
33 

Теплофизика и аэромеханика, 2024, том 31, № 1 

УДК 53.096 + 533 

Сравнение температуры воздуха 

на уровне внутренней стенки вихревых труб 

с круглым и квадратным сечениями 

рабочего канала* 

М.Р. Гордиенко, И.К. Кабардин, М.Х. Правдина, С.В. Какаулин,  

В.И. Полякова, В.Г. Меледин, Г.В. Бакакин, Н.И. Яворский 

Институт теплофизики  им. С.С. Кутателадзе  СО РАН, Новосибирск 

E–mail: fregat120@yandex.ru 

Измерения температуры газа на уровне внутренней стенки труб Ранка с квадратным и круглым попе-

речными сечениями при вариации доли холодного расхода для обеих труб показали наличие трех характерных 

зон роста температуры, которые не изменяются в широком диапазоне доли холодного расхода. Эти зоны 

характерны для анализа течения в вихревой трубе в рамках концепции кризиса течения. 
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Введение 

В работе представлено продолжение экспериментального исследования [1, 2] кри-

зиса течения в вихревой трубе Ранка – Хилша. Эффект, открытый Ранком в 1933 году 

[3], получил признание и вызвал интерес в инженерных и научных кругах после работы 

Хилша [4]. Эффект Ранка состоит в радиальном разделении входящего потока на два 

выходящих: нагретый периферийный и охлажденный осевой потоки. На настоящее вре-

мя существует множество гипотез, которыми пытаются объяснить температурное разде-

ление. Исследователи согласны в том, что охлаждение осевого потока происходит из-за 

адиабатического расширения. Нагрев периферийного потока пока не имеет общепри-

знанного научного обоснования. 

В работах [1, 2] было выдвинуто предположение, что нагрев потока происходит 

при его перестройке с помощью каскада гидравлических прыжков на определенных 

участках трубы. Это предположение косвенно подтверждено при доле холодного расхо-

да 0,3, но требует проверки в более широком диапазоне режимных параметров. В рабо-

тах [5 – 12] измерялась температура на стенке трубы и в потоке. В работе [12] были из-

мерены поперечные профили температуры с небольшим шагом вдоль потока на всем 
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протяжении трубы с квадратным поперечным сечением при доле холодного расхода 

µ = 0,3. Выяснилось, что нагревание происходит на ограниченном участке продольной 

координаты. Анализ этих данных показал, что вдоль потока имеются участки с различ-

ным градиентом температуры: слабое изменение температуры вблизи входа и выхода 

горячего течения и резкое изменение в средней части течения, причем изменение гради-

ента с обеих сторон происходит скачкообразно [1]. 

В работе [1] течение в вихревой трубе с квадратным поперечным сечением было 

впервые проанализировано в рамках концепции кризиса течения во вращательно-посту-

пательном потоке. В таком потоке пристенная струя, которая направляется к «горячему» 

выходу, граничит с циркуляционной зоной, представляющей собой тороидальный вихрь 

[13 – 15]. Оказалось, что заметный рост температуры вдоль пристенной струи происхо-

дит в области, где наблюдается кризис течения: отношение продольной скорости на гра-

нице пристенной струи к критической скорости колеблется относительно единичного 

значения. Критическая скорость — это скорость распространения длинных волн на гра-

нице пристенной струи с циркуляционной зоной [16 – 18]. 

В работе [19] были представлены и проанализированы новые подробные результа-

ты измерений кинематических характеристик кризисного течения, в том числе пульса-

ций скорости. Выявлены признаки наличия гидравлического прыжка вблизи входа за-

крученного потока в рабочий канал вихревой трубы. 

Постановка задачи 

Цель работы — сравнить структуру поведения температуры вдоль труб квадратно-

го и круглого поперечных сечений при вариации доли расхода µ в «холодный» выход. 

Входной участок для вихревых труб (завихритель) не изменялся. В представленной ра-

боте измеряется температура воздуха на уровне внутренней стенки каналов круглого 

и квадратного поперечных сечений по всей длине трубы. 

Труба Ранка квадратного сечения была создана для удобства оптической диагно-

стики и использована в работах [20 – 22] для оптических бесконтактных измерений по-

лей скорости, которые в [1] сопоставлялись с температурными данными из [12]. 

В работах [23, 24] было показано, что для трубы с квадратным поперечным сечени-

ем разница температур на входе и «холодном» выходе была в 1,5 – 2 раза меньше, чем 

для трубы с круглым поперечным сечением, при разных входных давлениях и долях хо-

лодного расхода. В настоящей работе будет проведено сравнение температуры на уров-

не внутренней стенки для труб квадратного и круглого поперечных сечений в широком 

диапазоне долей холодного расхода. 

Экспериментальная установка и измерения 

Установка состоит из рабочего участка, включающего завихритель, рабочий канал 

и промежуточную емкость со стороны выхода горячего воздуха (рис. 1). Выход нагрето-

го периферийного воздуха далее будем называть «горячим», а выход охлажденного воз-

духа в центре канала — «холодным». 

Внутренний диаметр завихрителя составляет 70 мм. Сжатый воздух попадает в вих-

ревую камеру завихрителя через две тангенциальные щели и через профилированную 

диафрагму входит в рабочий канал, сильно охлаждаясь при адиабатическом расшире-

нии. Проходя вдоль стенки рабочего канала к периферийному выходу, воздух нагрева-

ется до температуры, большей, чем входная. В приосевом обратном токе воздух остается 
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холоднее входного. Горячий воздух выходит через радиальный диффузор с зазором 1,5 мм. 

Охлажденный воздух проходит через диафрагму, в которую вставлена трубка диаметром 

16 мм. Через нее охлажденный воздух выходит из рабочего канала. Суммарная площадь 

тангенциальных щелей в завихрителе 80 мм2. 

Было использовано два рабочих канала: круглого и квадратного сечений. Канал 

круглого сечения представлял трубу длиной 450 мм и диаметром 34 мм (рис. 2). Канал 

был сделан из дюралюминия со стенкой толщиной 2 мм. 

Канал квадратного сечения составлен из четырех секций суммарной длиной 420 мм 

со стороной квадрата 34 мм (рис. 3). Материал канала — дюралюминий толщиной 5 мм 

по двум противоположным сторонам и 10 мм по двум другим. 

Через каждые 20 мм в каждом канале устанавливался бусинковый остеклованный 

полупроводниковый термистор СТ5-16. Размер термистора составлял 0,2 мм, диаметр 

остекления — 1 мм. Термисторы были откалиброваны на воде по термометру с ценой 

деления 0,2 °C в диапазоне температур от 0 до 70 °C (рис. 4). Каждый термистор распо-

лагался вровень со стенкой (рис. 5). Бусинковый термистор был остеклован и находился 
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Рис. 1. Схема экспериментального стенда. 

 
 

Рис. 2. Рабочий канал с круглым 

поперечным сечением. 
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в толще стекла, вынесенного от стенки. Остеклованный кончик термистора при этом 

выступал не более чем на 0,3 мм в поток. Теплопроводность стекла была достаточно 

мала (0,7 – 1,3 Вт/(М·K)) по сравнению с температурой дюралевой стенки (134 Вт/(М·K)), 

поэтому потоком тепла от стенки к датчику можно было пренебречь и считать, что дат-

чик температуры измеряет температуру воздуха у стенки. Скорость воздуха у стенки была 

близка к нулевой, и учитывать влияние скорости потока на результат измерения темпе-

ратуры не было необходимости. 

 
 

Рис. 3. Рабочий канал с квадратным 

поперечным сечением. 
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Рис. 4. Схема калибровки термометров сопротивления. 
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Рис. 5. Расположение термистора в вихревой трубе. 
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Для сбора данных с термометров сопротивления использовался многоканальный 

АЦП LCARD LTR114. Количество каналов — 8. Он позволял измерять показания дат-

чиков сопротивления одновременно. Переключение каналов проводилось мультиплек-

сированием с частотой опроса 4 кГц. 

Соотношение расходов регулировалось с помощью крана на горячем выходе. 

Для контроля расходов использовались ультразвуковые расходомеры фирмы «Ирвис» 

«РС4-Ультра» на обоих выходах. Температура перед входом в завихритель и после вы-

ходов измерялась при помощи датчиков DS1820. Избыточное давление сжатого воздуха, 

поступающего в рабочий канал, измерялось манометром. 

Экспериментальные результаты  

Эволюция температуры на уровне стенки вдоль трубы с круглым поперечным се-

чением для избыточного давления 4 и 5 бар представлена на рис. 6. Значение Z = 0 соот-

ветствует границе завихрителя и рабочего канала. Параметром служит доля расхода 

в холодный выход μ = 0,1 – 0,9. 

В промежутке до 20 – 30 мм от входа в трубу температура у стенки меньше, чем 

исходная температура сжатого воздуха. И чем меньше значение доли холодного расхода, 

тем длиннее этот промежуток. Это происходит из-за преобладания адиабатического 

охлаждения воздуха над процессами нагрева периферийного потока при небольшом 

удалении от завихрителя. 

Результаты аналогичных измерений для квадратного канала приведены на рис. 7. 

Видно, что максимальный нагрев у стенки трубы относительно исходного сжатого 

воздуха для трубы квадратного сечения примерно в 4 раза ниже, чем для круглой трубы. 

Следует отметить, что графики для доли холодного расхода в диапазоне от 0,4 до 0,9 

близки в последней трети трубы, чего не наблюдалось для круглой трубы. 

Обсуждение результатов 

Различие графиков для двух давлений на рис. 6 незначительное, так как в вихревой 

трубе происходит дозвуковое запирание по объемному расходу. Как было показано 

в работах [21, 24], в трубе Ранка круглого поперечного сечения запирание происходит 

при показателе избыточного давления на входе 5 бар. 
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Рис. 6. Температура воздуха у стенки круглой трубы. 

Избыточное давление P = 4 (а) и 5 (b) бар. 
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Графики температуры для трубы квадратного сечения на рис. 7 совпадают, так как 

для этой трубы запирание объемного расхода происходит раньше, при избыточном дав-

лении на входе 4 бар. 

Анализ приведенных на рис. 6 и 7 результатов показывает, что для обеих труб при 

кусочно-линейной аппроксимации можно выделить три характерные зоны роста темпе-

ратуры с практически постоянным градиентом: зона быстрого роста; зона умеренного 

роста; слабое изменение (плато).  

На рис. 8 продемонстрированы характерные зоны обеих труб при µ = 0,1; 0,3; 0,6; 

0,8 и избыточном давлении P = 5 бар. Для трубы с круглым поперечным сечением гра-

ницы зон располагаются на расстояниях 116 и 240 мм от завихрителя. Для трубы с квад-

ратным поперечным сечением границы зон располагаются на расстояниях 80 и 160 мм 

от завихрителя. 

Расположение характерных зон не зависит от значения доли холодного расхода 

в обеих трубах. Механизмы, ответственные за рост температуры периферийного потока, 

не работают в зоне плато. Две зоны роста температуры в круглой трубе занимают чуть 

больше половины ее длины. В квадратной трубе область нагревания составляет чуть 

больше трети ее длины. Тем не менее можно признать, что структуры температурных 

полей в разных трубах аналогичны. Это свидетельствует в пользу того, что механизмы 

нагревания в трубах одинаковы.  
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Рис. 7. Температура на уровне внутренней стенки квадратной трубы. 
Избыточное давление P = 4 (а) и 5 (b) бар. 
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Рис. 8. Характерные зоны роста температуры воздуха на уровне внутренней стенки 

для труб круглого (а) и квадратного (b) поперечных сечений. 

а — P = 5 бар; Z1 = 0 – 116 мм, Z2 = 116 – 240 мм, Z3 = 240 – 450 мм, 

b — P = 5 бар, Z1 = 0 – 80 мм, Z2 = 80 – 160 мм, Z3 = 80 – 160 мм. 
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