое расстоя-
ние S = 0.15 мм, толщина слоя порошка t =
0.05 мм, диаметр пучка лазера ∅75 мкм. Ре-
жим II: P = 160 Вт, V = 400 м/с, S = 0.15 мм,
t = 0.05 мм, диаметр пучка ∅60 мкм. Все об-
разцы с ГЦК- и ОЦК-структурами получены в
режиме I синтеза. Синтез гироидов осуществ-
ляли при разных режимах с целью изучения
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Та блиц а 1

Средние значения механических характеристик
образцов с кубической сетчатой структурой

Номер

комп-
лекта

Тип

сетчатой

струк-
туры

ρ,

г/см3

έ,

102 с−1

σ0.2,

МПа

σв,

МПа

1 ГЦК 1.31 13 ÷ 32 20.2 47.3

2 ГЦК 1.24 13 ÷ 27 24.8 45.8

3 ГЦК 1.28 15 ÷ 38 25.8 52.3

4 ОЦК 1.14 19 ÷ 33 21.4 50.2

5 ОЦК 1.16 16 ÷ 28 22.8 42.8

6 ОЦК 1.17 17 ÷ 57 21.4 43.8

7 ОЦК 0.43 16 ÷ 24 3.0 4.1

влияния параметров 3D-печати на плотность
СЛС-образцов.

Для исследования деформационного пове-
дения сплава АК6 в условиях квазистатиче-
ской деформации были изготовлены комплекты

из 8–10 цилиндрических образцов с соотноше-
нием высоты к диаметру 2 : 1 (14 × 7, 16 × 8
и 18× 9 мм). Методом Гопкинсона — Кольско-
го были нагружены семь комплектов образцов

с разными кубическими сетчатыми топология-
ми: три комплекта (1–3) с ГЦК-структурой, че-
тыре комплекта (4–7) с ОЦК-структурой, семь
комплектов (8–14) с сетчатой структурой ги-
роид. Скорости деформации образцов, входя-
щих в каждый комплект, варьировали от έ =
8.0 · 102 с−1 до 5.7 · 103 с−1, меняя скорость дви-
жения ударника. Входящие в один комплект
образцы имели одинаковую плотность.

Та блиц а 2

Средние значения механических свойств гироидов

Режим

CЛС
Номер

комплекта
a, мм h, мм ρ, г/см3 έ, 102 с−1 σ0.2, МПа σв, МПа

8 1 0.1 1.8 8.0 ÷ 31 42.0 110.0

I 9 1 0.2 2.2 9.0 ÷ 23 85.3 185.4

10 2 0.2 1.2 11.5 ÷ 23 27.8 52.2

11 3 0.2 0.7 5.5 ÷ 19 16.9 26.1

12 1 0.2 2.4 9.0 ÷ 20 87.4 244.4

II 13 2 0.2 1.3 16.0 ÷ 22 38.0 66.3

14 3 0.2 0.9 17.5 ÷ 25 20.0 39.5

Значения плотности образцов с разной сет-
чатой структурой кубического типа указаны

в табл. 1. Гироиды отличались не только плот-
ностью, но и геометрическими характеристи-
ками — периодом ячейки a и толщиной стен-
ки h (табл. 2).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Примеры исследованных структур, отно-
сящихся к разным кубическим топологиям, по-
казаны на рис. 1,а,б, а типичные динамические
диаграммы σ–ε и ε–έ даны на рис. 2,а,б. Вид-
но, что зависимости похожи и соответствуют
типичным динамическим диаграммам с участ-
ками упругой и пластической деформации.

В процессе обработки данных диаграмм

были определены значения условного предела

текучести σ0.2 и предела прочности σв всех об-
разцов, входящих в каждый комплект, и по-
строены зависимости этих характеристик от

скорости деформации έ. Пример такой зависи-
мости для образцов с ГЦК сетчатой структу-
рой и плотностью ρ = 1.31 г/см3 представлен

на рис. 3,а, а для образцов с ОЦК сетчатой

структурой и ρ = 1.16 г/см3 — на рис. 3,б.
Как следует из рис. 3, в пределах од-

ного комплекта значения σ0.2 и σв изменя-
ются незначительно. Скоростные зависимости
свойств образцов, входящих в остальные ком-
плекты, аналогичны, т. е. в интервалах ско-
ростей деформации έ = (13 ÷ 38) · 102 с−1

(для образцов с ГЦК сетчатой структурой) и
έ = (16 ÷ 33) · 102 с−1 (для образцов с ОЦК
сетчатой структурой) можно рассчитать сред-
ние значения σ0.2 и σв образцов, отличающихся
плотностью (см. табл. 1).
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Рис. 1. Внешний вид объемно-структурированных образцов с сетчатыми структурами ГЦК (а),
ОЦК (б), гироид (в)

Рис. 2. Типичные диаграммы напряжение —
деформация (сплошная линия) и напряже-
ние — скорость деформации (штриховая ли-
ния) образцов с ГЦК (а) и ОЦК (б) сетчатыми
структурами

Рис. 3. Зависимости механических характери-
стик образцов с разной кубической сетчатой

структурой от скорости деформации:

а — ГЦК, комплект 1, ρ = 1.31 г/см3; б — ОЦК,
комплект 5, ρ = 1.16 г/см3
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Рис. 4. Зависимости средних механических характеристик образцов с кубической сетчатой

структурой от их плотности:

а — ГЦК, б — ОЦК; цифрами указаны номера комплектов

Рис. 5. Зависимости механических характеристик гироидов от скорости деформации:

а — комплект 9, б — комплект 10, в — комплект 11, г — комплект 8



140 Физика горения и взрыва, 2024, т. 60, N-◦ 6

Рис. 6. Зависимости средних значений меха-
нических характеристик гироидов от периода

ячейки:

а — комплекты 9–11, б — комплекты 12–14; циф-
рами указаны номера комплектов

На рис. 4 показано изменение средних зна-
чений σ0.2 и σв в зависимости от плотности ма-
териала с ГЦК (рис. 4,а) и ОЦК сетчатыми

структурами (рис. 4,б). Из табл. 1 видно, что
наибольшими значениями механических харак-
теристик обладают образцы с ГЦК сетчатой

структурой и плотностью ρ = 1.28 г/см3 (ком-
плект 3).

Образцы с ОЦК сетчатой структурой и

плотностью ρ = 1.14 ÷ 1.17 г/см3 (комплек-
ты 4–6) имеют близкие значения механиче-
ских характеристик. С уменьшением плотно-
сти до 0.43 г/см3 (комплект 7) σ0.2 и σв резко
уменьшаются до 3.0 и 4.1 МПа соответственно
(см. табл. 1).

Если сравнить средние механические свой-
ства образцов с разными сетчатыми структу-
рами кубического типа, то получается, что у
образцов с ГЦК-структурой и средней плот-

ностью ρ = 1.27 г/см3 (комплекты 1–3) пре-
делы составляют σ0.2 = 23.6 МПа и σв =
48.5 МПа, а для образцов с ОЦК-структурой и
средней плотностью ρ̄ = 1.15 г/см3 (комплек-
ты 4–6) эти характеристики ниже и равны 21.9
и 45.6 МПа соответственно.

Ниже представлены результаты испыта-
ний образцов с сетчатой структурой гироид

(см. рис. 1,в). Образцы, входящие в комплекты
8–11, получены по режиму I синтеза, а входя-
щие в комплекты 12–14 — по режиму II синте-
за. При построении гироидов варьировали пе-
риод ячейки a и толщину стенки h. В табл. 2
указано, как меняются механические характе-
ристики образцов (комплекты 8–14) в зависи-
мости от геометрических размеров гироидов.

На рис. 5 приведены скоростные зависимо-
сти пределов σ0.2 и σв гироидов, отличающихся
периодом ячейки (см. табл. 2) при одинаковой
толщине стенки h = 0.2 мм (рис. 5,а–в, ком-
плекты 9–11), и образцов, имеющих при пери-
оде ячейки 1 мм меньшую в два раза толщи-
ну ребра (рис. 5,г, комплект 8). Исследованный
интервал скоростей деформации при испыта-
ниях гироидов составил έ = (8 ÷ 31) · 102 с−1.
Согласно этим данным, все значения σ0.2 и σв
в указанном интервале скоростей деформации

близки между собой, т. е. так же, как и для об-
разцов с кубической топологией, отсутствует
изменение динамических характеристик с уве-
личением έ.

Средние значения σ0.2 и σв образцов, рас-
считанные для комплектов 9–11, приведены в

табл. 2, а на рис. 6,а построен график измене-
ния средних механических характеристик в за-
висимости от периода ячейки. Из этих данных
следует, что увеличение периода ячейки с 1
до 3 мм приводит к резкому уменьшению проч-
ностных характеристик σ0.2 с 85.3 до 16.9МПа,
а σв с 85.4 до 26.1 МПа, т. е. приблизительно в
пять раз снижается предел текучести и в семь

раз предел прочности.
На рис. 7 представлены зависимости σ0.2

и σв для гироидов, полученных по режиму II
СЛС, от скорости деформации. Можно за-
ключить, что для образцов, входящих в ком-
плект 12, прослеживается некоторая тенден-
ция увеличения механических характеристик

с ростом скорости деформации (рис. 7,а), для
всех других образцов такой тенденции нет

(рис. 7,б,в).
Средние значения прочностных свойств

образцов, полученных по режиму II СЛС, при-
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Рис. 7. Зависимости механических характери-
стик гироидов от скорости деформации:

а — комплект 12, б — комплект 13, в — ком-
плект 14

ведены в табл. 2, а на рис.6,б показано, как они
меняются в зависимости от периода ячейки ги-
роидов. Исходя из этих данных наилучшие ме-
ханические свойства имеют образцы комплек-
та 12 (a = 1 мм, h = 0.2 мм), а увеличение
периода ячейки до 3 мм приводит к снижению
свойств примерно в 4.5 ÷ 6 раз.

Та блиц а 3

Средние значения механических свойств
СЛС-образцов

Тип

сетчатой

структуры

Номер

комплекта
σ0.2, МПа σв, МПа

ГЦК 1–3 23.6 48.5

ОЦК 5, 6 21.8 45.6

Гироид 10 27.8 52.2

Гироид 13 38.0 66.3

Представляет интерес сравнить свой-
ства одинаковых по геометрическим размерам

(a и h) гироидов, относящихся к комплектам 9
и 12; 10 и 13; 11 и 14 (см. табл. 2). Видно, что
образцы, полученные по режиму II СЛС, бо-
лее плотные и их механические свойства луч-
ше. Следовательно, повышение мощности ла-
зера со 100 до 160 Вт и небольшая корректи-
ровка скорости сканирования до 400 мм/с обес-
печили рост механических характеристик ги-
роидов на 30 ÷ 50 %. Как указано выше, воз-
можной причиной отличия свойств гироидов

является формирование разного количества ли-
тейных дефектов (непроплавленных частиц по-
рошка, пор, трещин), ухудшающих качество
этих СЛС-изделий.

На основании ранее проведенных исследо-
ваний [10, 11] было установлено, что причи-
ной снижения свойств СЛС-сплава АК6 явля-
ются литейные дефекты (непроплавленные ча-
стицы порошка, поры, трещины), количество
которых зависит от условий синтеза, и в част-
ности от плотности энергии лазера. На приме-
ре монолитных и объемно-структурированных
образцов доказано, что для синтеза качествен-
ных изделий из сплава АК6 оптимальны зна-
чения Ψ = 237 ÷ 331 Вт · с/мм3 (P = 200 Вт,
V = 400 мм/с, t = 0.05 мм, S = 0.03 мм). В слу-
чае режима I СЛС Ψ = 35 Вт · с/мм3, а в слу-
чае режима II Ψ = 53.3 Вт · с/мм3, т. е. оба ре-
жима не отвечают оптимальным условиям син-
теза. Из этого можно сделать вывод, что даль-
нейшее увеличение плотности энергии лазера

до оптимальных значений должно дать поло-
жительный эффект и привести к дополнитель-
ному повышению механических характеристик

гироидов из сплава АК6.
Чтобы определить, как влияет на свойства

объемно-структурированных образцов замена
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кубических сетчатых структур на структуру

типа гироид, из всего массива образцов были
выбраны те, которые имели близкие значения
плотности ρ = 1.15 ÷ 1.30 г/см3 и одинаковые

геометрические размеры a = 2 мм, h = 0.2 мм.
Приведенные в табл. 3 осредненные механиче-
ские характеристики образцов с разной сетча-
той структурой и их сравнение наглядно пока-
зывают преимущество гироидов как перспек-
тивного дизайна с целью повышения механи-
ческих свойств СЛС-изделий. Например, при-
рост предела прочности гироидов составляет

6 ÷ 14 % относительно предела прочности об-
разцов с кубической сетчатой структурой, по-
лученных при том же режиме синтеза.

ВЫВОДЫ

1. Получены и проанализированы резуль-
таты эксперимента по исследованию динамиче-
ских свойств объемно-структурированных об-
разцов из сплава АК6 с разным типом сетча-
тых структур: ГЦК, ОЦК и ТППМЭ (гироид).
На основании динамических диаграмм, полу-
ченных при нагружении образцов методом Гоп-
кинсона — Кольского в интервале скоростей

деформации (5 ÷ 57) · 102 с−1, определены зна-
чения условного предела текучести и предела

прочности.
2. Построены зависимости прочностных

характеристик образцов с разной сетчатой

структурой от скорости деформации, и пока-
зано, что в исследованном интервале скоростей
механические свойства остаются постоянными.

3. Проведено сравнение механических

свойств образцов с разной кубической сет-
чатой структурой. Установлено, что свой-
ства образцов, имеющих ГЦК-структуру (ρ =
1.27 г/см3), выше свойств образцов с ОЦК-
структурой (ρ = 1.15 г/см3) примерно на 7 %.
Снижение плотности до 0.4 г/см3 резко, в 8 ÷
10 раз, ухудшает свойства материала.

4. Обработаны и проанализированы ре-
зультаты эксперимента по исследованию дина-
мических свойств гироидов, и построены зави-
симости прочностных свойств от геометриче-
ских характеристик гироидов. Определено, что
наилучшие свойства имеют гироиды с разме-
ром ячейки 1 мм и толщиной стенки 0.2 мм.

5. Показано, что динамические свойства
объемно-структурированных образцов зависят
от параметров СЛС. Рост плотности энергии
с 35 до 53.3 Вт·с/мм3 приводит к увеличению

механических характеристик.
6. Сравнение прочностных характеристик

образцов с разной сетчатой структурой нагляд-
но показывает преимущество гироидов как пер-
спективного дизайна для повышения свойств

объемно-структурированных изделий.
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