УДК 135+547.0 DOI: 10.15372/KhUR20160503

Электросинтез карбоновых кислот непрямым электрокаталитическим окислением алифатических спиртов с участием активных форм кислорода

В. Л. КОРНИЕНКО¹, А. М. КОШЕЛЕВА¹, Г. В. КОРНИЕНКО²

¹Институт химии и химической технологии Сибирского отделения РАН, Красноярск, Россия

²Сибирский государственный технологический университет, Красноярск, Россия

E-mail: kvl@icct.ru

(Поступила 21.09.15; после доработки 09.11.15)

Аннотация

Исследован процесс электросинтеза карбоновых кислот (масляной, капроновой, пеларгоновой и каприновой) непрямым электрокаталитическим окислением алифатических спиртов (1-бутилового, 1-гексилового, 1-нонилового и 1-децилового) с участием активных форм кислорода (АФК). Процесс проводили с использованием трех схем генерации АФК: 1) окисление на аноде (анодно); 2) окисление на аноде с добавлением H₂O₂ в электролит (анодно + H₂O₂); 3) парный электролиз – окисление на аноде с параллельной генерацией HO₂ на углеграфитовом катоде при пропускании кислорода через раствор электролита.

Установлено, что при использовании в качестве анода оксидогидроксидного никелевого электрода наиболее эффективная схема окисления алифатических спиртов – парный электросинтез: при пропущенном количестве электричества $Q/Q_{\rm reop} = 0.14$ выход кислот по току составил 168 % для масляной и 148 % для капроновой кислоты; при $Q/Q_{\rm reop} = 1.0$ выход каприновой кислоты составил 64 %. На допированном бором алмазном электроде дополнительная генерация активных форм кислорода приводит к снижению выхода целевого продукта за счет его дальнейшего окисления, поэтому оптимально применять непрямое анодное окисление: при $Q/Q_{\rm reop} = 1.0$ выход по току пеларгоновой кислоты равен 89 %. Сделан вывод о том, что при комплексной оптимизации процесса электролиза метод электросинтеза карбоновых кислот непрямым электрокаталитическим окислением алифатических спиртов может рассматриваться как альтернатива имеющимся.

Ключевые слова: электросинтез, алифатические спирты, карбоновые кислоты, оксидо-гидроксидный никелевый электрод, допированный бором алмазный электрод, выход по току, выход по веществу

введение

В связи с ужесточившимися требованиями к экологической безопасности химико-технологических процессов, разработка экологически чистых и эффективных процессов, соответствующих принципам Green Chemistry, все чаще привлекает внимание исследователей и остается главной тенденцией в развитии современных химических технологий [1]. Алифатические спирты – сравнительно дешевое исходное сырье для получения карбоновых кислот, которые широко востребованы в различных отраслях современного промышленного производства: фармацевтической, витаминной, косметической и автомобильной [2]. При этом окисление спиртов до соответствующих карбоновых кислот остается одним из основных процессов в органическом синтезе с участием сравнительно дорогих и токсичных химических окислителей (перманганат калия, соединения хрома и т. п.) [2, 3]. В то же время, согласно данным [4-6], хорошие результаты получены при непрямом электрокаталитическом окислении in situ генерированными активными формами кислорода (АФК), которые различаются по окислительной способности на 5-6 порядков и зарекомендовали себя как экологичные и перспективные реагенты для получения органических продуктов и разрушения органических субстратов в сточных водах. В этой связи необходимо изучать возможности их применения для окисления спиртов до целевых продуктов - соответствующих карбоновых кислот. Известно, что АФК сравнительно просто in situ генерировать из кислорода, пероксида водорода и воды на углеграфитовой поверхности электрода и в объеме электролита по реакциям [4, 7]

$$O_2 + H_2O + 2\bar{e} \rightarrow HO_2 + OH^- pH > 7$$
 (1)

$$O_2 + 2H^+ + 2\bar{e} \to H_2O_2 \text{ pH} < 7$$
 (2)

и анодном окислении H_2O и H_2O_2 на Pt, электродах на основе диоксидов свинца, олова, марганца и т. п., а также на допированном бором алмазном электроде по реакциям [8]

 $H_2 O - \bar{e} \to HO^{\bullet} + H^+$ (3)

$$\mathrm{HO}_{2}^{-} - \bar{e} \to \mathrm{HO}_{2}^{\bullet} \tag{4}$$

$$H_2O - \bar{e} \to HO_2^{\bullet} + H^+$$
 (5)

Благодаря этому можно проводить различной глубины окисление органических субстратов как в гетерогенных, так и в гомогенных условиях и тем самым повышать эффективность процесса электросинтеза.

В работах [9–11] получены предварительные результаты непрямого электрокаталитического окисления алифатических спиртов (бутилового, гексилового, нонилового и децилового) до соответствующих карбоновых кислот (масляной, капроновой, пеларгоновой и каприновой) на ОГНЭ и допированном бором алмазном электроде (ДБАЭ) (табл. 1). Электрокаталитическое окисление алифатических спиртов проводили с реализацией трех схем генерации АФК: 1) окисление на аноде (анодно); 2) окисление на аноде с добавлением H_2O_2 в электролит (анодно + H_2O_2); 3) парный электролиз: окисление на аноде с параллельной генерацией HO_2^- на углеграфитовом катоде при пропускании кислорода через раствор электролита.

Цель данной работы – исследование эффективности электросинтеза целевых продуктов (масляной, капроновой, пеларгоновой и каприновой кислот) методом непрямого электрокаталитического окисления 1-бутилового, 1-гексилового, 1-нонилового и 1-децилового спиртов на ОГНЭ и ДБАЭ с участием АФК путем постановки балансовых опытов.

Выбранные спирты обладают различной растворимостью в водных растворах электролитов и различной адсорбируемостью на поверхности электродов. Известно [9, 12-15], что для спиртов нормального строения с увеличением длины углеводородной цепи, ростом молекулярной массы и снижением их адсорбируемости на аноде процесс окисления до соответствующих карбоновых кислот замедляется в связи с низкой концентрацией в водных растворах вследствие их низкой растворимости. Также известно [12-15], что с ростом температуры электролиза (>60 °C) повышается степень конверсии при окислении спиртов с шестью и более атомами углерода в цепи и, как следствие, растет выход целевого продукта.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Препаративные опыты проводили согласно данным табл. 1, в гальваностатическом режиме в трехэлектродной ячейке-электролизере вместимостью 150 мл с перемешиванием (при использовании ОГНЭ) и без пере-

ТАБЛИЦА 1

Условия электрокаталитического окисления алифатических спиртов до соответствующих карбоновых кислот

Исходные вещества	Материал электрода	Схема электролиза	T, °C	<i>I</i> , мА/см ²	<i>Q</i> , <i>A</i> · ч
Спирты с углеродной цепью > 6	ОГНЭ	Анодно + O ₂	70	10	0.8
	ДБАЭ	Анодно	20	5	0.3
Спирты с углеродной цепью < 6	ОГНЭ	Анодно + O ₂	20	10	0.8
	ДБАЭ	Анодно	20	5	0.7

мешивания (при использовании ДБАЭ). Во всех экспериментах в качестве вспомогательного электрода (катода) использовали графитовый стержень из спектрально чистого графита общей площадью 8 см². Площадь видимой рабочей поверхности ОГНЭ составляла 8 см², ДБАЭ – 4.16 см². В качестве электрода сравнения использовали хлоридсеребряный электрод (ХСЭ). В работе использовали потенциостат марки IPC-Pro MF, соединенный с компьютером.

Оксидогидроксидный никелевый электрод изготавливали по следующей методике: пористую углеграфитовую матрицу (композитный материал состава: 80 мас. % технического углерода А437-Э + 20 мас. % гидрофобное связующее фторопласт-4Д) катодно поляризовали в растворе 1 М $NiSO_4 \cdot 7H_2O$ при плотности тока 10 мА/см² в течение 1 ч. Далее анодной поляризацией в растворе 1.2 M NaOH формировали высшие оксиды никеля при *E* = 1.1 В относительно ХСЭ в течение 1 ч. Для улучшения воспроизводимости характеристик рабочего слоя ОГНЭ периодически изменяли направление его поляризации (4-5 циклов с интервалом в 10 мин) в растворе 0.2 М NiSO₄ + 0.1 M CH₃COONa + 0.005 M NaOH при плотности тока 1 мА/см² [12]. Состояние поверхности ОГНЭ и его химический состав анализировали рентгеноспектральным методом с помощью сканирующего электронного микроскопа TM-1000 со спектрометром EDS. Сканы снимали в 5-9 точках на поверхности электрода. Содержание никеля в составе химических элементов, определенных в поверхностном слое электрода, составляло 90.1-97.3 %.

Допированный бором алмазный электрод сформирован на подложке из монокристаллического кремния методом горячей нити, разработанным в ИФХ АН СССР [16, 17]. Суть его заключается в следующем: смесь метана (или другого углеродсодержащего газа) и водорода активируется вольфрамовой (Та, Re) проволокой, нагретой до температуры ~2000 °С, и разлагается на поверхности подложки, поддерживаемой при 900-700 °С, которая размещается в непосредственной близости от W-активатора (5-10 мм). Образующиеся при активации углеводородные радикалы обеспечивают высокую скорость осаждения, а высокая концентрация атомарного водорода – селективность осаждения углерода в форме алмаза, газифицируя *sp*²-углерод. Для придания осаждаемым поликристаллическим слоям алмаза высокой электрической проводимости в газовую смесь добавляют борсодержащие соединения (в нашем случае – пары триметилбората). Детали эксперимента описаны в работе [18]. Толщина сформированной пленки составляла несколько микрометров.

Электросинтез на ОГНЭ проводили с использованием 1-бутанола, 1-гексанола и 1-деканола, на ДБАЭ – с использованием 1-нонанола.

В экспериментах при использовании ОГНЭ и ДБАЭ электролизы проводили в растворах 1.2 М NaOH и 0.1 М H₂SO₄ соответственно. Количество пропущенного электричества через ячейку устанавливали по растворимости исходных спиртов-реагентов в водных растворах, т. е. по количеству исходного субстрата, объему электролитической ячейки, плотности тока и времени электролиза. По окончании электролиза выполняли количественное определение кислот. Для выделения целевого продукта использовали следующие операции:

 экстракция продукта из электролита хлороформом;

2) выпаривание части хлороформа на водяной бане;

3) хроматографический анализ продукта.

Количественное определение карбоновых кислот проводили методом газожидкостной хроматографии (ГЖХ) на хроматроне-N-AW-HMDS. Условия хроматографирования: колонку длиной 1.5 м и диаметром 4 мм заполняли смешанной фазой: (полиэтиленгликольадипинат + ФФАП), температура термостата колонок 180 °С, газ-носитель – гелий, скорость протока 30 мл/мин. Количественное содержание компонентов вычисляли по площадям газохроматографических пиков.

Выход по веществу рассчитывали по загруженному субстрату (спирту) согласно [19].

Результаты препаративных опытов по наработке и выделению целевых карбоновых кислот представлены в табл. 2.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Данные табл. 2 свидетельствуют о том, что эффективность электросинтеза зависит от

Продукты	Материал электрода	т т	<i>т</i> _{прод} , г	В _в , %	B ₁ ,%
Каприновая кислота	ОГНЭ	1.2	0.94 ± 0.2	72.02	64.0 ± 2
Капроновая кислота	ОГНЭ	5.5	1.30 ± 0.1	21.02	148.0 ± 2
Масляная кислота	ОГНЭ	4.0	1.80 ± 0.1	38.01	168.0 ± 2
Пеларгоновая кислота	ДБАЭ	0.4	0.38 ± 0.05	98.01	89.0±1

ТАБЛИЦА 2

Результаты препаративных опытов по наработке и выделению целевых продуктов

Примечание. $m_{\text{прод}}$, $m_{\text{исх}}$ – массы полученного продукта (кислоты) и исходного субстрата (спирта) соответственно, г; $B_{\text{в}}$, $B_{\text{т}}$ – выход по веществу и по току соответственно, %.

схем электролиза и количества пропущенного электричества через ячейку-электролизер. Все использованные схемы электролиза (см. табл. 1) дают различную результативность электросинтеза: например, на ОГНЭ при парном электролизе и количестве пропущенного электричества $Q/Q_{\text{reop}} = 0.14$ при наработке масляной и капроновой кислот выход по току составил 168 и 148 % соответственно, для каприновой кислоты при Q/Q_{reop} он равен 1-64 %. На ДБАЭ при анодной схеме электролиза и $Q/Q_{\text{теор}} = 1$ выход по току пеларгоновой кислоты составил 89 %, а дополнительная генерация АФК при использовании схем анодно + H_2O_2 и анодно + O_2 снижает ее выход по току за счет дальнейшей деструкции этой кислоты. По-видимому, это обусловлено увеличением концентрации радикалов НО, как на поверхности электрода, так и в объеме электролита. При использовании режима $Q/Q_{\text{теор}} = 0.14$ при наработке масляной и капроновой кислот происходила неполная конверсия исходного субстрата - спирта. По этой причине для сохранения токовой эффективности целесообразно использовать не вступивший в реакцию спирт для повторного синтеза.

Приближенный расчет электроэнергии, затраченной на количество произведенного продукта, проводили по уравнению [20] $W = (1000U)/(\partial B_{T})$ (6) где W – расход электроэнергии, к $BT \cdot 4/T$; ∂ – электрохимический эквивалент, г/($A \cdot 4$); U – напряжение на электролизере, B; U = 4 B; B_{T} – выход по току, доли ед.

Результаты приближенных расчетов расхода электроэнергии на 1 т произведенного продукта приведены в табл. 3.

Видно, что приближенный расход электроэнергии на электросинтез целевых карбоновых кислот с использованием непрямого электрокаталитического окисления алифатических спиртов составляет 2.84–4.62 кВт · ч/кг. Это справедливо для принятых условий электролиза (напряжение на ячейке 4 В), оптимизации конструкции электролитической ячейки не проводилось. Очевидно, что при должной комплексной оптимизации процесса электролиза в целом расход электроэнергии можно будет значительно уменьшить, сохранив при этом выход по току целевых продуктов.

ЗАКЛЮЧЕНИЕ

На основании результатов препаративных опытов и приближенных расчетов расхода электроэнергии на производство целевого продукта можно сделать заключение о том, что электросинтез карбоновых кислот путем

ТАБЛИЦА З

Приближенный расход электроэнергии на 1 т произведенного продукта.

Целевые продукты	Исходное вещество	$M_{ m r}$ спирта	В _т , доли ед.	Э, г/(А · ч)	W, кВт∙ч/т
Масляная кислота	1-бутанол	74.12	1.675	0.69	3454.0
Капроновая кислота	1-гексанол	102.18	1.480	0.95	2836.0
Пеларгоновая кислота	1-нонанол	144.26	0.894	1.35	3325.0
Каприновая кислота	1-деканол	158.28	0.636	1.48	4260.0

непрямого электрокаталитического окисления алифатических спиртов с участием АФК при соответствующей комплексной оптимизации процесса может рассматриваться в качестве перспективного и альтернативного существующим. Наиболее эффективным вариантом электросинтеза является парный электролиз.

СПИСОК ЛИТЕРАТУРЫ

- 1 Anastas P. T., Warner J. C. Green Chemistry: Theory and Practice. NY: Oxford University Press, 1998. 30 p.
- 2 Pillai U. R., Sahle-Demessie E. // Appl. Catal. A: Gen. 2003. Vol. 245. P. 103-109.
- 3 Реморов Б. С., Авруцкая И. А., Фиошин М. Я. // Электрохимия. 1981. Т. 17, № 10. С. 1547–1551.
- 4 Pletcher D. // Acta Chem. Scand. 1999. Vol. 53. P. 745-750. 5 Корниенко В. Л. // Химия уст. разв. 2002. Т. 10, № 4. С. 391-399
- 6 Высоцкая Н. А. // Усп. химии. 1973. Т. 42, № 10. С. 1843-1853.
- 7 Berl E. // Trans. Electrochem. Soc. 1939. P. 359-369.
- 8 Brillas E., Mer E., Casado J. // J. Electrochem. Soc. 1996. Vol. 143. P. 49–53.
- 9 Чаенко Н. В., Корниенко Г. В., Кошелева А. М., Максимов Н. Г., Корниенко В. Л. // Электрохимия. 2011. Т. 47, № 10. С. 1228–1233.

- 10 Кошелева А. М., Чаенко Н. В., Корниенко Г. В., Власенко В. И., Корниенко В. Л. // Электрохимия. 2013. Т. 49, № 1. С. 105–109.
- 11 Корниенко В. Л., Колягин Г. А., Корниенко Г. В., Чаенко Н. В., Кенова Т. А., Васильева И. С. // Журн. прикл. химии. 2014. Т. 87, № 1. С. 3–18.
- 12 Kaulen I., Schafer H. // Tetrahedron. 1982. Vol. 38, No. 22. P. 3299-3308.
- 13 Лялин Б. В., Петросян В. А. // Электрохимия. 2010. Т. 46, № 11. С. 1283–1298.
- 14 Schafer H. J. // Electrochem. I. Topics in Current Chemistry. 1987. Vol. 142. P. 101–129.
- 15 Bersier P. M., Carlsson L., Bersier J., Steckhan Ed. E. // Electrochemistry V: Topics in Current Chemistry. Berlin Heidelberg: Springer-Verlag, 1994. Vol. 170. P. 113–229.
- 16 Сахарова А. Я., Плесков Ю. В., Ди Кварто Ф., Пьяцца С., Сунсери К., Теремецкая И. Г., Варнин В. П. // Электрохимия. 1995. Т. 31, № 2. С. 188–193.
- 17 Корниенко Г. В., Чаенко Н. В., Максимов Н. Г., Корниенко В. Л., Варнин В. П. // Электрохимия. 2011. Т. 47, № 2. С. 225-229.
- 18 Федосеев Д. В., Варнин В. П., Дерягин Б. В. // Усп. химии. 1984. Т. 53, № 5. С. 753–771.
- 19 Томилов А. П., Каган Е. Ш., Смирнов В. А., Жукова И. Ю. Препаративная органическая электрохимия: Учеб. пособие. 2-е изд. перераб. и доп. Новочеркасск: ЮРГТУ, 2002. 153 с.
- 20 Прикладная электрохимия. Учебник для вузов / Под ред. А. П. Томилова. 3-е изд. перераб. М.: Химия, 1984. 520 с.