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1. Введение

1.1. На основе численного статистического моделирования процесса переноса частиц
(квантов излучения) в ряде работ детально изучается вероятность прохождения частицы,
осредненная по реализациям случайной среды (см., например, [1–5]). Это практически
важно, в частности, потому что при выполнении соответствующего свойства эргодич-
ности такое осреднение эквивалентно осреднению по поверхности достаточно протяжен-
ных детектора или источника частиц, что подтверждается численными результатами [6].
Необходимым также является численно-теоретическое изучение средних потоков частиц
и параметров критичности для случайно возмущенных размножающих сред. Исследо-
вания чаще всего проводятся для так называемых “мозаичных” моделей однородных
изотропных случайных полей (сред) с известными корреляционными функциями, кото-
рые в значительной степени определяют осредненную вероятность прохождения Pt при
фиксированных значениях математического ожидания и дисперсии одномерного (т. е.
одноточечного) распределения поля [6].

1.2. В работе [6] представлены две модели “мозаичных” случайных полей σ(r), которые
строятся на основе специального разбиения пространства на ячейки со случайным вы-
бором значения поля в каждой ячейке согласно некоторому распределению (независимо
от остальных ячеек).

Для построения модели, называемой мозаичным полем Пуассона, пространство раз-
бивается на ячейки ансамблем базовых гиперплоскостей, в котором гиперплоскость опре-
деляется точкой пуассоновского точечного потока интенсивности λp во вспомогательном
параметрическом пространстве. Точка этого пространства объединяет расстояние h от
заданного центра до базовой гиперплоскости и значение ее “внешней”, т. е. направленной
от центра, нормали n к базовой гиперплоскости. Геометрические свойства таких разби-
ений детально изучены в [2] (см. также [4,5, 7]).

В работах [5,8] построено кусочно-постоянное двумерное мозаичное поле Пуассона и
показано, что его корреляционная функция экспоненциальна. В работе [4] дано l-мерное
обобщение такого поля, т. е. построено l-мерное кусочно-постоянное экспоненциально
коррелированное мозаичное поле. В [4] также показано, что мозаичное поле Пуассона
является однородным и изотропным в “узком” смысле.

Другая возможная рассматриваемая модель, называемая далее мозаичным полем Во-
роного, строится на основе пуассоновского точечного потока интенсивности λv, который
определяет разбиение пространства на ячейки, каждая из которых является множеством
точек, наиболее близких к одной из точек потока (диаграмма Вороного).

Обозначим σ(r;P ) — мозаичное поле Пуассона, σ(r;V ) — мозаичное поле Вороного,
r ∈ R3. Для реализации поля σ(r;V ) строится пуассоновский точечный поток в про-
странстве R3 с параметром λv, а для σ(r;P ) — точечный поток в пространстве R+×S(3)

с параметром λp, где S(3) — единичная сфера в R3 с центром в начале координат. Для
обоих полей пространство R3 разбивается на ячейки, как указано выше, и для каждой
ячейки независимо выбирается случайное постоянное в ячейке значение поля σ(r) со-
гласно некоторому распределению со средним значением m = Eσ и дисперсией d = Dσ.
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Отметим, что для поля Пуассона каждая подобласть полностью определяется (иденти-
фицируется) набором

(γ1, . . . , γk, . . . ), γk = sign
(
Fk(r)

)
,

где Fk(r) = (nk, [hknk − r]) = 0 — уравнение соответствующей плоскости Γk, а r —
произвольная точка подобласти. Алгоритм построения реализации трехмерного поля
Пуассона более детально описан в [4] (см. также [9]).

Особую роль в прикладных исследованиях играет величина L =
∫∞

0 K(r)dr, где
K(r) — нормированная корреляционная функция, т. е. коэффициент корреляции между
σ(r) и σ(r′) при |r − r′| = r. Эту величину иногда называют корреляционной длиной в
связи с тем, что для простейшей “ступенчатой” аппроксимации K(r) ≈ Kh(r) = χ(0, h)
выполняется равенство L = h, где χ(a, b) — индикатор интервала (a, b).

В случае изотропного поля величину L называют также радиусом корреляции. Для
неизотропного однородного поля L зависит от направления вектора r− r′. Соответству-
ющее осреднение дает возможность приближенного распространения результатов насто-
ящей работы на слабо неизотропные поля.

Для мозаичных случайных полей K(r) = P (Ar), где Ar — событие, состоящее в том,
что точки r и r′ при |r − r′| = r находятся в одной ячейке [4]. В [7] для поля Вороного
фактически получено соотношение

∞∫
0

P (Ar)dr = λ−1/3
v 4πΓ(4/3)

π∫
0

∞∫
0

V (R, θ)−4/3 sin θ R2 dRdθ = 0.459λ−1/3
v ,

где V (R, θ) — объем объединения двух шаров с центрами на расстоянии единица и ра-
диусами R,

√
R2 + 1− 2R cos θ. Отсюда для этого поля Lv ≈ 0.459λ

−1/3
v .

Для мозаичного поля Пуассона P (Ar) = e−πλpr (см., например, [2, 4]), т. е. корреля-
ционная функция является экспоненциальной. Следовательно, Lp = 1/(πλp). Хотя K(r)
для мозаичного поля Вороного не является экспоненциальной функцией [7], однако рас-
четы показали, что она близка к ней.

В работе показано, что поле Пуассона реализуется с меньшей трудоемкостью и не тре-
бует расширения вспомогательного точечного потока. Однако поле Вороного является
геометрически (и физически) более естественным и проще численно реализуется. Поэто-
му для верификации компьютерно экономичных приближенных моделей, представлен-
ных далее, случайных функций была использована “мозаика” Вороного. При этом учи-
тывалось, что вспомогательный пуассоновский точечный поток следует моделировать в
несколько расширенной области, ориентировочно, как показали зависимые испытания,
на один–два корреляционных радиуса L.

2. Стохастическая модель переноса излучения

2.1. Далее рассматривается процесс переноса частиц (квантов излучения), математиче-
ская модель которого определяется кинетическим уравнением типа (см. [10,11])

(ω, grad Φ) + Σ(r, v)Φ(r,v) =

∫
Σs(r, v

′)ws(v,v
′; r)Φ(r,v′) dv′ + Φ0(r,v). (2.1)

Здесь r ∈ R3, v = vω, ω — единичный вектор направления скорости, v = |v|; Φ(r,v) —
плотность потока частиц-квантов излучения; Σ(r, v) — полное макроскопическое сече-
ние ослабления; Σs(r, v) — макроскопическое сечение рассеяния; Φ0(r,v) — плотность
распределения частиц в источнике; ws(v,v′; r) — индикатриса рассеяния кванта в точке
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(r,v′). Для решения задач переноса численно-статистически моделируется цепь Маркова
столкновений частицы с элементами вещества, свободный пробег l между которыми рас-
пределен с плотностью f(l) = Σ(r(l), v) exp(−τ(l)), где r(l) = r′+ lω, τ(l) =

∫ l
0 Σ(r(t), v)dt

[11, 12]. Если Σ ≡ const, то пробег можно моделировать по формуле l = (− lnα)/Σ, где
α — случайное число, равномерно распределенное в интервале (0,1). Если же плотность
среды существенно меняется, то может быть полезным метод максимального сечения
(выравнивания, дельта-рассеяния) [13–15]. В соответствующей стохастической модели
длины пробегов моделируются для коэффициента ослабления Σmax(v) ≥ Σ(r, v), в точке
столкновения r с вероятностью (Σmax(v)− Σ(r, v)) /Σmax(v) скорость не изменяется, а
с вероятностью Σ(r, v)/Σmax(v) реализуется физическое столкновение с условными ве-
роятностями Σs/Σ, (Σ − Σs)/Σ рассеяния и поглощения. Адекватность метода следует
также из известного свойства сохранения пуассоновости при случайном прореживании
пуассоновского потока столкновений [15].

2.2. Метод максимального сечения часто применяется для решения стохастических за-
дач теории переноса со случайным полем плотности среды ρ(r), которое для простоты
изложения в основном будем предполагать изотропным с нормированной корреляцион-
ной функцией K(r) и корреляционным радиусом L. При этом

Σ(r, v) = ρ(r)σ(r, v) и Σs(r, v) = ρ(r)σs(r, v),

где σ(r, v), σs(r, v) — эффективные микроскопические сечения ослабления и рассеяния,
которым соответствует нормированная индикатриса рассеяния ws(v,v′; r).

Для решения стохастических задач теории переноса эффективен “метод двойной
рандомизации” [16], в котором для каждой реализации среды моделируется одна или
несколько (для уменьшения трудоемкости) траекторий частиц и на этой основе строятся
несмещенные оценки линейных функционалов, например осредненной по реализациям
среды вероятности прохождения. Трудоемкость (сложность) такого алгоритма может
быть очень большой и даже неограниченной при L → 0, например, для “мозаичных”
моделей ρ(r) полей Пуассона, Вороного и т. п. В связи с этим в работе [17] был сформу-
лирован новый корреляционно-рандомизированный алгоритм (КР-алгоритм или КРА)
для оценки влияния стохастичности поля ρ на перенос частиц, эвристически основан-
ный на том факте, что вероятность прохождения в значительной степени определяются
корреляционной длиной L и одномерным распределением поля ρ [18].

2.3. Формулировка КР-алгоритма. КР-алгоритм определяется далее пунктами
CR1, CR2:

CR1) в процессе переноса пробег из r′ в r моделируется по формуле l = − lnα/Σmax(v);

CR2) если l = |r− r′| < L, то в алгоритме максимального сечения фиксируется ρ(r) =
ρ(r′), иначе значение ρ(r) выбирается случайно из одномерного распределения по-
ля ρ.

Таким образом, КР-алгоритм строится путем рандомизации алгоритма максималь-
ного сечения с учетом значения L. Эвристически ясно, что этот алгоритм в случае ани-
зотропного рассеяния в значительной степени соответствует корреляционной функции,
близкой к “ступеньке” K0(r) = 1 при 0 ≤ r ≤ L. Как показывают приведенные в [19]
эвристические соображения, а также модельные исследования и численные эксперимен-
ты, такой алгоритм дает удовлетворительные результаты для анизотропного рассеяния
при достаточно малых значениях L (L < 0.4/Σmax), когда стандартное моделирование
слишком трудоемко. При этом значение L в алгоритме можно корректировать (особенно
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в односкоростном случае) на основе упрощенных тестовых задач [19]. Ясно, что трудо-
емкость КР-алгоритма ограничена при L → 0, и поэтому его можно использовать для
оценки соответствующей скорости сходимости в стохастических задачах переноса даже
в неограниченных областях. Отметим, что в случае неизотропного однородного поля ρ
можно также использовать КР-алгоритм, заменив L на L(ω), ω = (r − r′)/|r − r′|. В
заключение пункта 2.3 заметим, что КР-алгоритм при L = 0 реализует моделирование
траекторий в осредненной среде, т. е. для ρ(r) ≡ Eρ. Это получается непосредственно из
выражений для вероятностей метода максимального сечения по формуле полной веро-
ятности.

2.4. Усовершенствованный КР-алгоритм. Далее предполагается, что нормирован-
ная корреляционная функция K(r) поля ρ(r) неотрицательна: K(r) ≥ 0. Можно пола-
гать, что КР-алгоритм реализует выполнение равенства ρ(r) = ρ(r′) в алгоритме вырав-
нивания с вероятностью K0(l) = 1 при l ≤ L, где l = |r − r′|. Это дает основание для
рассмотрения функционального корреляционно-рандомизированного алгоритма (ФКР-
алгоритм, или ФКРА, или FCR), который по аналогии с КР-алгоритмом строится сле-
дующим образом:

FCR1) пробег l из r′ в r моделируется по формуле l = − lnα/Σmax;

FCR2) реализуется случайное число α1; если α1 < K(l), то ρ(r) = ρ(r′), иначе ρ(r) вы-
бирается из одномерного распределения поля ρ.

Однако для построения ФКРА требуется оценка корреляционной функции K(r) в
целом, а для КРА достаточно каким-либо образом определить лишь значение L, т. е.
корреляционный масштаб среды.

В заключение этого пункта отметим, что корреляционно-рандомизированные алго-
ритмы, в отличие от алгоритмов двойной рандомизации, дают возможность исследовать
прохождение частиц через бесконечно протяженный слой вещества и тем самым погреш-
ность, возникающую при замене такого слоя на ограниченный “брусок”.

3. Сеточная аппроксимация ρh(r)
однородного случайного поля ρ(r)

3.1. Основанный на рандомизации алгоритма максимального сечения КР-алгоритм реа-
лизует вычислительную аппроксимацию процесса переноса. Он весьма экономичен, так
как не требует реализации поля ρ(r) в целом и двойной рандомизации (см. п. 2). Однако
этот алгоритм в основном эффективен для существенно анизотропного рассеяния при
условии L < 0.4/Σmax [19]. Недостатком КРА является также невозможность оценки фи-
зически значимой величины дисперсии D(ζ | ρ) вычисляемой оценки ζ за исключением
бернуллиевой оценки с малым параметром p = Eζ.

Эти соображения [20] определили мотивацию разработки эффективно реализуемой
сеточной аппроксимации поля плотности ρh(r), которая фактически представляет гео-
метрически детерминированную стохастическую мозаику, аналогичную полю Вороного
и в определенном далее смысле аппроксимирующую его.

Напомним, что в работе [21] было показано и в дальнейшем дополнительно проверено
расчетами, что нормированная корреляционная функция KL(r) поля Вороного хорошо
аппроксимируется экспонентой

KL(r) ≈ e−r/L. (3.1)
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Эта формула позволяет строить приближенный ФКР-алгоритм, уточняющий КРА (см.
далее п. 4.2).

Сеточная аппроксимация (сеточная мозаика) ρh(r) строится на основе разбиения про-
странства R3 прямоугольной сеткой, т. е. на кубики {Sh} со стороной h. Для каждого
элемента Sh независимо реализуется случайное значение ρ соответственно заданному од-
номерному распределению поля ρ(r). Эффективное значение L = lh поля ρh(r) строится
путем равномерного осреднения корреляционной длины в этом поле:

lh =
h−3

4π

∫
Sh

∫
lSh

(r, ω) dr dω,

где lSh
(r, ω) — расстояние от точки r до границы кубика Sh в направлении ω. Ясно, что

выполняются равенства
L = lh = hl1, h = L/l1,

причем достаточно точные вычисления дали значение l1 = 0.44831 с погрешностью, не
превышающей 0.00001.

Трудоемкость (сложность) мозаики ρh(r) существенно меньше трудоемкости мозаики
Вороного, так как для определения значения ρh(r) не требуется перебора значений ρ для
всех элементов сетки. Номер элемента прямоугольной сетки, в которой находится точка
r = (x1, x2, x3), определяется очевидным образом с помощью стандартной встроенной
функции вычисления целой части (например, floor(xi/h) в С++).

3.2. Известно (см., например, [11]), что трудоемкость алгоритма метода Монте-Карло
определяется величиной S(ζ) = TζDζ, где Tζ — среднее время моделирования на ЭВМ
для получения одного выборочного значения ζ. Если для каждой реализации плотности
моделировать m условно-независимых траекторий частиц, то согласно “формуле полной
дисперсии” (см., например, [11]) величину Dζm можно представить в виде

D = Dζm = d0 +
d1

m
, d0 = DE(ζ | ρ), d1 = ED(ζ | ρ), (3.2)

где d0 — физически значимая дисперсия оценки по флуктуациям поля ρ, а d1 — среднее
значение условной дисперсии по траекториям Ω для фиксированной реализации поля ρ.
Отметим, что здесь D — “элементарная” дисперсия (на одну траекторию). Выполняется
очевидное соотношение для среднего времени реализации оценки ζm

Tζm = T0 +mT1, (3.3)

где T0 — среднее время, затрачиваемое на реализацию случайного поля, а T1 — среднее
время, затрачиваемое на моделирование одной случайной траектории. Величина трудо-
емкости S(ζm) в этом случае, как функция от m, имеет минимум в точке (см., напри-
мер, [11])

mopt =

√
T0

T1

d1

d0
,

и
S(ζmopt) =

(√
T0d0 +

√
T1d1

)2
.

Значение mopt можно оценить, сделав два предварительных расчета для m = 1 и m > 1,
подставив полученные значения для Dζ1, Dζm в (3.2) и найдя решение системы из двух
линейных уравнений для d0, d1. Аналогичным способом определяются значения T0, T1

из (3.3) для полученных из расчетов значений Tζ1 , Tζm . Отметим еще раз, что d0 —
физически значимая дисперсия при условии, что D элементарна.
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4. Тестовая задача о прохождении гамма-квантов
сквозь стохастическую среду

4.1. В качестве исходной стохастической среды рассмотрим мозаику Вороного в “бруске”

VH = [0, Xmax]× [0, Ymax]× [0, H] ∈ R3,

и будем полагать, что элементы такого разбиения (выпуклые многогранники) случайно
заполнены водой с заданной вероятностью p или воздухом с заданной вероятностью 1−p.
Известно (см., например, [18]), что при моделировании пуассоновского потока точек в
ограниченной области случайное поле типа мозаики Вороного не является однородным
и изотропным, поэтому пуассоновский поток следует моделировать в области большего
размера, чтобы мозаичное поле было близко к однородному и изотропному. На основе
предварительных расчетов [18] было решено использовать брусок

VH,2L = [−2L,Xmax + 2L]× [−2L, Ymax + 2L]× [−2L,H + 2L].

Использование “бруска” связано с невозможностью реализации поля ρ(r) в неограничен-
ной области. Отметим, что сравнение вероятностей прохождения квантов через слой и
“брусок” было реализовано в [19] с помощью КР-алгоритма.

Моделирование мозаичного поля Вороного в VH,2L строилось в два этапа. Снача-
ла реализовывалось пуассоновское число η случайных точек {ri} согласно параметру
λv(Xmax +4L)(Ymax +4L)(H+4L), где λv — интенсивность пуассоновского точечного по-
тока. Далее координаты точек {ri}, i = 1, 2, . . . , η, выбирались независимо и равномерно
в области VH,2L, а случайный выбор вещества (вода или воздух) в каждой ячейке Si,
построенной около точки ri, независимо разыгрывался с вероятностью p и 1− p соответ-
ственно. Здесь стоит отметить, что вероятность p определяет среднюю “геометрическую”
плотность смеси в области VH,2L.

Пусть в центре основания бруска VH в точке (50, 50, 0) расположен точечный источ-
ник, испускающий гамма-кванты в направлении ω0, перпендикулярном плоскости XY ,
с начальной энергией 1 МэВ или 0.1 МэВ. Полагаем, что вне бруска VH находится абсо-
лютное “черное” подпространство, поглощающее выходящее гамма-излучение. Опреде-
лим в качестве основных функционалов:

- вероятность P(up) прохождения гамма-квантов через верхнюю площадку бруска
V100 (z = H = 100 см);

- вероятность P(down) вылета гамма-квантов через нижнюю площадку бруска V100

(z = 0 см).

Была использована физическая модель переноса гамма-квантов с учетом комптонов-
ского рассеяния и поглощения в результате фотоэффекта в среде M (здесь вода или
воздух). Микроскопические сечения комптоновского рассеяния и поглощения определя-
лись из [22].

4.2. Для заданных значений

Xmax = Ymax = H = 100 см, p = 0.9, λv = 0.00005, 0.0001, 0.001, 0.01, 0.015

были реализованы три схемы моделирования переноса гамма-излучения через брусок
V100. Первое и наиболее трудоемкое прямое моделирование (Direct) случайной траекто-
рии гамма-кванта в рассматриваемой стохастически неоднородной среде для построения
“бернуллиевой” несмещенной оценки осуществлялась в два этапа. Сначала строилась
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реализация поля Вороного по изложенному выше рандомизированному алгоритму в об-
ласти VH,2L, а потом для такой реализации поля моделировалась случайная траектория
гамма-кванта соответственно комптоновской модели (см., например, [23]) с сечениями
из [22]. Поскольку в задачах переноса гамма-излучения сечения среды и примесей за-
висят от энергии E, то здесь и далее мы полагаем Σ = Σ(E). В рассматриваемой сто-
хастической задаче переноса гамма-квантов со случайным полем плотности среды для
моделирования случайной длины свободного пробега использовался метод максималь-
ного сечения, а после очередного случайного пробега проводилась проверка, в какую из
ячеек попала частица. Именно на такую проверку и реализацию поля Вороного тратит-
ся существенное время прямого моделирования для каждой траектории при достаточно
больших значений λv ≥ 0.001.

Во второй схеме была реализована новая сеточная аппроксимация (сеточная мозаика)
области. Исходный “брусок” VH был разбит на кубики Sh так, что количество кубиков
для каждой реализации составляло XmaxYmaxHh

−3 = 0.93λvXmaxYmaxH, а случайный
выбор типа вещества в каждом кубике Sh независимо “разыгрывался” с вероятностью p
(вода) и 1− p (воздух). Пусть NV — это среднее число центров ячеек мозаики Вороного
внутри VH . В данном случае Xmax = Ymax = H = 100 см и имеет место соответствие,
представленное в таблице 1.

Таблица 1. Значения корреляционного радиуса L, среднего числа центров ячеек NV мозаики
Вороного и количества кубиков сеточной мозаики 0.93λvXmaxYmaxH в зависимости от λv

λv L NV 0.93λvXmaxYmaxH

0.00005 12.46 168.19 46.5
0.0001 9.89 271.79 93
0.001 4.59 1658.12 930
0.01 2.13 12780.6 9300
0.015 1.86 18605.7 13950

В третьей схеме моделирования перенос гамма-квантов в среде определялся КР-
алгоритмом.

Введем следующие обозначения для относительных погрешностей δGridG(·), δCRG(·)
оценок функционала G(·) при использовании сеточной аппроксимации и КР-алгоритма
соответственно:

δGridG(·) =
|GDirect(·)−GGrid(·)|

GDirect(·)
, δCRG(·) =

|GDirect(·)−GCR(·)|
GDirect(·)

,

где GDirect(·) — “точная” оценка, полученная для стохастической среды с мозаикой Во-
роного. На рисунке представлены графически значения относительных погрешностей
функционалов P(up), P(down) для λv = 0.00005, 0.0001, 0.001, 0.01, 0.015 и начальной
энергии 1МэВ.

Для представленных оценок моделировалось 108 траекторий гамма-квантов, причем
относительные среднеквадратические статистические погрешности определенных функ-
ционалов, полученные с использованием алгоритмов Direct, Grid, CR, составили менее
0.005, что дает крайне незначительную погрешность в масштабе столбцов рисунка. Се-
рым цветом отмечены относительные погрешности функционалов, полученные с исполь-
зованием сеточной мозаики (Grid), а черным — КР-алгоритмом (CR). Как видно из
рисунка, при использовании сеточной аппроксимации (Grid) погрешности оценок функ-
ционала P(down) меньше 1% и в 4–10 раз меньше соответствующих значений погреш-
ностей функционала, полученных при использовании КР-алгоритма, т. е. здесь сеточ-
ная аппроксимация существенно выигрывает. С другой стороны, значения погрешностей
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оценок функционалов P(up), полученных при использовании сеточной аппроксимации,
несколько больше, чем у КР-алгоритма и, следовательно, алгоритм Grid несколько про-
игрывает по трудоемкости, согласно табл. 2. Можно также отметить, что КР-алгоритм
существенно проще сеточной аппроксимации и его целесообразно использовать, напри-
мер, для быстрых предварительных оценок.

Рис. Значения относительных погрешностей функционалов P(up), P(down), полученные с ис-
пользованием приближенных алгоритмов Grid (серый цвет), CR (черный цвет). Точечный ис-
точник с начальной энергией 1МэВ

Были проведены также аналогичные расчеты для источника с начальной энергией
0.1МэВ. Полученные результаты представлены в табл. 2.

Таблица 2. Значения относительных погрешностей оценок функционалов P(up), P(down), по-
лученные с использованием приближенных алгоритмов (Grid, CR, FCR) при L = 12.46, 9.89,
4.59, 2.13, 1.86. Точечный источник с начальной энергией 0.1МэВ

L δGridP(up) δCRP(up) δFCRP(up) δGridP(down) δCRP(down) δFCRP(down)

12.46 0.509 5.63 0.078 0.023 0.021 0.078
9.89 0.285 5.75 0.025 0.018 0.035 0.041
4.59 0.099 0.423 0.078 0.008 0.008 0.008
2.13 0.015 0.024 0.030 0.003 0.021 0.019
1.86 0.023 0.031 0.005 0.002 0.019 0.069
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При использовании сеточной аппроксимации (Grid) полученные значения относитель-
ных погрешностей оценок функционалов P(up), P(down) существенно меньше соответ-
ствующих значений относительных погрешностей функционалов, полученных при ис-
пользовании КР-алгоритма. Более того, при λv = 0.00005, 0.0001 значения δGridP(up)
оказались в 11–20 раз меньше соответствующих значений δCRP(up) (выделенные жир-
ным шрифтом в табл. 2). Как и в модельной задаче из [19], это связано с существенным
нарушением условия L < 0.4/Σmax(E) применимости КР-алгоритма в данном варианте
расчетов. Поэтому для приближенной оценки функционалов P(up), P(down) здесь был
также реализован ФКР-алгоритм (FCR) с корреляционной функцией (3.1). Как вид-
но из табл. 2, при использовании ФКР-алгоритма полученные значения относительных
погрешностей оценок функционалов P(up), P(down) в целом существенно меньше соот-
ветствующих значений δCRP(up), δCRP(down) и сопоставимы со значениями δGridP(up),
δGridP(down). Это связано с использованием в ФКР-алгоритме корреляционной функции,
которая не требуется для построения сеточной аппроксимации. Интересно отметить, что
в варианте с E0 = 1МэВ для функционалов P(·) при переходе от КРА к ФКРА погреш-
ность практически не изменилась, так как здесь условие применимости КРА в основном
выполнено.

Как было замечено ранее, при получении “точной” оценки для исходной стохастиче-
ской среды с мозаикой Вороного существенное время моделирования траектории зани-
мает реализация такого поля и проверка, в какую из ячеек и с какой примесью попала
частица. Время реализации сеточной мозаики и определение номера прямоугольной сет-
ки существенно меньше, а в КР-алгоритме приближенное случайное поле реализуется в
каждой точке столкновения из одномерного распределения ρ. Это наглядно продемон-
стрировано в табл. 3, где представлено время (в минутах), затраченное на моделирование
108 траекторий гамма-квантов с использованием алгоритмов Direct, Grid, CR для оценки
значений относительных погрешностей функционалов P(up), P(down)

Таблица 3. Время t (мин), затраченное на моделирование 108 траекторий гамма-квантов с
использованием алгоритмов Direct, CR; tGrid . 1.1 tCR

λv
Начальная энергия 0.1МэВ Начальная энергия 1МэВ
tDirect tCR tDirect tCR

0.00005 30.1 3.4 40.1 5.8
0.0001 45.4 3.4 60.4 5.6
0.001 255.6 3.5 334.5 5.7
0.01 1935.4 3.4 2502.3 5.8
0.015 2791.6 3.4 3590.2 5.9

Замечание. В проведенных расчетах реализация сеточной мозаики была выполнена
согласно п. 2.2. При такой реализации для достаточно мелкой сетки существенное время
моделирования тратится на реализацию независимых случайных начальных значений ρ
во всех кубиках Sh. В таком случае значительно уменьшается время моделирования
путем реализации случайных значений ρ лишь в тех кубиках, которые “посещает” моде-
лируемая частица. Расчеты показали (см. табл. 3), что время расчетов в алгоритме Grid
при этом всего на 5–10% больше соответствующих значений времени для алгоритма CR
и практически ограничено при уменьшении корреляционного масштаба среды.

4.3. Рассмотрим теперь в качестве примера оптимизацию трудоемкости приближенной
оценки PGrid(down) при использовании сеточной аппроксимации для источника с началь-
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ной энергией 0.1МэВ. Для λv = 0.001 были проведены предварительные расчеты путем
моделирования 107 траекторий для m = 1, 10, и получены из (3.2), (3.3) следующие
оценки:

d0 ≈ 0.0052, d1 ≈ 0.2297, T0 ≈ 17.5156, T1 ≈ 150.91, mopt = 17.515.

Поскольку полученное значение mopt не является целым, то целесообразно воспользо-
ваться несмещенной модификацией оценки ζm с ветвлением траектории, в которой по-
сле реализации поля моделируется 17 или 18 траекторий (m = 17, 18) с вероятностями
1−0.515 и 0.515 соответственно. Именно такое распределение числа траекторий гаранти-
рует минимальную среднеквадратичную погрешность в классе произвольных целочис-
ленных распределений с фиксированным средним значением 17.515 (см. [25]).

В табл. 4 представлены полученные в расчетах значения трудоемкости при λv =
0.001 для оценки P(down) с использованием сеточной аппроксимации при m = 1, 10,
17.515, 50, 100; видно, что минимальное значение S(ζm) составило 9.71 при m = mopt =
17.515. Данные из таблиц 3 и 4 показывают, что здесь использование оценок сеточной
аппроксимации (CR) сравнительно с моделированием поля Вороного (Direct) сокращает
трудоемкость примерно в 40 раз.

Таблица 4. Значение величины трудоемкости S(ζm) для m = 1, 10, 17.515, 50, 100 (mopt =
17.515) для оценки PGrid(down). Точечный источник с начальной энергией 0.1МэВ

m Dζm Tζm (сек) S(ζm)

1 2.349 · 10−1 172 40.56
10 2.818 · 10−1 368 10.37

17.515 1.873 · 10−2 518 9.71
50 9.799 · 10−3 1218 11.94
100 7.503 · 10−3 2284 17.13

5. Моделирование сверхэкспоненциального роста среднего
потока частиц в случайной размножающей среде

Сверхэкспоненциальный рост среднего потока частиц вначале был получен авторами
для сферически симметричного случайного поля оптической плотности размножающей
среды [26]. Дальнейшей целью работы является проведение аналогичных исследований
для более реалистичных (см., например, [27]) однородных полей типа случайной моза-
ики Вороного. Для повышения эффективности численно-статистических расчетов бы-
ла предложена [20] универсальная корреляционно-сеточная аппроксимация однородного
изотропного поля с сохранением осредненного по реализациям корреляционного масшта-
ба, что обеспечивает удовлетворительную оценку среднего потока для достаточно сла-
бой корреляции. Кроме весьма существенного уменьшения трудоемкости моделирования,
такая аппроксимация дает возможность исследовать флуктуации результатов, соответ-
ствующие флуктуациям среды, и выяснить возможность нормализации распределения
средней скорости размножения при уменьшении корреляционного масштаба среды.

Работа [20] посвящена детальному исследованию сверхэкспоненциальной зависимо-
сти от времени среднего числа частиц, рассеивающихся и размножающихся в случайной
среде. В качестве основополагающей физической модели с целью построения компью-
терно-экономичных алгоритмов статистического моделирования рассматривается одно-
скоростной процесс переноса частиц. При этом скорость имеет вид v = vω, где v = 1,
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ω — единичный вектор направления скорости. Вектор x = (r, ω, t) рассматривается в
фазовом пространстве X = R3×Ω×T координат, скоростей и времени. Рассеяние, в том
числе после деления, предполагается изотропным, т. е. соответствующие индикатрисы
рассеяния и деления постоянны: ws = wf = 1/(4π).

В качестве математической модели процесса используется однородная обрывающа-
яся с вероятностью единица цепь Маркова, состояниями которой являются точки по-
следовательных “столкновений частицы с элементами вещества”, т. е. точки, в которых
происходят мгновенные изменения скорости частицы. Эта цепь x0, x1, . . . , xN рассмат-
ривается в указанном фазовом пространстве X, т. е. xn = (rn, ωn, tn), где rn — точка n-го
столкновения, vωn — скорость, а tn = tn−1 + |rn−1 − rn|/v — время “жизни” сталкива-
ющейся частицы. Рассматриваемая цепь определяется плотностью f(x) распределения
начального столкновения x0 и плотностью k(x′, x) перехода из состояния x′ в x, причем
предполагается, что

∫
X k(x′, x)dx = q(x′) ≤ 1− δ, δ > 0 (см. [20,28]).

Используемая обычно в теории переноса интенсивность излучения Φ(x) (плотность
потока частиц) связана с плотностью столкновений соотношением ϕ(x) = σ(x)Φ(x), где
σ(x) — полное сечение ослабления. Для исследования потока частиц будет изучаться
функционал вида

J(t) = J(t, σ) =

∫
R

∫
Ω

ϕ(r, ω, t)q(r, ω) dr dω ∀ f ∈ L1(X), q ∈ L∞(R× Ω). (5.1)

При построении весовых алгоритмов метода Монте-Карло используется цепь Маркова с
начальной плотностью f0(x) и плотностью перехода p(x′, x), содержащей те же обобщен-
ные множители, что и k(x′, x), например цепь столкновений для других значений пара-
метров: сечение рассеяния σs, сечение деления σf , сечение поглощения σc, σ = σs+σf+σc
(см. [20]). При этом вводятся вспомогательные веса по формулам Q0 = f(x0)/f0(x0),
Qn = Qn−1k(xn−1, xn)/p(xn−1, xn). Если выполняются “условия несмещенности”, то (см.,
например, [11,28]) J = E ξ, где ξ =

∑N
n=0Qnh(xn). Если кроме того ρ(Kp) < 1, где Kp —

оператор с ядром k2(x′, x)/p(x′, x), и f2/f0 ∈ L1(X), то Dξ < +∞. Случайная величина
ξ называется “оценкой по столкновениям” для функционала J .

Далее предполагается, что f(r, ω,−t) = 0 при t > 0 и символом f (m) обозначается
m-кратная производная от функции f по t, причем f (0) ≡ f .

Для формулировки задачи об оценке среднего потока и соответствующих вычисли-
тельных алгоритмов в [20] даны полученные ранее в [20,26,29] следующие утверждения.

Теорема 5.1 [20]. Предполагается, что |f (m)| ≤ c0f0(r, ω), m = 0, 1, . . . , n; f0 — плот-
ность вероятностей. Пусть точка (r0, ω0) распределена для t0 = 0 с плотностью
f0(r, ω), причем |f (m)(r, ω, t)

/
f0(r, ω)| < C < +∞, ρ(Kp) < 1 и выполняются условия

несмещенности [11,28]. Тогда J (m)(t) = Eξ(m), где ξ(m) =
∑N

k=0Qkq(rk, ωk)f
(m)(r0, ω0, t−

tk)
/
f0(r0, ω0), Q0 = 1, причем Dξ(m) < +∞, m = 1, 2, . . . , n.

Эта теорема определяет основной алгоритм “по столкновениям” для оценки лога-
рифмической производной от полного (интегрального по (r, ω)) потока частиц, который
выражается в виде (5.1) при q(r, ω) = ID(r)/σ(r).

Рассмотрим теперь оценку параметра экспоненциальной временной асимптотики в
теории переноса. Известно, что при выполнении довольно общих условий имеет место
асимптотическое при t→∞ соотношение [10]

Φ(r, ω, t) ∼ C(r, ω)eλt, C(r, ω) < C0 < +∞, (5.2)
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где λ — ведущее характеристическое число соответствующего однородного стационарно-
го кинетического уравнения переноса с заменой σc 7→ σc+λ/v. Эти условия, в частности,
имеют место для односкоростного процесса переноса частиц в ограниченной среде с до-
статочно быстро убывающей по времени плотностью источника.

Лемма 5.1. Если в реализуемой вспомогательной модели используется сечение погло-
щения σc(x) + λ0/v вместо σc(x), то текущий вес частицы в момент времени t после
реализации рассеяния домножается на величину exp(λ0(t − t0)). При этом во вспомо-
гательной модели значение λ заменяется на λ− λ0.

Лемма 5.1 показывает, что путем введения дополнительного поглощения для оценки
величины λ > 0 можно строить весовой процесс переноса без ветвления.

В [20] для уменьшения трудоемкости вычислений было использовано упрощение про-
цесса переноса на основе следующего утверждения, которое следует непосредственно из
вида кинетического уравнения (2.1).

Лемма 5.2. Если ws = wf ≡ 1
/

(4π), то Φ(r, ω, t) не меняется при следующей замене
параметров процесса переноса : σs 7→ 0, σc 7→ 0, σf 7→ σ, ν 7→ ν ′ =

σs + νσf

σ
. Здесь ν —

среднее число частиц, образующихся в результате деления.

Следующее утверждение фактически доказано в работе [29].

Теорема 5.2. Если выполняются соотношения∫
f (m)(r, ω, t)e−λt dt < +∞, m = 0, 1,

соотношение (5.2) и условия теоремы 5.1, то

d ln J(t)

dt
=
J ′(t)

J(t)
→ λ при t→ +∞.

6. Общая формулировка сверхэкспоненциального роста
среднего потока частиц в случайной среде

при σ(r, v) ≤ σmax < +∞
Предполагается, что σ(r, v) = σρ(r, v) — однородное изотропное случайное поле, при-

чем отношения σs/σ и σf/σ фиксированы. Далее в этом пункте символом σ обозначается
введенное таким образом случайное поле σ(r, v).

Как и в [26], полагаем, что J(t, σ) ∼ expλ(σ)t при t→∞ для f0(t) = δ(t) и
∞∫

0

f(t) exp−λ(σ)t dt < C0 < +∞.

Соответственно этому, предполагая гауссовость случайной величины λ(σ) и равномер-
ность (по σ) предельного перехода J(t, σ) −→t→∞ C(σ)eλ(σ)t, можно оценить асимптоти-
ку функции EJ(t, σ) = I(t) в некотором интервале (Tλ < t < T ∗):

I(t) ≈ C√
2πd

+∞∫
−∞

exp(tu) exp

(
−(u− a)2

2d2

)
du,
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где a = Eλ(σ), d2 = Dλ(σ). При этом также предполагается, что множители C(σ) и eλ(σ)t

в асимптотике слабо коррелированы и, следовательно, C ≈ EC(σ). Используя интеграль-
ную формулу из [30], далее получаем

I(t) ≈ C exp

(
d2

2
t2 + at

)
. (6.1)

Следовательно, можно предположить, что

d ln I(t)

dt
≈ d2t+ a. (6.2)

Определяемый формулой (6.1) закон роста среднего числа частиц можно назвать “су-
перэкспоненциальным”. Отметим, что формулы (6.1), (6.2) могут служить основой для
численных исследований конкретных вариантов задачи при t < T ∗ < +∞ (см. далее
п. 7). Эти исследования позволяют эвристически приближенно выделить следующие ин-
тервалы времени:

• (0, Tλ) — доасимптотический интервал влияния начальной плотности;

• (Tλ, T
∗) — интервал суперэкспоненциальной асимптотики типа (6.1);

• (T ∗,+∞) — интервал перехода к предельной асимптотике ln I(t) = O(λmaxt), здесь
λmax = λ(σmax).

Интервал (Tλ, T
∗) был, в частности, определен для сферически слоистой случайной

мозаики, которая позволила достаточно точно оценить величины a ≈ Eλ(σ) и d2 ≈
Dλ(σ) [26]. В связи с исследованием суперэкспоненты в [20] доказана (для специальной
сеточной модели σ) теорема о необходимой для этого гауссовской асимптотике распре-
деления величины λ(σ).

Интервал (T ∗,+∞) будет определяться далее для задачи с изотропным случайным
полем. Возможность реализации такого интервала показывает следующее утверждение.

Теорема 6.1. Пусть для 0 < ε < σmax с вероятностью p(ε) > 0 выполняются соотно-
шения σ ≥ σmax − ε и, соответственно, λ(σ) ≥ λmax − δ(ε), где δ(ε) > 0 — монотонно
убывающая непрерывная функция, причем δ(0) = 0. Тогда

I(t) ∼ O
(
eλmaxt

)
, t→ +∞.

Сказанное выше и анализ результатов численного моделирования (см. далее п. 7)
показывают целесообразность аппроксимации

d ln I(t)

dt
≈ λs(t) = λs(t0)

1− exp
(
−βt1−α

)
1− exp

(
−βt1−α0

) (6.3)

для некоторого t0 > Tλ и 0 < α � 1. Полагая, согласно теореме 6.1, λs(+∞) = λmax,
получаем

β = −tα−1
0 ln

(
1− λs(t0)

λmax

)
. (6.4)

В заключение пункта укажем, что значение λs(t) вычисляется методом двойной ран-
домизации [28] согласно формуле
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λs(t) =
I ′(t)

I(t)
=

EE(ξ(1)(S, σ) | σ)

EE(ξ(0)(S, σ) | σ)
≈ Ĩ ′(t)

Ĩ(t)
, (6.5)

где S — траектория частицы, соответствующая построенной реализации поля σ.
Для каждой реализации среды здесь можно строить лишь одну траекторию части-

цы. Отметим, что полная дисперсия оценки Ĩ ′(t)/Ĩ(t) оценивается сверху стандартным
способом с помощью линеаризации дроби (6.5).

7. Тестовая задача.

7.1. Для проведения тестовых расчетов рассматривался односкоростной процесс перено-
са частиц в шаре радиуса R = 7.72043 со случайной плотностью ρ = ρ(r) и макроскопи-
ческими сечениями ρσ(0), ρσ

(0)
s , ρσ

(0)
f , где σ(0) = 1, σ

(0)
s = 0.97, σ

(0)
f = 0.03, ν = 2.5, v = 1.

Одномерное распределение поля ρ(r) равномерно на отрезке [1− ε, 1 + ε]. При ρ ≡ 1 шар
критичен: λ = 0± 10−7.

Для построения эффективных алгоритмов метода Монте-Карло в сформулирован-
ную модель было введено поглощение с постоянным неслучайным коэффициентом σc/v,
который приводит к замене λ 7→ λ − σc/v ∀σ(r, v), как указано в лемме 5.1. Следова-
тельно, получаемые оценки необходимо преобразовывать по формулам: Ĩ(t) := Ĩ(t)eσct,
d ln Ĩ(t)/dt := d ln Ĩ(t)/dt+ σc.

На основе леммы 5.2 было использовано осреднение, состоящее в том, что моделиро-
вался процесс с константами σ∗s = 0, σ∗f = ρσs + ρσf + σc, ν∗ = 1, а вес в каждой точке
столкновения домножался на величину

q∗(ρ) =
σs + νσf

σs + σf + σc/ρ
≤

σs + νσf
σs + σf + σc/(1 + ε)

= 1

при σc = σf (ν − 1)(1 + ε).
В расчетах был использован метод максимального сечения с σmax = 1+ε. Для умень-

шения дисперсии оценок, основанных на соотношении (6.5), значения ξ(0) и ξ(1) вычис-
лялись для всех столкновений, включая “дельта-рассеяние”, в отличие от работы [26],
где они вычислялись только для “физических” столкновений.

Плотность распределения первых столкновений была взята в виде

f(r, t) = 4t exp(−2t)g(r), t > 0, r = |r| < R,

где g(r) = C sin(ær)/r — улучшенное диффузионное приближение к пространственной
характеристической функции для σ = 1, æ = 0.3739866 [31]. В (5.1) полагали также
q(r, ω) = q1(r)/σ(r, v), где q1(r) = sin(ær)/r. При этом J (m) = (Φ, q1f

(m)/f0), т. е. вы-
числяются функционалы от потока частиц. Расчеты показали, что использование та-
ких функциональных параметров алгоритма существенно улучшает важную здесь схо-
димость J ′(t)/J(t)→ λ при t→∞ ∀ ρ сравнительно с вариантом, в котором q(r, ω) ≡ 1.

Базовый пуассоновский точечный поток для поля Вороного строился в шаре радиуса
R1 = 10 ≈ R+L. Проведенные в [32] модельные расчеты показывают, что такое ограниче-
ние потока может обеспечить достаточно высокую точность оценки средней вероятности
вылета частицы, которая играет определенную роль в рассматриваемой задаче.

Для сеточной модели (см. п. 3.1) трудоемкость построения конкретной траектории
частицы не зависит от h и существенно меньше соответствующей трудоемкости для поля
Вороного, так как не требуется “перебор” по |r − ri| для определения ρ(r, v). Отметим,
что здесь для сеточной мозаики L = `h = 2.186 при h = 4.8762.
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В табл. 5 приведены оценки функции I(t) для вспомогательной модели и соответству-
ющие оценки среднеквадратических погрешностей δ для поля Вороного (при m = 0) и
сеточной аппроксимации. Здесь Ns — число траекторий.

Таблица 5. Значения Ĩ(t)± δ при Ns = 4 · 109, L = 2.186

t поле Вороного сеточная аппроксимация
1 0.124241± 0.000002 0.124242± 0.000002
5 0.173513± 0.000002 0.173495± 0.000002

10 0.129121± 0.000002 0.129093± 0.000002
15 0.096155± 0.000002 0.096152± 0.000002
20 0.071678± 0.000002 0.071699± 0.000002

Таким образом можно констатировать, что в решаемой задаче результаты, получен-
ные на основе поля Вороного и соответствующей сеточной аппроксимации, практически
совпадают, а трудоемкость для сеточной аппроксимации меньше примерно в два раза.

7.2. Анализ полученных результатов показывает, что здесь, как и для сферически сло-
истой мозаики, выполняется соотношение 20 < T ∗ < 40 (см. п. 6). Для исследования
асимптотики функции λs(t) = d ln I(t)/dt расчеты были продолжены до t < T1 = 150.
В табл. 6 представлены оценки этой функции, соответствующие оценки среднеквадра-
тической погрешности δ (“одно сигма”), а также для сравнения значения функции

λ̃s(t) = λ̃s(t0)
1− exp(−βt1−α)

1− exp(−βt1−α0 )
(7.2)

при t0 = 40, α = 0.2. Значение β = 0.00199 было вычислено по формуле (6.4) для
достаточно точной оценки λmax = 0.022, полученной с помощью дополнительного расчета
при σ = σmax. Отметим что (7.2) практически не меняется при замене t0 = 40 на t0 = 30,
что подтверждает значимость такой оценки.

Таблица 6. Значения оценки λ̃s(t)± δ при Ns = 216 · 109, L = 2.186

t сеточная аппроксимация λ̃s(t)

10 −0.000086± 0.000003 0.000276
20 0.000390± 0.000004 0.000478
30 0.000640± 0.000005 0.000659
40 0.000826± 0.000007 0.000826
50 0.000989± 0.000009 0.000984
60 0.001129± 0.000011 0.001135
70 0.001280± 0.000014 0.001279
80 0.001404± 0.000017 0.001419
90 0.001574± 0.000022 0.001554

100 0.001696± 0.000027 0.001685
110 0.001782± 0.000035 0.001813
120 0.001915± 0.000044 0.001938
130 0.002106± 0.000056 0.002060
140 0.002085± 0.000070 0.002179
150 0.002458± 0.000089 0.002296
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8. Предельная теорема для распределения величины λ(σ)
в случае сеточной аппроксимации

Рассмотрим теперь возможность обоснования предельного гауссовского распределе-
ния величины λ для сеточной модели поля σ в рассматриваемой задаче. Обозначим
через N = Nh число элементов сетки (кубиков), полностью или частично принадлежа-
щих области D объема V . Предполагается, что при h → 0 выполняется соотношение
(в частности для куба, цилиндра, шара) Nh = nh + o(nh), где nh — размер вписанной
в D части сетки. Рассмотрим равенство λ = λN (τ1, . . . , τN ), причем τi = vi(σh,i − 1),
где vi — “действующий” объем в D сеточного элемента (в основном, vi = h3 ∼ V/nh), а
σh,i — независимые значения поля σ, равномерно распределенные в [1− ε, 1 + ε], причем
Dτi ∼ (1/3)ε2V 2/n2

h.
Далее c учетом проведенных ранее тестовых расчетов для сферической мозаики пред-

полагается, что

∣∣∣∣ ∂2λN
∂τi∂τj

∣∣∣∣ ≤ C1 < +∞ и 0 < C
(1)
0 <

∂λ

∂τi
< C

(2)
0 , i, j = 1, . . . , N. (8.1)

Теорема 8.1. Пусть выполняются соотношения (8.1) и λN (0, 0, . . . , 0) = 0 ∀N . Тогда,

если n = nh → ∞, а ε
√
n → 0, то величина

√
n

ε
C−1λ сходится по распределению к

стандартной нормальной случайной величине.

Интересно отметить, что эта теорема согласуется с результатами работы [27], в кото-
рой нормализация распределения λ была получена на основе численных экспериментов
для малой величины типа Dτ . Фактически это же показали расчеты для модельной сфе-
рически слоистой мозаики [26].

9. Заключение

Сделаем ряд замечаний о сформулированных аппроксимациях. Ясно, что аппрокси-
мирующий процесс переноса КР-алгоритм реализует значительно проще, чем сеточный,
так как не требует моделирования случайной среды и двойной рандомизации, которую
в некоторых случаях целесообразно оптимизировать. Этот алгоритм сравнительно эф-
фективен при существенно анизотропном рассеянии, например оптическом излучении в
облаках. С другой стороны, сеточная аппроксимация является более универсальной и
точной при существенном влиянии изотропии рассеяния, как, например, в задачах о пе-
реносе гамма-квантов низкой энергии, особенно для оценки альбедо. Особо следует отме-
тить, что сеточную модель можно реализовать без использования “метода максимального
сечения” и таким образом решать стохастические задачи переноса с неограниченными
коэффициентами ослабления. Трудоемкость обоих алгоритмов ограничена, и они, таким
образом, позволяют устанавливать справедливость “стохастического предела”, состоя-
щего в том, что при L → 0 средние значения функционалов сходятся к их значениям
для осредненной среды. Простые соображения также показывают, что аппроксимацию
неоднородного случайного поля можно построить, проведя предварительные расчеты по
аналогии с п. 3.1. для параллелепипеда с ребрами Lx, Ly, Lz вместо единичного кубика.
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