УДК 621.548

Ветродвигатель с эффектом Магнуса. 3. Расчетные характеристики ветроколеса

Н.М. Бычков

Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, Новосибирск

На основе экспериментальных данных для ветроколеса с вращающимися цилиндрами большого удлинения (до 14) получены расчетные зависимости, которые позволяют определять оптимальные параметры и основные характеристики ветроколеса (мощность, быстроходность). Анализируется влияние числа цилиндров, их удлинения и скорости вращения, скорости потока и нагрузки на генератор.

введение

Ветроэнергетическая установка (ВЭУ) с эффектом Магнуса имеет ряд существенных отличий от традиционных лопастных ВЭУ. В предыдущих попытках разработки ВЭУ подобного типа (1924-1984 гг.) из-за отсутствия необходимых экспериментальных данных использовались параметры ветроколеса, близкие большинству лопастных ВЭУ (число цилиндров i = 3, их удлинение $\lambda = 6$), которые оказались неоптимальными. Исследования, проведенные в ИТПМ СО РАН [1, 2], показали, что для ВЭУ с эффектом Магнуса число цилиндров и их удлинение необходимо увеличить приблизительно в два раза. В работе [1] исследованы модели с удлинением цилиндров до $\lambda = 10,7$. В настоящей работе приведены дополнительные экспериментальные данные при $\lambda = 11,5$ и 14.

В работе рассматривается только наиболее простая форма цилиндров с одинаковым диаметром по всей длине (однородные цилиндры). Достаточно высокая эффективность ветроколеса достигается в этом случае, если удлинение цилиндров будет увеличено до $\lambda = 14-15$, что по ряду параметров близко к предельному значению. Дальнейшее повышение эффективности возможно путем соответствующего изменения формы цилиндров или другими способами управления течением. Рассматриваемая разновидность представляет собой первый этап в развитии ВЭУ данного типа.

1. ГЕОМЕТРИЧЕСКИЕ ПАРАМЕТРЫ ВЕТРОКОЛЕСА

Из [1, 2] следует, что характеристики ВЭУ с вращающимися цилиндрами зависят от достаточно большого числа параметров — геометрических, кинематических и энергетических. На рис. 1 приведены основные геометрические параметры: R — радиус ветроколеса, L — длина вращающейся части цилиндров, R_0 — расстояние от оси ветроколеса до вращающейся части цилиндров, d_0 — диаметр корпуса ветроколеса и его обтекателя, d — диаметр цилиндров, $d_{\rm ui}$ — диаметр концевых дисков (шайб), которые ограничивают нежелательный сход завихренного потока с концов цилиндров.

© Бычков Н.М., 2008

 Рис. 1. Ветроколесо с одним из цилиндров.
 1 — корпус ветроколеса, 2 — невращающаяся часть цилиндра, 3 — вращающаяся часть, 4 концевая шайба, Y — сила Магнуса.

Соответствующие безразмерные параметры имеют вид:

$$\lambda = L/d, \ C = d_{\rm m}/d, \ r_0 = R_0/R,$$
 (1)

где λ — удлинение цилиндров, *C* — относительный диаметр концевой шайбы, r_0 — относительное расстояние от оси ветроколеса до вращающейся части цилиндров.

Геометрические параметры связаны друг с другом следующими соотношениями:

$$d = \frac{1 - r_0}{\lambda} R,\tag{2}$$

$$r_0 = 1 - \frac{\pi \lambda}{i} \beta, \tag{3}$$

$$\beta = \frac{di}{\pi R} = \frac{1 - r_0}{\lambda} \frac{i}{\pi},\tag{4}$$

где i — число цилиндров, β — параметр формы ветроколеса (коэффициент заполнения).

2. МОЩНОСТЬ И БЫСТРОХОДНОСТЬ ВЕТРОКОЛЕСА

Основными кинематическими и энергетическими характеристиками ветроколеса являются: θ — относительная скорость вращения цилиндров, Z — быстроходность ветроколеса, $N_{\rm k}$ — его мощность и $N_{\rm вр}$ — затраты мощности на вращение цилиндров. Параметр θ выражается в виде [1]

$$\theta = \omega d / 2V = \pi dn_{\rm m} / 60V, \tag{5}$$

где V — скорость потока (ветра), ω — угловая скорость вращения цилиндров, $n_{\rm u}$ — частота вращения (число оборотов в минуту).

Мощность N_{κ} , аналогично лопастному ветроколесу, выражается известной формулой [3, 4]

$$N_{\rm \kappa} = \eta \, \frac{\rho V^3}{2} \frac{\pi D^2}{4},\tag{6}$$

где η — коэффициент мощности, D — диаметр ветроколеса, ρ — плотность воздуха. Коэффициент η представляет собой отношение

$$\eta = N_{\rm K}/N_{\infty},\tag{7}$$

где N_{∞} — мощность набегающего ветрового потока, которая выражается формулой (6) при $\eta = 1$. Коэффициент η может изменяться в пределах от нуля до $\eta_{\text{max}} = 0,593$, где η_{max} — максимальное теоретическое значение, которое следует из условия оптимального прохождения ветрового потока через ветроколесо [1, 3, 4]. Кроме формулы (6), мощность N_{κ} , согласно результатам тарировки при различной нагрузке на генератор (создаваемой дискретными значениями тока возбуждения и сопротивления на выходе генератора), выражается также в виде следующей функции [1]:

$$N_{\rm k} = K_N n_{\rm k}^2 = 0,55 \cdot 10^{-3} G^2 n_{\rm k}^2, \tag{8}$$

где $n_{\rm k}$ — частота вращения ветроколеса, K_N и G — тарировочные коэффициенты мощности. Используемый далее параметр $G = 42,6\sqrt{K_N}$, который имеет размерность $\sqrt{H_{\rm MC}}$, варьировался в диапазоне G = 1-6.

Подставляя в (8) значения (6), (7), получим

$$GZ = 1,4D^2 \sqrt{\rho \eta V},\tag{9}$$

где Z — быстроходность ветроколеса

$$Z = \frac{\pi D n_{\kappa}}{60V}.$$
(10)

Для наиболее исследованной модели с диаметром D = 1,9 м при условиях эксперимента ($\rho = 1,2 Hc^2/M^4$) вместо (9) получим обобщающее соотношение

$$ZG = 5, 5\sqrt{\eta V}.$$
(11)

Полученные зависимости позволяют оптимизировать параметры ветроколеса *i*, λ , θ , *G*, r_0 и определить основные его характеристики η , *Z*. Для реальных ВЭУ с другими диаметрами *D*, при сохранении геометрического подобия (в данном случае при равенстве *i*, λ , *C*, r_0), используются полученные для исследованной модели оптимальные значения η , *Z*, θ , а мощность $N_{\rm k}$ определяется по (6) для реальных *D*, *V*, ρ .

Затраты мощности на вращение цилиндров по результатам предварительного расчета составляют $N_{\rm Bp} \approx 0.17 N_{\rm K}$. Для одиночного цилиндра значения $N_{\rm Bp}$ определены в [2].

3. МЕТОД РАСЧЕТА ХАРАКТЕРИСТИК ВЕТРОКОЛЕСА

В настоящее время отсутствуют точные теоретические методы определения характеристик ветроколеса с эффектом Магнуса. Это связано с тем, что при работе ветроколеса течение возле вращающегося цилиндра является существенно трехмерным из-за растекания потока от центра ветроколеса к его периферии. Трехмерность усиливается вблизи концевого диска, на котором под действием центробежных сил формируется радиальное течение. Кроме того, течение на вращающемся цилиндре зависит от переходных процессов в пограничном слое, которые влияют на положение точек отрыва потока. Сложный трехмерный характер обтекания цилиндра с отрывом пограничного слоя не позволяет в настоящее время получить строгое теоретическое решение. В то же время, результаты экспериментальных исследований, проведенных на моделях ВЭУ и на отдельных вращающихся цилиндрах [1, 2], с учетом некоторых известных теоретических данных [3, 4] позволяют получить достаточно близкие к точным полуэмпирические зависимости для определения характеристик ветроколеса и оптимизации его параметров. На рис. 2, *a*, *b* приведены примеры измеренных значений скорости вращения ветроколеса $n_{\rm k}$ в зависимости от частоты вращения цилиндров $\bar{n}_{\rm u} = n_{\rm u} \cdot 10^{-3}$ (*a*) и от параметра θ (*b*) для различных вариантов. Скорости потока (м/с) составляли V = 3,5 ($\lambda = 14$ и 11,5) и 3,77 ($\lambda = 10,7$) м/с. Относительный диаметр концевых дисков во всех случаях равен C = 2.

На графиках (рис. 2, *b*) видно, что значения n_{κ} зависят от всех рассмотренных параметров: λ , θ , *i*, *G*. Максимальной величине $n_{\kappa} = n_{\kappa}^*$ соответствует параметр $\theta = \theta^*$, который увеличивается при уменьшении *i* (см. θ_1^* и θ_2^*). Увеличение θ^* приводит к росту затрат мощности на вращение цилиндров, которые пропорциональны величине θ^3 [2].

На рис. 2, *с* показаны зависимости $n_{\kappa}^{*}(V)$ для различных вариантов. Видно, что функции $n_{\kappa}^{*}(V)$ являются линейными, причем такая линейность, с учетом [1], наблюдается в широком диапазоне условий: D = 1,3-2 м, V = 1,5-15 м/с, i = 2-6, $\lambda = 3,5-14$, G = 1-6, $n_{\mu} \le 8 \cdot 10^{3}$ об/мин.

Далее будем рассматривать только оптимальные (максимальные) значения $n_{\kappa} = n_{\kappa}^*$, опуская при этом звездочку — верхний индекс. Представим указанные значения n_{κ} в следующем виде:

Рис. 2. Экспериментальные значения $n_{\kappa}(a, b)$, $n_{\kappa}^{*}(c)$ и $V_{0}(d)$ для моделей с диаметром ветроколеса D = 1,9 и 2 м при различных параметрах λ , *i*, *G*.

 $a, b \longrightarrow \lambda = 14 \ (1, 2), 11,5 \ (3), 10,7 \ (4), i = 6 \ (1, 4), 4 \ (2), 3 \ (3), G = 4 \ (1-3), 6 \ (4); c \longrightarrow \lambda = 14 \ (1-3), 11,5 \ (4), G = 4 \ (1-4), i = 3 \ (1, 4), 4 \ (2), 6 \ (3).$

где $E = dn_{\kappa}/dV$ — коэффициент наклона функции $n_{\kappa}(V)$, V_0 — начальная (пусковая) скорость ветра.

На рис. 2, *d* приведены значения V_0 в зависимости от отношения $1/(i)^{2/3}$ для исследованной модели с неоптимальными (увеличенными) параметрами $\overline{d}_0 = d_0 / D$ и $\overline{r_0} = R_0 / R$ (см. рис. 1 и работу [1]). Из этих данных видно, что с ростом λ и *i* скорость V_0 уменьшается. Это увеличивает значения $n_{\rm K}$ в формуле (12) и соответственно повышает мощность ветроколеса $N_{\rm K}$ в формуле (8). При уменьшении (оптимизации) параметров \overline{d}_0 и $\overline{r_0}$ характеристики ветроколеса могут быть улучшены за счет увеличения λ и уменьшения V_0 соответственно.

Для точного определения величины V_0 с учетом всех параметров имеющихся данных недостаточно. Для приближенной оценки V_0 используем следующую зависимость, наиболее близкую к варианту $\lambda = 14$:

$$V_0 = \frac{5.8}{\left(1 - r_0\right)^2 \left(\lambda i\right)^{2/3}}, \ \lambda = 10 - 15.$$
(13)

Отличия V_0 (13) от экспериментальных данных для $\lambda = 14$ составляют не более 2 %.

Отметим, что влияние V_0 наиболее заметно сказывается при малых скоростях потока, соизмеримых с величиной V_0 . С увеличением скорости V влияние V_0 , согласно (12), будет уменьшаться и при достаточно больших V, λ , *i* оно будет незначительным.

Более существенным для определения N_{κ} из (12) и других функций (Z, η) является параметр E. На рис. 3 приведены экспериментальные значения E и 1/Eв зависимости от i и G для модели с удлинением цилиндров $\lambda = 10,7$. Из рис. 3, aвидно, что при умеренной нагрузке G = 4 оптимальное число цилиндров, без учета V_0 , составляет i = 4. С увеличением G параметр i будет больше 4 и, наоборот, i < 4при уменьшении G. Из рис. 3, b следует, что функции $1/E = f(G^2)$ практически линейны (отличия составляют не более 2–3 %). Это позволяет для определения Eпостроить достаточно простые расчетные формулы, которые имеют вид

$$1/E = a_0 + K_{\lambda} G^2, \tag{14}$$

где

$$a_0 = 0,022, \quad K_\lambda = (5,6\lambda^2)^{-1}, \quad i = 3,$$
 (15)

Рис. 3. Значения E(a) и 1/E(b) при $\lambda = 10,7$.

$$a_0 = 0,027, \quad K_\lambda = (7,3\lambda^2)^{-1}, \quad i = 4,$$
 (16)

$$a_0 = 0,034, \quad K_\lambda = (9\lambda^2)^{-1}, \quad i = 6,$$
 (17)

На рис. 4 приведены значения E (*i*, λ , *G*,), причем в области $\lambda \le 10,7$ графики построены по экспериментальным данным, а в области $\lambda > 10,7$ — по экстраполяционным формулам (14)–(17). Расчетные значения достаточно хорошо согласуются с экспериментальными точками, в том числе при $\lambda = 14$, G = 4, i = 4 и 6. Отметим, что все данные на рис. 4 отнесены к диаметру ветроколеса D = 1,9 м. С увеличением диаметра частота вращения $n_{\rm K}$ уменьшается (и наоборот), поэтому при $D_i \neq 1,9$ м измеренные значения E пересчитываются умножением на отношение D_i/D , в соответствии с (10) при Z = idem.

Мощность ветроколеса, согласно (8), (12), (14), будет равна

$$N_{\rm K} = Q(V - V_0)^2, \tag{18}$$

где базовая часть $Q(H \cdot c/M)$ выражается в виде

$$Q = K_N E^2 = \frac{0.55 \cdot 10^{-3} G^2}{(a_0 + K_\lambda G^2)^2}.$$
(19)

Приравнивая (6) и (18), получим выражение для коэффициента мощности

$$\eta = \frac{8Q(V - V_0)^2}{\pi \rho D^2 V^3}.$$
(20)

Для модели D = 1,9 м при $\rho = 1,2 H \cdot c^2 / M^4$ будем иметь

$$\eta = 0.6Q \frac{(V - V_0)^2}{V^3}.$$
(21)

Быстроходность ветроколеса Z(10) для этой же модели с учетом (11), (21) имеет вид

$$Z = 4, 2\frac{\sqrt{Q}}{G}\frac{V - V_0}{V}.$$
 (22)

Из (20), (21) следует, что для ВЭУ данного типа расчетные значения $\eta(V)$ уменьшаются с ростом скорости V в области $V > V_i > V_0$, где $V_i = 1,5-2$ м/с. В точке V_i коэффициент η имеет максимум, который при достаточно большой величине Qможет существенно превосходить максимальное теоретическое значение $\eta_{\text{max}} = 0,593$, что нереально.

Рис. 4. Значения $E(\lambda, G)$ при i = 3 (a), 4 (b) и 6 (c)

¹ — эксперимент, 2 — расчет по (14)–(17).

Как будет показано далее, необходимое условие $\eta \leq \eta_{\text{max}}$ можно выполнить путем соответствующего выбора параметра *G*, от которого зависит мощность N_{κ} (8).

4. ОПТИМИЗАЦИЯ ПАРАМЕТРОВ ВЕТРОКОЛЕСА

На рис. 5 приведены зависимости Q (G) (графики 1), рассчитанные по формуле (19) для модели D = I,9 м, i = 6. На графиках видно, что функции Q (G) имеют максимумы, которые отмечены символом 2, а соответствующие значения Q и G обозначены $Q_{\rm M}$ и $G_{\rm M}$. Однако достижение этих максимумов сопровождается существенным уменьшением скорости вращения ветроколеса, что не всегда целесообразно. Согласно (22), быстроходность Z пропорциональна отношению \sqrt{Q}/G , из чего следует, что параметр G оказывает на Z более сильное влияние, чем Q. При уменьшении G на 30 %, т. е. до величины $G_{\rm M}$ (отмечено цифрой 3), значения Q из (19) и η из (21) уменьшаются приблизительно на 10 %, а быстроходность Z из (22), наоборот, увеличивается на 35 %.

На рис. 6, *а* показаны расчетные зависимости Q (*G*) по формуле (19) для $\lambda = 14$, i = 3-6. Видно, что наибольшая величина $Q = Q_{\rm M}$ достигается при i = 4, $G = G_{\rm M} = 6$. Однако при i > 4 по формуле (13) уменьшается величина V_0 , что повышает мощность $N_{\rm K}$ из (18). Одновременно возрастают значения $G_{\rm M}$, что по (11) и (22) снижает быстроходность ветроколеса *Z*. Низкие значения *Z* могут создавать определенные технические сложности при передаче вращения от тихоходного ветроколеса к быстроходному генератору. Целесообразно поэтому ограничивать значения $G_{\rm M}$, которые должны удовлетворять условию (11).

Максимальные значения $Q_{\rm M}$ и $G_{\rm M}$ при $\lambda \ge 10$, с использованием соотношений (14)–(19), выражаются аналитически в следующем виде:

$$i = 3$$
: $Q_{\rm M} = 0.035\lambda^2$, $G_{\rm M} = 1.9 + 0.016\lambda^2$, (23)

$$i = 4$$
: $Q_{\rm M} = 0.037\lambda^2$, $G_{\rm M} = 2.9 + 0.017\lambda^2$, (24)

$$i = 6$$
: $Q_{\rm M} = 0.036\lambda^2$, $G_{\rm M} = 4.5 + 0.018\lambda^2$. (25)

Отсюда видно, что увеличение λ приводит к росту $Q_{\rm M}$ и $G_{\rm M}$, а с увеличением *i* возрастает только параметр $G_{\rm M}$. Подставляя полученные значения $Q_{\rm M}$ в (21), получим максимальную величину коэффициента мощности $\eta_{\rm M}$

$$\eta_{\rm M} = K_i \lambda^2 \frac{(V - V_0)^2}{V^3},$$
 (26)

где $K_i = 0,021$ для i = 3 и 0,022 при i = 4-6 (т. е. K_i изменяется очень слабо).

Рис. 5. Значения Q (G, λ) при D = 1,9 м, i = 6.

I — расчет по формуле (19), 2 — значения $Q_{\rm M}$ и $G_{\rm M}$, 3 — $G_{\rm m} = 0.7G_{\rm M}$, $Q_{\rm m} \approx 0.9Q_{\rm M}$, 4 — эксперимент.

347

Рис. 6. Влияние числа цилиндров *i* и параметра *G* на величину *Q* из формулы (19) при $\lambda = 14$. *I*—значения *Q*_м и *G*_м, 2—*G*_m = 0,7*G*_M, *Q*_m ≈ 0,9*Q*_м.

Оптимальные значения коэффициента мощности должны находиться в диапазоне

$$\eta_{\min} \le \eta \le \eta_{\max}$$
. (27)

Верхний предел составляет $\eta_{\max} \approx 0,59,$

а нижний должен удовлетворять условию, при котором результирующий коэффициент мощности ветроколеса с учетом затрат на вращение цилиндров будет не ниже реальных значений коэффициента мощности для лопастного ветроколеса. Это условие имеет вид

$$\eta_{\Sigma} = \eta_{\min} \left(1 - \eta_{BP} \right) \ge \eta_0, \qquad (28)$$

где η_{Σ} — результирующий коэффициент

мощности, $\eta_{\rm Bp}$ — коэффициент, учитывающий затраты мощности на вращение цилиндров, $\eta_0 = 0,42-0,44$ — максимальный коэффициент мощности для большинства современных лопастных ВЭУ [5]. При $\eta_{\rm Bp} \approx 0,17\eta$ (по результатам предварительного расчета) получим следующий диапазон оптимальных значений $0,53 \le \eta \le 0,59$.

5. РАСЧЕТ ХАРАКТЕРИСТИК ВЕТРОКОЛЕСА

Начальной точкой для расчета характеристик является скорость V^* , которая определяется из соотношений (21), (19) при выбранном оптимальном значении $\eta = \eta_{\rm M} = 0,53-0,59$, зависящем от параметра G. При $V < V^*$ значения $\eta(V)$ по (21) формально могут оказаться выше величины $\eta_{\rm max} = 0,593$, что противоречит условию оптимального прохождения потока через ветроколесо, которое по [3, 4] выражается в виде $\eta = f(V_2/V_1)$, где V_1 и V_2 — скорости потока соответственно до и после ветроколеса. При $V_2/V_1 = 1/3$ достигается максимальное значение $\eta_{\rm max} = 0,593$. При всех других отношениях скоростей коэффициент η только уменьшается. Выполнение условия $\eta \leq \eta_{\rm max}$ при $V < V^*$ достигается соответствующим изменением параметра G, что будет показано далее.

Определим скорость V^* и характеристики ветроколеса при этой скорости. Принимая в первом приближении $V_0 = 0$, из (26) получим

$$V^* = K_i \lambda^2 / \eta^*. \tag{29}$$

При $V_0 \neq 0$ значения V^* будут ниже, чем по (29), приблизительно на величину $2V_0$ (здесь индекс ^{*} соответствует точке V^*).

Для быстроходности ветроколеса Z^* в точке V^* , подставляя в (11) значения $V = V^*$ из (29), при $V_0 = 0$ получим

$$Z^* = 0.8\lambda/G^*,\tag{30}$$

где $G^{*}(i)$ при $\eta^{*} = \eta_{\text{max}}$ определяется по (23)–(25).

На рис. 7 приведены расчетные значения V^* (29), Z^* (30), а также величина нагрузки на генератор G^* , которая определяется по формулам (23)–(25). Видно, что скорость V^* достаточно интенсивно возрастает с увеличением λ , но относительно слабо зависит от *i*. Быстроходность Z^* , наоборот, сильно зависит от *i*, но незначительно от λ . Параметр G^* возрастает с увеличением *i* и λ . Штриховыми линиями показаны соответствующие значения для варианта $\eta_{\min} = 0,53$, i = 4(обозначено (4)).

Рассмотрим поведение характеристик ветроколеса во всей области $V \le V$ при $\eta = \eta^* \le \eta_{\text{max}}$. Примем также условие Z(V) = const, при котором скорость вращения ветроколеса $n_{\text{к}}$, согласно (10), изменяется пропорционально скорости ветра V. Тогда для параметра G по (11), с учетом (30), будем иметь

$$G = 6.8 \frac{G^*}{\lambda} \sqrt{\eta^* V}, \quad V \le V^*, \tag{31}$$

где G^* определяется по (23)–(25), если $\eta = \eta_{\text{max}}$. Из (31) следует, что в области $V < V^*$ параметр *G* должен уменьшаться пропорционально величине \sqrt{V} .

Рассмотрим следующую область $V > V^*$. Здесь коэффициент мощности η , как уже отмечалось, с увеличением скорости V, согласно (20) и (21), будет только уменьшаться, что приводит к ограничению роста мощности ветроколеса $N_{\rm k}$ из (6). При этом возможны различные варианты уменьшения η , из них наиболее близкой к оптимальной является следующая зависимость:

$$\eta = \eta^* V^* / V, \quad V \ge V^*. \tag{33}$$

Параметры Z и G в области $V \ge V^*$ могут изменяться (регулироваться) в широком диапазоне. Отметим два предельных случая: 1) Z = const, 2) $n_{\rm k}$ = const. Первый случай, аналогично области $V < V^*$, соответствует пропорциональной зависимости величины $n_{\rm k}$ от скорости ветра V, что при больших V ограничивается возможностями вращения цилиндров. Второй — требует значительного увеличения параметра G(V), что тоже имеет свои ограничения (снижается скорость вращения ветроколеса).

Рассмотрим некоторый промежуточный (более реальный) случай, при котором

$$Z = Z^* \sqrt{V^* / V}, \quad V \ge V^*.$$
 (34)

Тогда параметр G, согласно (11), будет равен

Рис. 7. Расчетные значения V^* , Z^* и G^* в зависимости от λ и *i*.

I — значения при $\eta_{\text{max}} = 0,59, i = 3-6; 2 - \langle 4 \rangle$, то же при $\eta_{\text{min}} = 0,53, i = 4.$

$$G = \frac{5,5}{Z^*} \sqrt{\eta^* V}, \quad V \ge V^*.$$
 (35)

В следующей, третьей области (V ≥ V_p) выполняются условия

$$N_{\rm K} = {\rm const}, \ n_{\rm K} = {\rm const}, \ G = {\rm const}.$$
 (36)

Параметры (36) определяются по соответствующим значениям в точке $V_{\rm p}$. Коэффициент η , согласно (6), будет равен

$$\eta = \eta_{\rm p} \left(\frac{V_{\rm p}}{V} \right)^3, \quad V \ge V_{\rm p}. \tag{37}$$

Для быстроходности Z из (11), (36), (37) следует

$$Z = \frac{5,5}{G_{\rm p}V} \sqrt{\eta_{\rm p} V_{\rm p}^{3}}, \quad V \ge V_{\rm p}.$$
(38)

6. ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ И ИХ АНАЛИЗ

На рис. 8, *а* приведены расчетные значения $\eta(V)$ для следующих условий: $\lambda = 15, i = 6, V_0 = 0,35$ м/с (график 1). В области $V \le V^*$ принято максимальное значение $\eta = 0,53$, которое характеризуется более низкими затратами мощности на вращение цилиндров, чем при $\eta_{\text{max}} = 0,59$. В области $V^* \le V \le V_p$ коэффициент η определялся по формуле (33), а в области $V \ge V_p$ — по формуле (37). График 1^{*} соответствует ориентировочным значениям η с учетом затрат мощности $\eta_{\text{вр}}$ на вращение цилиндров (принимая $\eta_{\text{вр}} \approx 0,17\eta$). График 2 характеризует коэффициент η для лопастной ВЭУ «Südvind» 3127М (ФРГ) [1]. График 3 соответствует среднегодовым значениям повторяемости скоростей ветра P (V) для континентальных регионов.

Отметим, что в области V < 8 м/с, имеющей наибольшие значения P (V), коэффициент η для ветроколеса с вращающимися цилиндрами сохраняет свою максимальную величину, близкую (26), при $V = V^*$. Повышенные значения η и P в этой области позволяют существенно увеличить суточную продолжительность работы ВЭУ и выработку энергии. Для лопастных ВЭУ уменьшение η в области

V < 8 м/с связано с тем, что коэффициент подъемной (движущей) силы лопастей не превышает $C_y = 1$, в то время как для вращающегося цилиндра он достигает значений $C_y = 12$ и более [2]. Большая движущая сила вращающегося цилиндра и соответственно большой крутящий

Рис. 8. а — значения $\eta(V)$ для ветроколеса с цилиндрами (1, I^*) и с лопастями (2). Повторяемость скоростей ветра P(3); b — значения Z(1), G(2) и $n_{\rm k}DV(3)$ в зависимости от скорости V для ветроколеса с цилиндрами $\lambda = 15$.

момент обеспечивают работу ветроколеса, начиная со скорости $V \approx 1,5$ м/с (см. рис. 2, *c*). Для лопастных ВЭУ нижний предел составляет $V \approx 4$ м/с, а верхний $V \approx 25$ м/с. Для ВЭУ с эффектом Магнуса рабочий диапазон скоростей ветра составляет приблизительно V = 2-40 м/с.

На рис. 8, *a*, график 1 отмечены также значения V^* по (29) для различных удлинений цилиндров в диапазоне $\lambda = 12-15$. Видно, что условие оптимальности (28) может быть выполнено для однородных цилиндров только при $\lambda \ge 14-15$.

На рис. 8, *b* приведены расчетные значения *Z*, *G* и $n_{\rm k}D$ в зависимости от скорости *V* (аналогично рис. 8, *a*) для i = 6 и $\lambda = 15$. В точке $V = V^*$, согласно (25), получим $G^* = 8,55$. Снижая это значение на 30 % (для увеличения Z^* , как показано в п. 4), будем иметь $G^* = 6$ и, согласно (30), $Z^* = 2$. В области $V \le V^*$, принимая $Z = Z^* = 2$ и $\eta = 0,53$, получим $G \approx 2\sqrt{V}$. В области $V^* \le V \le V_{\rm p}$ величина *Z* определялась по (34), G — по (35), а $n_{\rm k}D$ — по (10). В области $V \ge V_{\rm p}$ использовались зависимости (36)–(38). По графику 3 можно определить скорость вращения ветроколеса, которая зависит от диаметра *D*.

Из полученных данных и результатов [1, 2] следует, что оптимальные значения основных геометрических параметров составляют: число цилиндров i = 6, их удлинение $\lambda = 14-15$, диаметр концевых шайб $d_{\rm m} \approx 1.8d$, диаметр обтекателя $d_0 \leq 0.1$ D. Диаметр ветроколеса для натурных ВЭУ целесообразно иметь не менее D = 10 м [1, 2], чтобы ограничить максимальную частоту вращения цилиндров, пропорциональную величине 1/D. Расстояние от оси ветроколеса до вращающейся части цилиндров должно быть минимальным, т. е. $r_0 = 2R_0/D \approx 0.1$, что достигается при условии, если отсутствует невращающаяся часть 2 (см. рис. 1), когда $R_0 = d_0/2$.

Напомним, что полученные соотношения и оптимальные параметры относятся к ветроколесу с однородными цилиндрами, имеющими одинаковый диаметр по всей их длине. Предварительные испытания, проведенные с измененной формой цилиндров, показали, что характеристики ветроколеса могут быть улучшены, в частности, уменьшаются значения θ^* и затраты мощности на вращение цилиндров.

выводы

 Разработан полуэмпирический метод расчета характеристик ветроколеса, основанный на результатах экспериментальных исследований и с учетом известных теоретических зависимостей. Определены оптимальные параметры и соответствующие характеристики ветроколеса, при этом удлинение цилиндров должно быть увеличено до 14-15, а число цилиндров до шести.

2. Показано что имеется три основных области скоростей ветра с различным поведением характеристик ветроколеса: $V < V^*$, $V^* < V < V_p$ и $V > V_p$, где $V^* \approx 8$ м/с, $V_p \approx 12$ м/с. В области $V < V^*$ скорость вращения цилиндров и ветро-

колеса пропорциональна скорости ветра, а мощность возрастает пропорционально V^3 (максимальный рост). При $V > V^*$ скорость вращения цилиндров постоянна, а при $V > V_p$ она уменьшается, что снижает затраты мощности на их вращение.

3. Наибольшие преимущества ВЭУ с эффектом Магнуса проявляются при скоростях ветра ниже 8 м/с, где коэффициент мощности ветроколеса и повторяемость скоростей ветра имеют максимальные значения. Это увеличивает выработку энергии и особенно суточную продолжительность работы. Лопастные ВЭУ в этой области имеют более низкую эффективность, что связано с малой движущей силой лопастей (на порядок меньше, чем для вращающихся цилиндров) и снижением до нуля коэффициента мощности ветроколеса при уменьшении скорости ветра.

4. Быстроходность ветроколеса с вращающимися цилиндрами в 2-3 раза ниже, чем для лопастных ВЭУ, это повышает экологическую и эксплуатационную безопасность работы ВЭУ.

5. Дальнейшее улучшение характеристик ветроколеса может быть достигнуто изменением формы вращающихся цилиндров, главным образом, для снижения скорости их вращения и соответствующих затрат мощности.

СПИСОК ЛИТЕРАТУРЫ

- **1. Бычков Н.М.** Ветродвигатель с эффектом Магнуса. 1. Результаты модельных исследований // Теплофизика и аэромеханика. 2004. Т. 11, № 4. С. 583–596.
- Бычков Н.М. Ветродвигатель с эффектом Магнуса. 2. Характеристики вращающегося цилиндра // Теплофизика и аэромеханика. — 2005. — Т. 12, № 1. — С. 159–175.
- 3. Сабинин Г.Х. Теория и расчет ветряных двигателей // Тр. ЦАГИ. 1931. Вып. 105. С. 1-70.

4. Шефтер Я.И. Использование энергии ветра. — М.: Энергоатомиздат, 1983. — 201 с.

Ветроэнергетические установки: Справочник. Ч.2. Технико-экономические характеристики установок и их узлов. — М.: Информэлектро, 1993. — 196 с.

Статья поступила в редакцию 12 сентября 2005 г.