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1. Введение

Пусть Ω ⊂ R2 — полигональная область. Рассмотрим следующую задачу Бринкмана:
найти скорость u и давление p такие, что

−div (ν∇u) + αu +∇p = f в Ω,

divu = 0 в Ω,

u = 0 на ∂Ω.

(1.1)

∗Работа выполнена при поддержке НФЕН (проект N◦-- 12201254) и ННФ провинции Цзянсу (проект
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Здесь ν(x) > 0 — коэффициент вязкости и α(x) ≥ 0 — динамическая вязкость, деленная
на проницаемость. Член f(x) — известная массовая сила. Для удобства предположим,
что ν и α — постоянные.

Метод конечных элементов — мощный инструмент для этой модели. Ввиду базо-
вой структуры, предложенной в [23], успешный стандартный метод конечных элемен-
тов должен сходиться как для задачи Стокса, так и для задачи Дарси. Пространство
скоростей попадает в одну из следующих трех категорий: H1-конформное [5, 19, 20, 24],
H1-неконформное, но H(div)-конформное [7, 9, 18, 23], или H(div)-неконформное [26, 28,
29]. Для последних двух категорий получение равномерной сходимости высокого порядка
с низкой вычислительной сложностью кажется нетривиальной задачей. Насколько нам
известно, в 2D-случае этой цели можно достичь только с помощью треугольного семей-
ства [9] и семейства, совсем недавно предложенного в [29], на однородных прямоугольных
сетках. Существуют также некоторые варианты методов конечных элементов, которые
могут обеспечить высокую точность более простым и систематическим способом, напри-
мер разрывный метод Галеркина [6, 12], гибридный метод высокого порядка [4], слабый
метод Галеркина [16,17,25], метод виртуальных элементов [11,27] и т. д.

В [7] Джилетт с соавторами представили нестандартные комплексы де Рама на ку-
бических сетках с помощью переноса степеней свободы (degree of freedom или DoF) и
серендиповых операций. В двумерном случае они часто являются неконформными ап-
проксимациями для комплекса Стокса, а элементы 1-формы относятся ко второй ка-
тегории для модели Бринкмана (1.1). Два типичных примера — полный и приведен-
ный комплексы Адини с наименьшим порядком равномерной сходимости. Известно, что
элемент Адини (как элемент 0-формы) может достигать порядка O(h2) для бигармо-
нической задачи [13–15], и такая же высокая точность, естественно, желательна для
элементов Адини–Стокса (как элементов 1-формы). В данной работе мы показываем,
что приведенный элемент Адини–Стокса действительно имеет такую высокую точность
порядка O(h2) для скорости в норме, зависящей от сетки и параметров, на общих ква-
зиоднородных прямоугольных сетках. Высокая точность члена ошибки аппроксимации
обусловлена точностью комплекса, а основная идея для члена ошибки согласованности —
стратегия переключения касательной-нормали, используемая в [29] с помощью разложе-
ния Кошуля [2]. Также предлагается подходящий метод постобработки для повышения
точности до O(h2) для давления. Приведены численные примеры и дополнительные ком-
ментарии относительно полного элемента Адини–Стокса.

Статья построена следующим образом. В пункте 2 мы вводим некоторые обозначе-
ния и основные понятия приведенного элемента Адини–Стокса для модели Бринкмана.
Далее в п. 3 показана высокая точность этого элемента для скорости. Затем в п. 4 мы
представляем метод постобработки. Наконец, численные результаты представлены в п. 5.

2. Приведенный элемент Адини–Стокса
для модели Бринкмана

В данном пункте напомним приведенный элемент Адини–Стокса, представленный
в [7], и покажем его применение для модели Бринкмана. В данной статье используются
стандартные обозначения в пространствах Соболева. Для области D ⊂ R2 n — единич-
ный вектор внешней нормали на ∂D, Pk(D) — обычное полиномиальное пространство
над D степени не выше k. Норму и полунорму на Hk(D) запишем как ‖ · ‖k,D и | · |k,D
соответственно. Запишем Hk

0 (D) как замыкание C∞0 (D) в Hk(D), и, аналогичным обра-
зом, функции в H0(div;D) ⊂H(div;D) имеют нулевой нормальный след на ∂D. Также
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предположим, что L2(D) := H0(D) со своим скалярным произведением, обозначаемым
(·, ·)D, и L2

0(D) ⊂ L2(D) — подпространство с нулевым интегралом по D. Кроме того,
оператор L2-проекции на Pk(D) запишем как Pk,D. Приведенные выше обозначения так-
же могут использоваться для векторных и матричных пространств Соболева, индекс D
во всех приведенных выше обозначениях будет опущен при условии, что D = Ω.

Предположим, что область решения Ω можно разбить на квазиоднородные прямо-
угольники, обозначаемые Th, где h — максимальный размер ячеек в Th. Для ячейки
K ∈ Th обозначим вершины как Vi,K , i = 1, 2, 3, 4. Построим систему координат та-
кую, что V1,K = (x′K , y

′
K), V2,K = (x′′K , y

′
K), V3,K = (x′′K , y

′′
K), V4,K = (x′K , y

′′
K) при

x′K < x′′K и y′K < y′′K . Длина и ширина K определяются выражениями hx,K = x′′K − x′K
и hy,K = y′′K − y′K соответственно. Также запишем Ei,K = Vi,KVi+1,K — четыре ребра K,
где i берется по модулю четыре. Множества всех вершин, внутренних вершин и гра-
ничных вершин в Th обозначим как Vh, V ih и Vbh соответственно. Также запишем C как
положительную постоянную, не зависящую от h, ν и α, и она может меняться в разных
местах.

Теперь напомним приведенный элемент Адини–Стокса и соответствующий комплекс
Стокса. Для простоты рассмотрим только их однородные версии. Для любого K ∈ Th
известный элемент Адини (K,WK , TK) [1] определяется пространством функций формы
WK и множеством степеней свободы (DoF) TK :

WK = P3(K)⊕ span
{
x3y, xy3

}
, TK = {w(Vi,K),∇w(Vi,K) ∀w ∈WK , i = 1, 2, 3, 4} .

Соответствующее глобальное пространство Wh запишем в виде

Wh =
{
w ∈ H1

0 (Ω) : w |K∈WK ∀K ∈ Th,
∇w непрерывен для всех V ∈ V ih и равен нулю для всех V ∈ Vbh

}
.

Приведенный элемент Адини–Стокса (K,VK ,ΣK) был введен в [7], где

VK = [P1(K)]2 ⊕ span
{
curlx3, curlx2y, curlxy2, curl y3, curlx3y, curlxy3

}
,

ΣK =

{
v(Vi,K),

∫
Ei,K

v · n ds ∀v ∈ VK , i = 1, 2, 3, 4

}
.

Отметим, что VK имеет следующее разложение Кошуля [2]:

VK = span{(x, y)>} ⊕ curlWK , (2.1)

которое пригодится в нашем предстоящем анализе. При этом Vh имеет вид

Vh = {v ∈H0(div; Ω) : v |K∈ VK ∀K ∈ Th,
v непрерывна для всех V ∈ V ih и равна нулю для всех V ∈ Vbh

}
.

Пусть Ph — кусочно-постоянное пространство с нулевым интегралом по Ω:

Ph =
{
q ∈ L2

0(Ω) : q |K∈ P0(K) ∀K ∈ Th
}
.

Тогда в соответствии с [7] следующий приведенный комплекс Адини–Стокса является
точным:

0 Wh Vh Ph 0.curl div (2.2)
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Запишем билинейную форму b(v, q) = (div v, q) для v ∈H(div; Ω) и q ∈ L2(Ω). Модель
Бринкмана (1.1) имеет следующую слабую формулировку: найти (u, p) ∈ [H1

0 (Ω)]2 ×
L2

0(Ω) такие, что

ν(∇u,∇v) + α(u,v)− b(v, p) = (f ,v) ∀v ∈ [H1
0 (Ω)]2,

b(u, q) = 0 ∀q ∈ L2
0(Ω).

(2.3)

Эта задача имеет единственное решение вследствие стандартной теории смешанных ме-
тодов [3] и условия inf–sup

sup
v∈[H1

0 (Ω)]2

b(v, q)

‖v‖1
≥ C‖q‖0 ∀q ∈ L2

0(Ω). (2.4)

Дискретная формулировка с использованием приведенного элемента Адини–Стокса сле-
дующая: найти (uh, ph) ∈ Vh × Ph такие, что

ah(uh,vh)− b(vh, ph) = (f ,vh) ∀vh ∈ Vh,

b(uh, qh) = 0 ∀qh ∈ Ph,
(2.5)

где билинейная форма ah(·, ·) задается следующим образом:

ah(uh,vh) = ν
∑
K∈Th

(∇uh,∇vh)K + α(uh,vh).

Кроме того, введем следующие нормы или полунормы для измерения ошибки вычисле-
ний:

‖vh‖21,h =
∑
K∈Th

‖vh‖21,K , |vh|21,h =
∑
K∈Th

|vh|21,K , ‖vh‖2ah = ah(vh,vh).

Слабая непрерывность Vh гарантирует, что ‖ · ‖ah — норма в Vh.

Замечание 2.1. В предстоящем анализе свойство отсутствия дивергенции divu = 0
в (1.1) будет играть основную роль. Однако это свойство может не выполняться, если
α > 0, и его следует заменить на divu = g для данного ненулевого значения g(x) ∈ L2(Ω).
Тем не менее, этот случай можно преобразовать в случай отсутствия дивергенции с
помощью простой предварительной обработки. Пусть a — произвольная точка в Ω, с
использованием оператора Пуанкаре можно легко вычислить (посредством одномерного
численного интегрирования)

ug = (x− a)

∫ 1

0
tg
(
t(x− a) + a

)
dt,

которое удовлетворяет divug = g [8]. Затем, путем введения v = u− ug получим новую
задачу, имеющую вид, аналогичный (1.1), с новой неизвестной бездивергентной скоро-
стью v. Как следствие, достаточно обсудить только (1.1) и вариационную и дискретную
формулировки (2.3) и (2.5).

Комплекс (2.2) показывает условие отсутствия дивергенции divVh ⊂ Ph. Пусть
Πh — стандартная узловая интерполяция из [H1+s(Ω) ∩ H1

0 (Ω)]2 в Vh с s > 0 и
Ph — L2-проекционный оператор в Ph. Тогда DoF интегрального типа для нормального
следа в ΣK гарантируют, что

div Πhv = Phdiv v ∀v ∈
[
H1+s(Ω)

⋂
H1

0 (Ω)
]2
.
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С использованием сглаживания Скотта–Чжана [21] Πh можно изменить так, чтобы его
можно было определить на [H1

0 (Ω)]2 с приведенным выше соотношением без изменений.
В результате, следующее дискретное условие inf–sup может быть проверено с использо-
ванием его непрерывной версии (2.4) и метода Фортина:

sup
vh∈Vh

b(vh, qh)

|vh|1,h
≥ C‖qh‖0 ∀qh ∈ Ph. (2.6)

Тогда в соответствии с теоремой 1.2 из [9] задача (2.5) имеет единственное решение
(uh, ph) со следующей абстрактной оценкой ошибки:

‖u− uh‖ah ≤ C

(
inf

vh∈Zh

‖u− vh‖ah + sup
wh∈Vh

Eh(u,wh)

‖wh‖ah

)
,

‖p− ph‖0 ≤ C

[
‖p− Php‖0 +M1/2

(
inf

vh∈Zh

‖u− vh‖ah + sup
wh∈Vh

Eh(u,wh)

‖wh‖ah

)]
,

(2.7)

где M = max{ν, α} и

Zh = {vh ∈ Vh : b(vh, qh) = 0 ∀qh ∈ Ph} = curlWh,

Eh(u,wh) = −ν
∑
K∈Th

∫
∂K

∂u

∂n
·wh ds.

3. Анализ высокой точности

В соответствии с (2.7) и с учетом элементарной оценки ошибки приведенного элемента
Адини–Стокса (см. [7, теоремы 5.3 и 6.1]) решение задачи (2.5) сходится равномерно с
порядком O(h) для скорости в норме ‖ · ‖ah и для давления в L2-норме. В данном пункте
мы покажем, что этот порядок можно улучшить до O(h2), по крайней мере для скорости.

Теорема 3.1. Пусть (u, p) ∈ [H1
0 (Ω) ∩ H3(Ω)]2 ×

[
L2

0(Ω) ∩H1(Ω)
]
— слабое решение

(2.3). Тогда решение (2.5) имеет следующую равномерную сходимость:

‖u− uh‖ah ≤ Ch
2(ν1/2 + α1/2h)|u|3, ‖p− ph‖0 ≤ Ch

[
|p|1 +M1/2h(ν1/2 + α1/2h)|u|3

]
.

Доказательство. Начнем доказательство с члена аппроксимации. Заметим, что в (1.1)
u бездивергентно, причем u имеет регулярность: u ∈ [H1

0 (Ω) ∩ H3(Ω)]2. Поэтому u =
curlφ для некоторого φ ∈ H2

0 (Ω) ∩ H4(Ω). Следовательно, вследствие точности (2.2) и
оптимальной аппроксимации Wh находим

inf
vh∈Zh

‖u− vh‖2ah = inf
wh∈Wh

(
ν|curl (φ− wh)|21,h + α‖curl (φ− wh)‖20

)
≤ C inf

wh∈Wh

(
ν|φ− wh|22,h + α|φ− wh|21

)
≤ Ch4(ν + αh2)|φ|24 ≤ Ch4(ν + αh2)|u|23,

что дает
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inf
vh∈Zh

‖u− vh‖ah ≤ Ch
2(ν1/2 + α1/2h)|u|3. (3.1)

Поэтому остается рассмотреть член ошибки согласованности Eh(u,wh).
Для этого определим, что I1,Kv — узловая интерполяция в пространство билинейных

элементов, которая соответствует значениям в четырех вершинах функции v ∈ H1+s(K)
∀K ∈ Th, и положим R1,Kv = v−I1,Kv. Запишем u = (u1, u2)> и wh = (wh1, wh2)> ∈ Vh.
Тогда ввиду непрерывности вершин Vh и вследствие того факта, что Vh ⊂ H0(div; Ω),
получим

Eh(u,wh) = −ν
∑
K∈Th

J1,K(u,wh)− ν
∑
K∈Th

J2,K(u,wh), (3.2)

где

J1,K(u,wh) =

(∫
E3,K

−
∫
E1,K

)
∂u1

∂y
R1,Kwh1 ds,

J2,K(u,wh) =

(∫
E2,K

−
∫
E4,K

)
∂u2

∂x
R1,Kwh2 ds.

Теперь сосредоточимся на J1,K(u,wh). Заметим, что в соответствии с определением VK

wh1 |K∈ span
{

1, x, y, xy, y2, xy2
}
⊕ span

{
x2, x3

}
:= W1 ⊕W2,

и W1 |Ei,K
= P1(Ei,K) для i = 1, 3; W2 не зависят от y. Вследствие этого

R1,Kwh1 |E3,K
= R1,Kwh1 |E1,K

∀wh ∈ Vh (3.3)

и поэтому

|J1,K(u,wh)|=

∣∣∣∣∣
(∫

E3,K

−
∫
E1,K

)(
∂u1

∂y
− P0,K

∂u1

∂y

)
R1,Kwh1 ds

∣∣∣∣∣≤ Ch
∣∣∣∣∂u1

∂y

∣∣∣∣
1,K

|wh1|1,K . (3.4)

Введем следующую билинейную форму:

J ′1,K(u,wh) =
h2
x,K

12

∫
K

(
∂2u1

∂y2

∂2wh2

∂x∂y
+
∂3u1

∂y3

∂wh2

∂x

)
dx.

Из обратного неравенства следует, что

|J ′1,K(u,wh)| ≤ Ch2

∣∣∣∣∂u1

∂y

∣∣∣∣
1,K

|wh2|2,K + Ch2

∣∣∣∣∂u1

∂y

∣∣∣∣
2,K

|wh2|1,K

≤ Ch

(∣∣∣∣∂u1

∂y

∣∣∣∣
1,K

+ h

∣∣∣∣∂u1

∂y

∣∣∣∣
2,K

)
|wh2|1,K . (3.5)

Кроме того, в соответствии с (3.3) можно проверить, что

J1,K(u,wh) = J ′1,K(u,wh) = 0, если
∂u1

∂y
= 1 или

∂u1

∂y
= x. (3.6)

Теперь вспомним разложение Кошуля (2.1). Если wh |K= (x, y)>, ясно, что
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J1,K(u,wh) = J ′1,K(u,wh), если
∂u1

∂y
= y. (3.7)

В этом случае обе части (3.7) зануляются. В противном случае, предположим, что
wh |K= curlw для некоторого w ∈WK . Пусть (x0,K , y0,K) — центр K и определим

ξK =
2

hx,K
(x− x0,K) , ηK =

2

hy,K
(y − y0,K) .

Заметим, что I1,K сохраняет значения при V3,K и V4,K , ∂w
∂y

∣∣∣
E3,K

= wh1 |E3,K
∈ P3(E3,K) и

∂3w

∂x2∂y
не зависит от y. С использованием (3.3), интегрирования по частям и с помощью

квадратурного правила Симпсона имеем(∫
E3,K

−
∫
E1,K

)
ηKR1,Kwh1 ds = 2

∫
E3,K

R1,K
∂w

∂y
ds = −hx,K

∫
E3,K

ξK
∂

∂x
R1,K

∂w

∂y
ds

= −
h2
x,K

6

(
∂

∂x
R1,K

∂w

∂y
(V3,K)− ∂

∂x
R1,K

∂w

∂y
(V4,K)

)
= −

h2
x,K

6

∫
E3,K

∂2

∂x2
R1,K

∂w

∂y
ds

= −
h2
x,K

6

∫
E3,K

∂3w

∂x2∂y
ds = −

h2
x,K

12

∫
K

∂ηK
∂y

∂3w

∂x2∂y
dx =

h2
x,K

12

∫
K

∂ηK
∂y

∂2wh2

∂x∂y
dx.

Это означает, что (3.7) также верно для wh |K∈ curlWK . Используя (2.1) и собирая
вместе (3.6) и (3.7), имеем

J1,K(u,wh) = J ′1,K(u,wh) ∀∂u1

∂y
∈ P1(K), ∀wh ∈ Vh. (3.8)

Благодаря тому, что как J1,K(u,wh), так и J ′1,K(u,wh) являются билинейными относи-

тельно ∂u1

∂y
и wh, в соответствии с соотношениями (3.4), (3.5), (3.8) и леммой Брэмбла–

Гильберта получим

|J1,K(u,wh)− J ′1,K(u,wh)| ≤ Ch inf
p∈P1(K)

(∣∣∣∣∂u1

∂y
− p
∣∣∣∣
1,K

+ h

∣∣∣∣∂u1

∂y

∣∣∣∣
2,K

)
|wh|1,K

≤ Ch2

∣∣∣∣∂u1

∂y

∣∣∣∣
2,K

|wh|1,K ≤ Ch2|u|3,K |wh|1,K . (3.9)

Суммирование по всем K дает∣∣∣∣∣∣
∑
K∈Th

J1,K(u,wh)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
K∈Th

J ′1,K(u,wh)

∣∣∣∣∣∣+ Ch2|u|3|wh|1,h. (3.10)

С другой стороны, поскольку wh ⊂ H0(div; Ω) и u ∈ [H3(Ω)]2, ∂wh2

∂x
и ∂2u1

∂y2
непрерывны

вдоль всех ребер, параллельных оси x. Следовательно,
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∣∣∣∣∣∣
∑
K∈Th

J ′1,K(u,wh)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
K∈Th

h2
x,K

12

∫
K

∂

∂y

(
∂2u1

∂y2

∂wh2

∂x

)
dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
K∈Th

h2
x,K

12

(∫
E3,K

−
∫
E1,K

)
∂2u1

∂y2

∂wh2

∂x
ds

∣∣∣∣∣∣ = 0,

что вместе с (3.10) дает ∣∣∣∣∣∣
∑
K∈Th

J1,K(u,wh)

∣∣∣∣∣∣ ≤ Ch2|u|3|wh|1,h.

Аналогичные рассуждения можно провести для J2,K(u,wh). Подстановка этих оценок
в (3.2) показывает, что

|Eh(u,wh)| ≤ Cνh2|u|3|wh|1,h ≤ Cν1/2h2|u|3‖wh‖ah , (3.11)

а оценка скорости получается из (2.7), (3.1) и (3.11).
Поскольку ‖p−Php‖0 ≤ Ch|p|1, искомая оценка для давления также следует из (2.7),

(3.1) и (3.11).

Замечание 3.1. Этот результат сходимости можно рассматривать как аналог высокой
точности известного элемента Адини 1-формы для задач четвертого порядка, разрабо-
танных в [14]. Однако не все пространства 1-формы, которые можно рассматривать как
компоненты точной последовательности, начиная с пространства элементов Адини, име-
ют такую высокую точность. Типичным примером является полный элемент Адини–
Стокса, также построенный в [7], и для этого элемента соотношение (3.8) больше не
выполняется. Численные результаты по этому элементу можно найти в [29].

4. Постобработка для давления

В соответствии с теоремой 3.1 только скорость имеет оптимальный равномерный по-
рядок сходимости O(h2), но для давления этот порядок всего лишь O(h). Это является
упрощением, поскольку порядок аппроксимации неоптимален. В данном пункте мы пред-
лагаем метод поэлементной постобработки для улучшения порядка равномерной сходи-
мости для давления. Основная идея взята из работы Стенберга [22] для чистых задач
Дарси. Аналогичный метод был разработан в [19] для чистых задач Стокса.

Пусть (uh, ph) — решение (2.5). Решение для давления p∗h после обработки определя-
ется поэлементно следующим образом: для любого K ∈ Th, p∗h |K∈ P1(K),

(∇p∗h,∇q)K = (ν∆uh − αuh + f ,∇q)K ∀q ∈ P1(K),∫
K
p∗h dx =

∫
K
ph dx.

(4.1)

Пусть p∗h |K= aK +bKx+cKy ∀K ∈ Th и возьмем q = x, y в первом уравнении (4.1), тогда
мы имеем (

bK
cK

)
=

1

|K|

∫
K

(ν∆uh − αuh + f) dx,

и aK можно решить с использованием bK , cK и второго уравнения из (4.1). Тогда имеем
следующий оптимальный результат сходимости.
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Теорема 4.1. На основании тех же предположений, что и в теореме 3.1, если p ∈
H2(Ω), то мы имеем

‖p− p∗h‖0 ≤ Ch2
{
|p|2 +

[
ν +M1/2(ν1/2 + α1/2h) + (ν1/2 + α1/2h)2

]
|u|3

}
.

Доказательство. Свойство аппроксимации Ph и второе уравнение в (4.1) означают,
что

‖p− p∗h‖0 ≤ ‖(p− p∗h)− Ph(p− p∗h)‖0 + ‖Ph(p− ph + ph − p∗h)‖0

≤ Ch|p− p∗h|1,h + ‖Php− ph‖0. (4.2)

Что касается второго члена, с использованием вывода (2.7) (см. приложение A в [9]),
теоремы 3.1 и (3.11) имеем

‖Php−ph‖0 ≤ C sup
wh∈Vh

‖u− uh‖ah‖wh‖ah + Eh(u,wh)

‖wh‖1,h
≤ CM1/2h2(ν1/2+α1/2h)|u|3. (4.3)

Поэтому достаточно исследовать |p − p∗h|1,h. Пусть P∗h — оператор L2-проекции на ку-
сочно-разрывное пространство линейных элементов, а именно P∗h |K= P1,K ∀K ∈ Th.
Поскольку (P∗hp − p∗h) |K∈ P1(K), тогда из (1.1), первого уравнения в (4.1) и свойства
аппроксимации P∗h следует, что

|P∗hp− p∗h|21,K =
(
∇(P∗hp− p),∇(P∗hp− p∗h)

)
K

+
(
∇(p− p∗h),∇(P∗hp− p∗h)

)
K

≤ |P∗hp− p|1,K |P∗hp− p∗h|1,K + (ν∆(u− uh)− α
(
u− uh),∇(P∗hp− p∗h)

)
K

≤ Ch|p|2,K |P∗hp− p∗h|1,K + (ν|u− uh|2,K + α‖u− uh‖0,K)|P∗hp− p∗h|1,K . (4.4)

Согласно обратному неравенству треугольника, имеем

|u− uh|2,K ≤ inf
v∈[P2(K)]2

(
|u− v|2,K + |v − uh|2,K

)
≤ inf

v∈[P2(K)]2

(
|u− v|2,K + Ch−1|v − uh|1,K

)
≤ inf

v∈[P2(K)]2

[
|u− v|2,K + Ch−1(|v − u|1,K + |u− uh|1,K)

]
≤ Ch|u|3,K + Ch−1|u− uh|1,K .

Подставив это выражение в (4.4), получим

|P∗hp− p∗h|1,K ≤ Ch|p|2,K + Cνh|u|3,K + Ch−1ν|u− uh|1,K + Cα‖u− uh‖0,K .

Суммируя по всем K и с учетом теоремы 3.1, имеем

|P∗hp− p∗h|1,h ≤ Ch|p|2 + Cνh|u|3 + Ch−1(ν1/2 + α1/2h)‖u− uh‖ah

≤ Ch|p|2 + Cνh|u|3 + Ch(ν1/2 + α1/2h)2|u|3.

Тогда неравенство треугольника дает нам

|p− p∗h|1,h ≤ |p−P∗hp|1,h + |P∗hp− p∗h|1,h ≤ Ch|p|2 +Cνh|u|3 +Ch
(
ν1/2 +α1/2h

)2|u|3. (4.5)

Следовательно, после подстановки (4.3) и (4.5) в (4.2) теорема доказана.
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5. Численные примеры

В данном пункте представлены численные примеры. Область решения задается как
Ω = [0, 2]× [0, 1] и задача Бринкмана (1.1) взята как в первом численном примере в [29],
т. е. точное решение имеет вид

u = curlφ, p = p0 −
1

|Ω|

∫
Ω
p0 dx,

где

φ(x, y) = 2ex−2yx2(x− 2)2y2(y − 1)2, p0(x, y) = (xy − 1) sin(x+ 2y − 1). (5.1)

Член f правой части уравнения (1.1) определяется соответствующим образом. Зафик-
сируем параметр α = 1 в (1.1) и возьмем различные ν ∈ (0, 1] для проверки высокой
точности Vh×Ph. Кроме того, также исследуем предельные случаи просто задачи Дарси
(ν = 0, α = 1) и просто задачи Стокса (ν = 1, α = 0). Протестируем два различных типа
сеток. Для положительного целого числа n первый тип представляет собой равномерное
n× n разбиение Ω, а второй тип также содержит n2 ячеек, но это неравномерное разби-
ение, порожденное равномерным делением фиксированной грубой сетки (см. рисунок).
При таких установках задача (2.5) эквивалентна линейной системе, а элементы матри-
цы коэффициентов и член в правой части накапливаются поэлементно по 16-узловому
квадратурному правилу Гаусса. Теперь решим (2.5) методом MINRES, поскольку мат-
рица конечных элементов является симметричной, но неопределенной.

неоднородная сетка при n = 4; это исход-
ная грубая сетка для создания измельчен-
ных неоднородных сеток

неоднородная сетка при n = 8

Рис. Неоднородные сетки в наших численных примерах

В таблицах 1 и 2 приведены численные результаты для однородных и неоднородных
сеток соответственно. Можно заметить, что для обоих типов сеток порядок сходимости
‖u−uh‖ah равномерно равен O(h2), как предсказано в теореме 3.1, что также означает,
что этот порядок не зависит от неоднородности сетки. Хотя ‖p−ph‖0 равен только O(h),
посредством постобработки (4.1) порядок ‖p − p∗h‖0 был улучшен до O(h2) равномерно,
что согласуется с теоремой 4.1.
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Таблица 1. Ошибки решений, полученных путем Vh × Ph на однородных сетках

оценка ошибки ν n = 4 n = 8 n = 16 n = 32 n = 64 порядок
Стокс 8.097E−1 2.197E−1 5.301E−2 1.298E−2 3.223E−3 2.01

2−4 1.982E−1 5.483E−2 1.325E−2 3.246E−3 8.058E−4 2.01
‖u− uh‖ah 2−8 5.034E−2 1.388E−2 3.348E−3 8.144E−4 2.016E−4 2.01

2−12 2.714E−2 5.264E−3 1.003E−3 2.163E−4 5.126E−5 2.08
Дарси 2.506E−2 4.252E−2 5.922E−4 7.674E−5 9.702E−6 2.98
Стокс 7.205E−2 1.402E−2 3.257E−3 8.042E−4 2.005E−4 2.00

2−4 5.889E−2 1.134E−2 2.536E−3 6.207E−4 1.544E−4 2.01
‖u− uh‖0 2−8 2.952E−2 5.834E−3 9.428E−4 1.887E−4 4.407E−5 2.10

2−12 2.511E−2 4.313E−3 6.145E−4 8.054E−5 1.076E−5 2.90
Дарси 2.506E−2 4.252E−3 5.922E−4 7.674E−5 9.702E−6 2.98
Стокс 6.820E−1 2.792E−1 8.618E−2 2.902E−2 1.194E−2 1.28

2−4 1.737E−1 8.819E−2 4.386E−2 2.187E−2 1.093E−2 1.00
‖p− ph‖0 2−8 1.696E−1 8.678E−2 4.363E−2 2.184E−2 1.092E−2 1.00

2−12 1.696E−1 8.677E−2 4,363E−2 2,184E−2 1.092E−2 1.00
Дарси 1.696E−1 8.677E−2 4,363E−2 2,184E−2 1.092E−2 1.00
Стокс 7.008E−1 2.734E−1 7.511E−2 1.917E−2 4.818E−3 1.99

2−4 5.365E−2 1.867E−2 5.064E−3 1.289E−3 3.236E−4 1.99
‖p− p∗h‖0 2−8 3.629E−2 9.244E−3 2.324E−3 5.818E−4 1.455E−4 2.00

2−12 3.624E−2 9.207E−3 2.311E−3 5.784E−4 1.446E−4 2.00
Дарси 3.624E−2 9.207E−3 2.311E−3 5.784E−4 1.446E−4 2.00

Таблица 2. Ошибки решений, полученных путем Vh × Ph на неоднородных сетках

оценка ошибки ν n = 4 n = 8 n = 16 n = 32 n = 64 порядок
Стокс 2.559E0 1.287E0 3 498E−1 8.527E−2 2.079E−2 2.04

2−4 5.541E−1 2.968E−1 8.514E−2 2.094E−2 5.115E−3 2.03
‖u− uh‖ah 2−8 1.088E−1 5.246E−2 1.749E−2 4.616E−3 1.141E−3 2.02

2−12 6.362E−2 1.983E−2 4.005E−3 8.964E−4 2.191E−4 2.03
Дарси 5.997E−2 1.714E−2 2.764E−3 3.941E−4 5.251E−5 2.91
Стокс 4.103E−1 1.444E−1 2.354E−2 4.880E−3 1.168E−3 2.06

2−4 2.797E−1 1.154E−1 2.061E−2 4.228E−3 1.007E−3 2.07
‖u− uh‖0 2−8 8.191E−2 3.685E−2 9.985E−3 2.078E−3 4.721E−4 2.14

2−12 6.029E−2 1.776E−2 3.215E−3 6.099E−4 1.222E−4 2.32
Дарси 5.997E−2 1.714E−2 2.764E−3 3.941E−4 5.251E−5 2.91
Стокс 2.355E0 1.125E0 4.075E−1 1.217E−1 3.732E−2 1.71

2−4 3.500E−1 1.876E−1 9.344E−2 4.591E−2 2.279E−2 1.01
‖p− ph‖0 2−8 3.329E−1 1.776E−1 9.039E−2 4.540E−2 2.272E−2 1.00

2−12 3.329E−1 1.775E−1 9.039E−2 4.540E−2 2.272E−2 1.00
Дарси 3.329E−1 1.775E−1 9.039E−2 4.540E−2 2.272E−2 1.00
Стокс 5.275E0 1.697E0 4.821E−1 1.219E−1 3.045E−2 2.00

2−4 2.934E−1 1.004E−1 3.008E−2 7.710E−3 1.930E−3 2.00
‖p− p∗h‖0 2−8 1.273E−1 3.389E−2 8.685E−3 2.188E−3 5.482E−4 2.00

2−12 1.271E−1 3.368E−2 8.571E−3 2.152E−3 5.387E−4 2.00
Дарси 1.271E−1 3.368E−2 8.570E−3 2.152E−3 5.386E−4 2.00

Замечание 5.1. Отметим, что для задачи Стокса порядок сходимости ‖u−uh‖0 равен
снова O(h2) и никакого улучшения по сравнению с порядком в энергетической норме
не наблюдается. Это наследие аналогичного явления для элемента Адини для задач
четвертого порядка [10].

Замечание 5.2. Тщательная проверка табл. 1 в данной работе и табл. 4 из [29] пока-
зывает, что приведенные и полные элементы Адини–Стокса дают одно и то же реше-
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ние по скорости. Это происходит потому, что обе скорости определяются посредством
uh ∈ Zh = curlWh и

ah(uh,vh) = (f ,vh) ∀vh ∈ Zh.

Поэтому мы дали строгое объяснение высокой точности скорости с использованием пол-
ного элемента Адини–Стокса из [29]. Тем не менее приведенная версия дает лучший
результат аппроксимации (за счет постобработки) для давления при меньших вычисли-
тельных затратах.
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