
Физика горения и взрыва, 2024, т. 60, N-◦ 3 61

УДК 536.46:614.838

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК

И АВАРИЙНЫХ ПОСЛЕДСТВИЙ ВЗРЫВА ОБЛАКА ВОДОРОДА

В УСТАНОВКЕ ГИДРИРОВАНИЯ

Y.-H. Liu1,2, L. Bao1,3, H.-Z. Wang1,3, B.-Q. Xin1,2, A.-F. Yu1,3, С.-T. Ge1,2

1SINOPEC Research Institute of Safety Engineering Co., Ltd, Qingdao 266104, China,
liuyanghao2012@163.com

2SINOPEC National Petrochemical Project Risk Assessment Technical Center Co., Ltd,
Qingdao 266104, China

3State Key Laboratory of Safety and Control for Chemicals,
Qingdao 266104, China

Опасность утечки и взрыва водорода при высоком давлении представляет серьезную угрозу

безопасности установки гидрирования. На основе программного комплекса FLACS были смоде-
лированы процесс взрыва и масштаб воздействия утечки водорода в установке гидрирования.
Создана высокоточная трехмерная физическая модель установки гидрирования, и исследовано
влияние эквивалентного соотношения (ER) на избыточное давление при взрыве облака водоро-
да. Показано, что в диапазоне ER = 0.8 ÷ 1.4 пиковая температура, скорость распространения
пламени и пиковое избыточное давление, генерируемые взрывом облака водорода, сначала повы-
шаются, а затем уменьшаются с увеличением эквивалентного соотношения ER. При ER = 1.05
пиковые температура и избыточное давление достигают максимума, при этом скорость распро-
странения пламени на 38.2 и 31.7 % выше, чем в случае ER = 0.8 и 1.4 соответственно. В то
же время ускорение пламени во время его распространения может эффективно способствовать

увеличению избыточного давления взрыва внутри пламени. Результаты моделирования позво-
лили предложить рекомендации по инженерному преобразованию зданий химических заводов в

ударостойкие сооружения.
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ВВЕДЕНИЕ

При транспортировке, использовании и

хранении горючего газа возможна его утеч-
ка. При перемешивании с воздухом парамет-
ры смеси иногда выходят за пределы взрывобе-
зопасности. При контакте смеси с источником
воспламенения может произойти взрыв, назы-
ваемый взрывом неограниченного облака па-
ра (сокращенно UVCE) [1–3]. Водород облада-
ет большим потенциалом аварийности, он ха-
рактеризуется низкой плотностью (примерно в
14 раз ниже, чем у воздуха при стандартных
температуре и давлении), высоким коэффици-
ентом диффузии, низкой температурой воспла-
менения и широким пределом взрывного вос-
пламенения (при объемной доле 4 ÷ 75 %) [4,
5]. В установке гидрирования водород являет-
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ся основной средой. Изучение аварий в резуль-
тате его утечки с последующим взрывом на

установке гидрирования имеет важное значе-
ние для разработки способов противовзрывной

обработки заводских зданий и осуществления

мер по предотвращению аварий.
Традиционно при моделировании аварий,

связанных с утечкой водорода и его взрывом,
в основном используется двумерное программ-
ное обеспечение, такое как DNV PHAST. Од-
нако двумерное моделирование разделяет диф-
фузию и взрыв после утечки газа во времени

и пространстве и не учитывает блокирующий

эффект рельефа местности и препятствий на

заводе, что, очевидно, не соответствует реаль-
ной ситуации [6].

В последние годы появились новые чис-
ленные алгоритмы. Например, программный
комплекс FLACS (симулятор ускорения пламе-
ни), основанный на методах вычислительной
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гидродинамики (CFD), постепенно становится
профессиональным инструментом моделирова-
ния, который описывает взаимодействие пла-
мени с устройствами, приспособлениями и тру-
бопроводами и реализует преимущества трех-
мерного моделирования. Эффективность этого
метода в сочетании с данными экспериментов

была подтверждена в работах [7, 8] при анализе
влияния на воспламенение и взрыв таких фак-
торов, как свойства горючего газа, размер газо-
вого облака и наличие препятствий. В работе
[9] в рамках модели FLACS изучали влияние

концентрации метана в воздухе на избыточное

давление взрыва. При концентрации 9.5 % из-
быточное давление оказалось больше, чем при
двух других концентрациях — 6.5 и 12.5 %. В
работе [10] проведено моделирование на основе
FLACS взрыва облака пара на станциях прие-
ма сжиженного природного газа (СПГ) при раз-
личных сценариях воспламенения. Установле-
но, что при расположении источника воспла-
менения на краю газового облака избыточное

давление взрыва меньше, чем при централь-
ном воспламенении. В [11] путем объединения
численного моделирования FLACS с экспери-
ментальной проверкой выведена количествен-
ная зависимость между избыточным давлением

взрыва и радиусом газового облака в окрестно-
сти резервуара сжиженного газа. В [12] на осно-
ве программ Fluent и FLACS были смоделиро-
ваны характеристики распространения взрыв-
ной волны облака предварительно перемешан-
ного газа при утечке из газопровода, оценено
влияние препятствий на последствия взрыва,
подтверждена надежность метода FLACS.

Подводя итог, можно сказать, что боль-
шинство текущих исследований в основном

посвящены промышленным газам, таким как

СПГ. Эти результаты сильно отличаются от

результатов по утечке водорода и возможно-
го последующего его взрывного воспламенения.
Поэтому соответствующие выводы и правила

для СПГ не могут быть напрямую применены

для других случаев. Более того, анализ моде-
лей для СПГ показал, что они в основном упро-
щают процесс, используются малый масштаб и
простое распределение препятствий. Взрыв га-
зового облака в сложных устройствах пока ис-
следован недостаточно, и это может привести
к определенным ошибкам в оценке последствий

взрыва.
В данной статье выполнено высокоточное

трехмерное моделирование процессов на хими-

ческом заводе с установкой гидрирования. На
основе FLACS проведено моделирование взры-
ва облака газообразного водорода и исследо-
вано влияние коэффициента эквивалентности

на избыточное давление взрыва и закономер-
ности распространения пламени, проанализи-
рован возможный ущерб от избыточного дав-
ления. Полученные результаты легли в осно-
ву противовзрывных мероприятий и предот-
вращения несчастных случаев и аварий на тер-
ритории завода.

1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ

1.1. Коэффициент эквивалентности

Концентрация горючего газа является од-
ним из важных параметров, влияющих на мощ-
ность взрыва облака пара [13]. В программном
комплексе FLACS концентрация горючего газа
характеризуется коэффициентом эквивалент-
ности (сокращенно ER), который определяется
как отношение количества воздуха, необходи-
мого для полного сгорания горючего газа, к ко-
личеству фактически подаваемого воздуха [14]:

ER = (F/O)act/(F/O)stoich,

где (F/O)act — отношение массы горючего га-
за к массе кислорода в реальном процессе реак-
ции взрывного горения; (F/O)stoich — отноше-
ние массы топлива, способного выделять мак-
симальное количество тепла, к кислороду, рас-
считанное теоретически.

При исследовании влияния коэффициента

эквивалентности на параметры взрыва другие

параметры (такие, как температура окружаю-
щей среды, давление, размер ячейки и т. д.)
остаются неизменными. Варьируется только

коэффициент эквивалентности ER облака го-
рючего газа. Согласно предыдущим исследова-
ниям концепция эквивалентного газового обла-
ка (ESC) используется в программном обеспе-
чении FLACS для прогнозирования избыточно-
го давления при взрыве газа. Результаты пока-
зывают, что при ER = 0.85 ÷ 1.25 моделиру-
емое избыточное давление хорошо согласует-
ся с экспериментальными результатами и су-
ществует определенная корреляция между ESC
и избыточным давлением взрыва [15]. Поэто-
му в данной статье выбраны значения ER =
0.8 ÷ 1.4 для сравнения с данными работы [16].
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1.2. Математическая модель

1.2.1. Основные уравнения

В соответствии с характеристиками взры-
ва облака пара программный комплекс FLACS
построен на основе законов сохранения мас-
сы, импульса, энергии с учетом турбулентно-
сти и химических реакций [17]. Модель турбу-
лентности в FLACS описывается стандартной
k–ε-моделью, которая включает в себя уравне-
ния для кинетической энергии турбулентности

и скорости диссипации. Добавив для замыка-
ния системы уравнение состояния газа, полу-
чаем соотношения [18, 19]:

уравнение состояния

pV =
m

M
RT, (1)

где p — давление, T — температура, V —
объем, R — универсальная газовая постоянная,
m — масса вещества, M — молекулярная мас-
са;

уравнение неразрывности

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0; (2)

уравнение импульсов

∂

∂t
(ρui) +

∂

∂xj
(ρujui) = − ∂p

∂xi
+
∂τij
∂xj

; (3)

уравнение энергии

∂

∂t
(ρE) +

∂

∂xj
(ρujE) =

=
∂

∂xj

[
ΓE

∂E

∂xj

]
− ∂

∂xj
(puj) + τij

∂ui
∂xj

. (4)

Здесь xij — пространственные координаты;
индексы i, j указывают на выбранную коорди-
натную ось; ρ — плотность; t — время; uij —
составляющие вектора скорости в направлении

соответствующей оси координат; E — удель-
ная внутренняя энергия: E = cvT + mfuHc,
cv — удельная теплоемкость при постоянном

объеме, mfu — массовая доля топлива, Hc —
тепловыделение; Γ — коэффициент турбулент-
ной диффузии, Γ = µt/σ, µt — турбулент-
ная вязкость, σ — турбулентная постоянная

Прандтля (она представляет собой меру подо-
бия скоростных и температурных полей в по-
токе); τij — тензор вязких напряжений:

τij = µt

[
∂ui
∂xj

+
∂uj
∂xi

]
− 2

3
δij

[
ρk + µt

∂ui
∂xj

]
.

Уравнения для кинетической энергии тур-
булентности k и скорости диссипации ε [20]
имеют вид:

∂

∂t
(ρk) +

∂

∂xj
(ρujk) =

∂

∂xj

[(
µ+

µt
σk

)
∂k

∂xj

]
+

+Gk +Gb − ρε− Ym + Sk, (5)

∂

∂t
(ρε) +

∂

∂xj
(ρujε) =

∂

∂xj

[(
µ+

µt
σε

)
∂ε

∂xj

]
+

+ C1ε
ε

k
(Gk + C3εGb) − C2ερ

ε2

k
+ Sε, (6)

где µ — вязкость; µt = ρCµ(k2/ε); Gk — член

производства турбулентной кинетической энер-
гии k вследствие среднего градиента скорости;
Gb — член производства турбулентной кинети-
ческой энергии k вследствие плавучести; Ym —
вклад пульсационного расширения в сжимае-
мую турбулентность; σk — число Прандтля,
соответствующее турбулентной кинетической

энергии, равное 1.0; σε — скорость диссипа-
ции, соответствующая числу Прандтля 1.3; Sk,
Sε — определяемые пользователем исходные

данные; C1ε, C2ε, C3ε, Cµ — эмпирические кон-
станты, взятые согласно данным [21, 22] рав-
ными 1.44, 1.92, 0.80 и 0.09 соответственно.

1.2.2. Модель горения

Для замыкания системы уравнений ис-
пользуется модель горения горючего газа при

взрыве после его утечки [23]:

∂ρYfuel
∂t

+
∂ρujYfuel

∂xj
=

= Rfuel +
∂

∂xj

(
ρD

∂Yfuel
∂xj

)
, (7)

где Yfuel — массовая доля горючего, Rfuel —
скорость химической реакции.
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Рис. 1. Физическая модель и схема расчетной сетки:

а — общая схема модели и расчетная область исследования, б — фотография установки гидрирования,
в — модель установки гидрирования и область газового облака, г — модель завода, вид сверху: 1 —
установка гидрирования, 2 — топливная установка, 3 — примыкающее здание, 4 — точка мониторинга,
5 — зона компрессора
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2. МОДЕЛЬ И ЕЕ ВЕРИФИКАЦИЯ

2.1. Построение физической модели
и граничные условия

Для завершения построения трехмер-
ной модели было использовано программное

обеспечение для предварительной обработки

CASD, созданное на базе комплекса FLACS.
Основное внимание уделялось приборам, обо-
рудованию и трубопроводам на заводе. Степень
упрощения была максимально возможной. Фи-
зическая модель и расчетная сетка показаны

на рис. 1. Исходя из принципа максимизации
аварийности был выбран резервуар для водо-
рода высокого давления, расположенный в се-
редине устройства. Горизонтальный и верти-
кальный размеры области газового облака взя-
ты в качестве основной области сетки, а вся
площадь установки— в качестве расчетной об-
ласти. Параметры расчетной сетки показаны

на рис. 1,а–в. Поскольку обслуживаемые зда-
ния и компрессорная зона на территории за-
вода находятся соответственно в направлени-
ях X и Y от источника взрыва, через каждые
5 м вдоль этих осей в центре устройства бы-
ли расположены точки измерения избыточного

давления и температуры (см. рис. 1,г).
Считаем, что равномерное перемешивание

водорода и воздуха происходит при начальной

температуре 25 ◦C, скорость ветра равна мест-
ной среднегодовой скорости ветра 3.5 м/с, на-
чальное давление 101.325 кПа, внутреннее обо-
рудование и стены — границы расчетной об-
ласти с соответствующими граничными усло-
виями (жесткая непроницаемая стенка). Усло-
вия CFLC установлены на 5, CFLV установлен

на 0.5, шероховатость грунта установлена на
0.1, атмосферная стабильность равна F, а вре-
мя воспламенения равно 0.2 с [24].

2.2. Проверка корректности модели

Для взрыва водорода в открытом про-
странстве была специально спроектирована и

построена экспериментальная установка. Точ-
ность имитационного расчета FLACS подтвер-
ждена экспериментами на уменьшенной модели

в сочетании с результатами численного моде-
лирования.

В эксперименте контейнер для хранения

горючего газа представляет собой прямоуголь-
ную стальную конструкцию с длиной сторо-

ны 1 м, герметично затянутую полиэтилено-
вой пленкой толщиной 0.01 мм. На основе этой
экспериментальной модели была создана трех-
мерная физическая модель FLACS, показанная
на рис. 2. Результаты численного моделирова-
ния избыточного давления взрыва водорода бы-
ли проверены экспериментально (концентра-
ция водорода 30 %, количество препятствий 12,
начальная скорость ветра 3.5 м/с).

Из сравнения экспериментальных и чис-
ленных результатов по избыточному давлению

(табл. 1) можно сделать вывод, что расчет-
ное значение меньше экспериментального. Это
связано с методом воспламенения, принятым в
данном исследовании. Во FLACS использует-
ся заранее определенная область горения вме-
сто искрового зажигания в экспериментах, т. е.
в модели процесс воспламенения не учитыва-
ется, и модельное время действия избыточно-
го давления меньше экспериментального. Кро-
ме того, во время эксперимента накапливается
некоторое избыточное давление перед проры-
вом пленки, в результате чего избыточное дав-
ление экспериментального взрыва оказывает-

Рис. 2. Физическая модель эксперимента

Та блиц а 1

Сравнение экспериментальных
и численных результатов по взрыву водорода

Точка

измерения

p, бар Относительная

ошибка, %эксперимент расчет

1 3.10 2.97 4.19

2 2.87 2.76 3.83

3 2.66 2.58 3.00

4 2.62 2.49 4.96

5 1.51 1.58 4.43
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ся больше, чем при моделировании. Сравнивая
результаты численного моделирования и экс-
перимента, можно сделать вывод, что макси-
мальная относительная погрешность пикового

избыточного давления составляет менее 5 %,
что приемлемо в инженерных приложениях, и
тем самым подтверждает, что расчетная мо-
дель избыточного давления взрыва и выбран-
ные граничные условия являются разумными

и выполнимыми.

3. АНАЛИЗ РЕЗУЛЬТАТОВ МОДЕЛИРОВАНИЯ

3.1. Временная и пространственная эволюция
пламени и волны давления

Анализируются процесс распространения

и развития пламени при взрыве водородного

облака и распределение избыточного давления

на плоскости XOY при значениях коэффициен-
тов, соответствующих возможности возникно-
вения пламени в этой области. Согласно дан-
ным FLACS изменение температуры в рас-
четной области непосредственно указывает на

опасность возникновения пламени в этой обла-
сти. На рис. 3,а,б показано изменение структу-
ры пламени при взрыве облака водорода, а на
рис. 3,в — изменение избыточного давления в

точках измерения на расстоянии d = 5, 10, 15,
20, 25, 30, 35, 40, 45 и 50 м от границы газового
облака. Как видно из рис. 3,а,в, взрыв газово-
го облака делится на две стадии: невзрывное
горение и дефлаграция. На стадии невзрывно-
го горения (0 ÷ 0.28 с) процесс подвергается
небольшому возмущению, а после образования
водородного облака при воспламенении образу-
ется небольшой огненный шар без явного из-
быточного давления, который называется ста-
дией внезапного возгорания. Через 0.28 с точ-
ка воспламенения становится центром горения

и поверхность пламени расширяется наружу в

форме сферы. Пламя становится неравномер-
ным из-за загромождения оборудованием, стро-
ительными рамами и другими препятствиями

в устройстве. Возникает турбулентность, кото-
рая приводит к непрерывному увеличению пло-
щади поверхности горения пламени с течени-
ем времени. Пламя нестабильно и ускоряется
в процессе распространения. Избыточное дав-
ление также быстро повышается, что приво-
дит к образованию зон с положительными и

отрицательными значениями избыточного дав-
ления. Из кривой избыточного давления вид-

но, что максимальное положительное и макси-
мальное отрицательное избыточное давление в

точке измерения d = 5 м от границы газового
облака составляют 123.5 и −22.1 кПа соответ-
ственно.

Из литературы и экспериментов известен

предел терпимости человеческого тела и зда-
ний к температуре пламени. При температуре
315 К человеческое тело испытывает боль, а
при температуре 453 К человек сильно обгора-
ет или погибает. При температуре 673 ÷ 873 K
прочность стальной конструкции здания сни-
жается, здание частично или полностью теря-
ет несущую способность. К моменту времени

от начала воспламенения t = 0.30 с темпе-
ратура в центральной зоне установки гидри-
рования близка к 2 500 K. Во время распро-
странения пламени наружу площадь пламени

взрыва быстро увеличивается, размеры пламе-
ни намного превышают первоначальные разме-
ры облака горючего газа, а температура пла-
мени по-прежнему составляет около 1 700 K,
главным образом потому, что под воздействи-
ем ударной волны при взрыве и турбулент-
ности воздушного потока водород, который не
участвует в реакции горения, выталкивается
давлением в область первоначального газово-
го облака, и после столкновения с кислородом
происходит взрыв. В результате температура

пламени остается высокой. При t = 0.35 с пла-
мя с температурой около 1 300 K распространя-
ется в зону компрессора к югу от точки взрыва

радиусом около 35 м и площадью поражения

3 800 м2 и создает серьезную угрозу безопасно-
сти в зоне компрессора. Оборудование и трубо-
проводы в этой зоне находятся в области высо-
кой температуры. Любая утечка легковоспла-
меняющегося газа из оборудования в данном

районе немедленно вызовет вторичный взрыв.
При t = 3.5 с область высокотемпературно-
го пламени исчезает и реакция воспламенения

прекращается.
Ударная волна является одной из основ-

ных причин человеческих жертв и поврежде-
ния зданий. Избыточное давление ударной вол-
ны легче измерить и оценить, чем другие па-
раметры, поэтому критерий избыточного дав-
ления часто используется для расчета ущерба

от взрывной волны. В табл. 2 показан ущерб,
наносимый различными уровнями избыточного

давления при взрыве [25].
Как видно из пространственно-временной

эволюции избыточного давления на рис. 3,б,
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Рис. 3. Пространственно-временная эволюция взрыва

облака водорода и волны давления в установке гидри-
рования при ER = 1.0:

а — пространственно-временная эволюция пламени, б —
пространственно-временная эволюция избыточного давления
взрыва облака водорода, в — изменение во времени избыточ-
ного давления в точках измерения d = 5 ÷ 50 м с шагом 5 м
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Та блиц а 2

Степень воздействия
избыточного давления на людей и здания

Порог

избыточного

давления, кПа

Степень ущерба

Для зданий

5.0÷ 6.0
Окна и двери

частично

повреждены

6.0÷ 15
Большая часть стекол

окон и дверей

разрушена

15÷ 50
Повреждены оконные

рамы, появление
трещин в стенах

50÷ 70

Ломаются

деревянные опоры,
слабеет общая

конструкция

помещений

70÷ 100

Ломаются

деревянные опоры,
слабеет общая

конструкция

помещений

100÷ 200

Ударные

повреждения

железобетона,
обрушение

небольших домов

Для людей

20÷ 30 I степень, низкий риск
(незначительные ушибы)

30÷ 50

II степень, средний риск
(повреждение органов
зрения, незначительное

внутреннее кровотечение и

т. д.)

50÷ 100

III степень, высокий риск
(тяжелые повреждения
внутренних органов,
возможная смерть)

>100
IV степень, высокий риск
(смерть в большинстве

случаев)

при t = 0.34 с ударная волна распространи-
лась в область компрессора с южной сторо-
ны от точки взрыва. При t = 0.35 с область
полностью охвачена избыточным давлением,
и максимальное избыточное давление превы-
шает 45 кПа. В соответствии с повреждения-

ми при избыточном давлении, приведенными в
табл. 2, в этом случае персонал получит се-
рьезные травмы или погибнет, а каркас зда-
ния и оборудование в зоне компрессора будут

повреждены. Кроме того, здесь находится в ос-
новном водородное компрессорное оборудова-
ние, поэтому существует вероятность его по-
вреждения и последующей вторичной аварии.
При t = 0.65 с ударная волна взрыва рас-
пространилась на жилое здание в районе заво-
да, максимальное избыточное давление соста-
вило около 4.5 кПа. Согласно стандарту взры-
возащитного проектирования зданий нефтехи-
мической промышленности (GB/T50779-2022),
при избыточном давлении взрыва менее 6.9 кПа
нет необходимости во взрывозащитных преоб-
разованиях основного корпуса здания. Однако
избыточное давление приведет к определенной

степени разрушения дверей и окон здания, по-
этому их следует подвергнуть противовзрыв-
ной защите, чтобы избежать травмирования

людей осколками стекла. Кроме того, наилуч-
шее безопасное расстояние для защиты уста-
новки также может быть определено в сочета-
нии с масштабом зон повреждения при высокой

температуре.

3.2. Влияние коэффициента эквивалентности
на характеристики взрыва водорода

Чтобы исследовать влияние коэффициента

эквивалентности водородного облака на избы-
точное давление взрыва и характеристики рас-
пространения пламени, были проведены расче-
ты со значениями ER = 0.8, 1, 1.05, 1.2 и 1.4,
при этом остальные параметры не изменялись.
Численно моделировались последствия аварии

при взрыве в различных условиях работы.

3.2.1. Влияние коэффициента эквивалентности
на температуру пламени

Точка мониторинга взята за пределами зо-
ны взрыва. На рис. 4 показано, как изменяется
во времени температура взрыва облака горю-
чего газа, а на рис. 5 — как изменяется пламя

взрыва облака водорода при различных значе-
ниях коэффициента эквивалентности. Как вид-
но из этих рисунков, характер изменения тем-
пературы взрыва в одной и той же точке изме-
рения в основном одинаков, но ее пиковое зна-
чение имеет тенденцию сначала увеличивать-
ся, а затем уменьшаться с увеличением коэф-
фициента эквивалентности. Это связано с тем,
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Рис. 4. Изменение температуры взрыва во

времени в одной и той же точке мониторин-
га при различных значениях ER

что при ER = 0.8 облако горючего водоро-
да в устройстве находится в состоянии горе-
ния, богатом кислородом, горение недостаточ-
но интенсивное, выделение тепла относительно
низкое, а максимальная пиковая температура
в зоне устройства составляет 1 950 K. Однако
при ER = 1.0 водород вступает в полную реак-
цию, выделение тепла реакции становится наи-
более интенсивным, а с увеличением значения
ER облако водорода находится в состоянии го-
рения с низким содержанием кислорода. В ре-
зультате температура пламени взрыва повы-
шается, а максимальный температурный пик
составляет 2 488 K. После этого, по мере того
как коэффициент эквивалентности продолжа-
ет увеличиваться, расходуется больше водоро-
да и пиковая температура пламени уменьшает-
ся. Это согласуется с результатами исследова-
ния взаимосвязи последствий взрыва с концен-
трацией топлива [26], в котором отмечалось,
что «наиболее опасное состояние при взрыве

облака горючего газа несколько превышает ко-
эффициент химического эквивалента». Кроме
того, из-за турбулентного эффекта воздушного
потока после взрыва несгоревший газ выталки-
вается наружу из газотранспортной системы и

продолжает вступать в реакцию после столк-
новения с кислородом. Это приводит к увели-
чению колебаний температуры во времени.

Далее были рассчитаны температуры в

направлениях X и Y каждой точки измерения

при различных коэффициентах эквивалентно-
сти. На рис. 6 показано, как изменяется темпе-
ратура в каждой точке мониторинга. Как вид-
но из рисунка, температура в направлении Y
немного выше, чем в направлении X. Главным
образом потому, что в направлении Y имеют-
ся устройства и другие препятствия, которые
искажают пламя и ускоряют горение. В плос-
костиXOY при ER = 1.05 температура взрыва
может достигать более 2 000 K в радиусе 45 м
с точкой воспламенения в качестве начальной

точки, и тенденция к снижению температуры

пламени взрыва в пределах 45 м неочевидна.
Через 45 м температура пламени взрыва резко
падает с увеличением расстояния и достигает

температуры окружающей среды.

3.2.2. Влияние коэффициента эквивалентности
на скорость пламени

Скорость распространения пламени явля-
ется одной из важных характеристик взрыва

водородного облака. Возьмем в качестве приме-
ра точки контроля за пределами зоны действия

устройства в направлении X. Соответствую-
щие зависимости температуры взрыва, скоро-
сти горения и концентрации топлива в разное

время при различных коэффициентах эквива-
лентности показаны на рис. 7. Чтобы рассчи-
тать скорость распространения пламени при

взрыве облака водорода в установке гидриро-
вания при различных эквивалентных соотно-
шениях, необходимо определить время появле-
ния пламени после взрыва, а затем рассчитать
расстояние между двумя фиксированными точ-
ками измерения.Момент прохождения пламени
через станциюMP1 обозначим t1, черезMP2 —
t2, задержка по времени будет ∆t, расстояние
между двумя станциями мониторинга обозна-
чим ∆l. Тогда для двух станций мониторин-
га средняя скорость распространения пламени

равна v = ∆l/∆t. Результаты расчетов показа-
ны на рис. 8.

Как видно из рис. 7, когда скорость го-
рения RFU > 0, температура пламени взры-
ва также начинает повышаться, а концентра-
ция топлива — существенно снижаться. Сле-
довательно, время, соответствующее RFU > 0,
определяется как время достижения пламенем

точки измерения. Эквивалентное соотношение
и начальная концентрация топлива оказывают

определенное влияние на время появления пла-
мени в каждой точке измерения. В диапазоне
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Рис. 5. Изменение нефограмм пламени взрыва облака водорода при ER = 0.8 (а), 1.05 (б), 1.4 (в)
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Рис. 6. Изменение максимальной температуры взрыва в точках мониторинга в направлениях X
и Y в плоскости XOY

Рис. 7. Зависимости скорости горения пламени и температуры от времени при различных зна-
чениях ER
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ER = 0.8 ÷ 1.4 время, за которое пламя дости-
гает первой точки контроля вне устройства, ве-
дет себя по-разному с увеличением эквивалент-
ного соотношения. При ER < 1.05 время до-
стижения точки пламенем сокращается с уве-
личением ER. При ER > 1.05 время достиже-
ния точки измерения растет с увеличением ER.
При ER = 1.05 время, за которое пламя дости-
гает первой точки контроля, самое короткое —
t = 0.28 с. Причина различий заключается в
том, что при ER = 1.05 облако газообразно-
го водорода полностью вступает в реакцию и

взрыв является наиболее интенсивным, а ско-
рость распространения пламени — самой вы-
сокой. Это указывает на то, что когда стехио-
метрическое соотношение меньше этого значе-
ния (1.05), соответствующее увеличение кон-
центрации оказывает определенное стимулиру-
ющее воздействие на скорость распростране-
ния пламени. При достижении стехиометриче-
ского соотношения газовое облако находится в

состоянии горения с низким содержанием кис-
лорода, и увеличение концентрации оказывает
ингибирующее воздействие на скорость пламе-
ни, что приводит к уменьшению его скорости

и увеличению времени достижения пламенем

точки измерения.
Как видно на рис. 8, скорость пламени

в точке измерения сначала растет, а затем

уменьшается с увеличением коэффициента эк-
вивалентности. При ER = 1.05 скорость явля-
ется максимальной и пламя достигает двух бо-
ковых точек со скоростью 372 и 450 м/с соот-

Рис. 8. Гистограмма скорости распростране-
ния пламени при различных значениях ER

ветственно. По сравнению с ER = 0.8 и 1.4 ско-
рость пламени, распространяющегося до точки
контроля MP1, выше соответственно на 38.2 и
31.7 %, а в точке контроля MP2 она увеличи-
лась на 28.0 и 21.1 % соответственно.

3.2.3. Влияние коэффициента эквивалентности
на избыточное давление при взрыве

Результаты численного моделирования из-
быточного давления взрыва в каждой точке

мониторинга при различных значениях коэф-
фициента эквивалентности, построенные в на-
правлении оси X, приведены на рис. 9. Полу-
чены также изображения облака избыточного

давления в пиковое время. Как видно на рис. 9,
характер изменения избыточного давления при

взрыве облака водорода во всех точках мони-
торинга в направлении X в основном одина-
ков — соответствует состоянию «одно положи-
тельное давление— одно отрицательное давле-
ние». Однако пик избыточного давления взры-
ва облака водорода pmax в некоторой степе-
ни зависит от коэффициента эквивалентности:
при ER < 1.05 пик увеличивается, а время его
достижения сокращается; при ER > 1.05 пик
уменьшается, а время его достижения увели-
чивается.

Аналогичное изменение пика температу-
ры пламени при ER = 0.8 происходит при сго-
рании с низким содержанием топлива. Сгора-
ние водорода является недостаточным, а пик
избыточного давления в этом случае составля-
ет 78 кПа. С увеличением концентрации водо-
рода ускоряется химическая реакция с водоро-
дом в зоне установки и высвобождается боль-
ше энергии. Когда концентрация водорода до-
стигает стехиометрии, водород полностью ре-
агирует с кислородом. В это время пиковое из-
быточное давление при ER = 1.05 составляет
127 кПа, что примерно в 1.62 раза выше, чем
при ER = 0.8. По сравнению с ER = 0.5 при
ER = 1.2 и 1.4 концентрация водорода больше,
что соответствует горению с большим содер-
жанием топлива и недостаточным сгоранием.
Пиковое избыточное давление взрыва относи-
тельно невелико — 117.5 и 101.8 кПа соответ-
ственно. Это указывает на то, что по сравне-
нию со стехиометрической концентрацией ак-
тивность обогащенного топлива в процессе го-
рения выше и опасность взрыва выше (т. е.
по сравнению с пиковым избыточным давлени-
ем при ER = 0.8 и 1.2). Однако при дальней-
шем увеличении концентрации топлива (т. е.
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Рис. 9. Изменение пика избыточного давления и его нефограмма во время пика при различных
значениях ER

по сравнению с пиковым избыточным давлени-
ем при ER = 1.2 и 1.4) ясно, что чем больше
концентрация топлива, тем очевиднее стано-
вится эффект ингибирования избыточного дав-
ления взрыва. Основная причина заключается
в том, что из-за снижения содержания кисло-

рода не может поддерживаться химическая ре-
акция в процессе взрыва, и давление взрыва
снижается. Пиковое избыточное давление, со-
здаваемое взрывом, аналогично тому, которое
возникает при ER = 0.8.
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ЗАКЛЮЧЕНИЕ

На основе программного обеспечения

FLACS проведено численное моделирование

взрыва облака водорода в установке гид-
рирования на химическом заводе. Выводы

заключаются в следующем.
1. При взрыве водородного облака в уста-

новке гидрирования образуется зона высоко-
температурного повреждения радиусом 35 м с
точкой воспламенения в центре. Максималь-
ная температура достигает более 2 500 K, а
максимальное избыточное давление составля-
ет 127 кПа. По сравнению с пиковым избыточ-
ным давлением при коэффициенте эквивалент-
ности ER = 1.05 пиковое избыточное давление
при ER = 0.8, 1.2 и 1.4 снижается на 47, 9.6 и
46.99 кПа соответственно. Ускорение распро-
странения пламени приводит к увеличению из-
быточного давления взрыва.

2. При различных значениях коэффици-
ента эквивалентности температура пламени

взрыва облака водорода, скорость распростра-
нения пламени и избыточное давление взры-
ва демонстрируют тенденцию сначала увели-
чиваться, а затем уменьшаться с ростом коэф-
фициента. При ER = 1.05 температура взрыва
водородного облака, скорость распространения
пламени и избыточное давление взрыва явля-
ются самыми высокими. Кроме того, если на
пути распространения пламени возникнет пре-
пятствие, то это приведет к искажению пламе-
ни и ускорению горения.

3. При взрыве водорода при утечке его из
установки гидрирования на химическом пред-
приятии возникающее избыточное давление

может нанести серьезный ущерб компрессор-
ной зоне на южной стороне установки и может

привести к возникновению вторичных аварий.
Поэтому необходимо как можно скорее обна-
ружить и проконтролировать утечку горючего

газа в установке, чтобы избежать образования
газового облака большого объема. Кроме того,
из-за большого расстояния между жилым зда-
нием и установкой гидрирования избыточное

давление взрыва, действующее на здание, со-
ставляет менее 6.9 кПа, т. е. нет необходимости
в антидетонационной трансформации основно-
го корпуса здания. Однако стены и остекление
здания должны быть усилены.
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