2009. Том 50, № 2

Март – апрель

C. 341 – 348

УДК 542.91:546.96:548.736

ПЕРВЫЕ *транс*-ДИНИТРО- И *транс*-ДИНИТРАТОКОМПЛЕКСЫ РУТЕНИЯ [RuNO(NH₃)₂(NO₂)₂(OH)] И [RuNO(NH₃)₂(H₂O)(NO₃)₂]NO₃·H₂O

© 2009 М.А. Ильин^{1,2}*, Е.В. Кабин², В.А. Емельянов^{1,2}, И.А. Байдина¹, В.А. Воробьев²

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск ²Новосибирский государственный университет

Статья поступила 23 июня 2008 г.

Предложены методы синтеза *транс*-диамминокомплексов [RuNO(NH₃)₂(NO₂)₂(OH)] (**I**) и [RuNO(NH₃)₂(H₂O)(NO₃)₂](NO₃) · H₂O (**II**). Соединения исследованы методами ИК спектроскопии, рентгенофазового и рентгеноструктурного анализа. Кристаллографические данные: пространственная группа *P*-1; a = 6,2328(2), b = 11,0488(3), c = 11,0981(4) Å; $\alpha = 71,942(1)$, $\beta = 83,291(1)$, $\gamma = 86,877(1)^{\circ}$ (**I**) и пространственная группа *P*₂; a = 6,6290(2), b = 13,4389(5), c = 7,0180(2) Å, $\beta = 114,281(1)^{\circ}$ (**II**). Комплекс **II** легко теряет часть кристаллизационной воды при хранении на открытом воздухе.

Ключевые слова: рутений, нитрозокомплексы, амминокомплексы, нитрокомплексы, нитратокомплексы, отработанное ядерное топливо, рентгеноструктурный анализ.

введение

Нитрозонитро- и нитрозонитратокомплексы являются основными формами существования осколочного рутения в азотнокислых растворах отходов переработки отработанного ядерного топлива (ОЯТ) [1]. Концентрация рутения в таких растворах колеблется от 0,7 до 29,4 г/л [2], что превышает его содержание в большинстве используемых в настоящее время видов природного сырья. Необходимость поиска путей выделения рутения из растворов ОЯТ обеспечивает устойчивый интерес к изучению состояния и химического поведения рутения в растворах азотной кислоты [3]. Однако до настоящего времени координацию нитрат-иона к рутению в таких растворах удавалось наблюдать только спектроскопическими методами, наиболее информативным из которых является ЯМР [4, 5]. При испарении этих растворов в твердую фазу выделяются хорошо растворимые стеклообразные смеси веществ, зачастую рентгеноаморфные [6, 7]. Одной из причин образования рентгеноаморфных продуктов может являться полимеризация нитратоаквакомплексов посредством мостиковых ОН- и NO₃-групп, как это установлено для комплексов родия(III) [8]. Избежать такой полимеризации или затруднить этот процесс можно на модельных системах, зафиксировав часть координационных мест в нитрозокомплексе рутения прочно связанными с ним лигандами.

В настоящее время структурно охарактеризованы два комплекса нитрозорутения, содержащие координированный нитрат-ион: *цис*-[RuCl(NO₃)₂(pdma)(NO)] (pdma = 1,2-фенилен-бис-(диметиларсин)) [9] и *цис*-[Ru(NO)(ONO₂)(bpy)₂](ClO₄)₂·H₂O [10]. Первый из них получен обменной реакцией между соответствующим трихлорокомплексом и нитратом серебра в ацетонитрильном растворе, второй — нагреванием взвеси *цис*-[Ru(NO₂)₂(bpy)₂] в разбавленной азотной кислоте (1:10) с последующим осаждением перхлоратной соли.

^{*} E-mail: max ilyin@ngs.ru

Наиболее адекватными моделями аквакомплексов нитро- и нитратонитрозорутения являются амминокомплексы, поскольку молекулы аммиака и воды весьма близки по целому ряду параметров (заряд, размер, дипольный момент, способность к образованию водородных связей и т.д.). Синтез и установление структурных характеристик нитратоамминокомплексов нитрозорутения, образующихся в крепких азотнокислых растворах, позволит судить о способах координации нитрат-иона к рутению в растворах отработанного ядерного топлива, геометрии образующихся комплексов, их константах устойчивости и получить другую фундаментальную информацию о состоянии рутения в этих растворах.

Целью настоящей работы являлась разработка метода синтеза *транс*-динитродиамминокомплекса [RuNO(NH₃)₂(NO₂)₂OH] и установление строения продукта его взаимодействия с азотной кислотой.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез *транс*-[Ru(NO)(NH₃)₂(NO₂)₂OH] (комплекс I, *транс*-гидроксодинитродиамминнитрозорутений). Смесь 1,2 г ($1,7 \cdot 10^{-2}$ моль) NaNO₂ и 1 г ($3,7 \cdot 10^{-3}$ моль) *oc*-[RuNO(NH₃)₂Cl₃], полученного по методике [11], помещали в стакан на 250 мл, заливали 100 мл воды, накрывали часовым стеклом и нагревали на плитке при постоянном перемешивании до полного растворения комплекса рутения (~1,5 ч). В ходе реакции из раствора выделяются оксиды азота, а красновато-розовый цвет раствора меняется на ярко-желтый. Происходящий процесс в основном может быть описан следующим уравнением:

 $2[RuNO(NH_3)_2Cl_3] + 7NaNO_2 + H_2O = 2[RuNO(NH_3)_2(NO_2)_2OH] + 6NaCl + NaNO_3 + 2NO^{1}$.

Полученный раствор затем упаривали до минимального объема (~10 мл) и охлаждали до комнатной температуры. Выделяющийся после охлаждения желтый кристаллический осадок отфильтровывали, промывали спиртом и эфиром и сушили в токе воздуха. Выход комплекса составляет 85—90 %. Монокристаллы комплекса, пригодные для рентгеноструктурного анализа, получены медленным испарением маточного раствора, откуда может быть выделено дополнительное количество целевого продукта.

Синтез [RuNO(NH₃)₂(H₂O)(NO₃)₂]NO₃·H₂O (комплекс II, моногидрат нитрата 1-нитрозо-2,4-динитрато-6-аква-3,5-диамминрутения(II)).

Навеску 0,5 г *транс*-[RuNO(NH₃)₂(NO₂)₂OH] растворяли в 15 мл 3 М HNO₃ при нагревании. Полученный раствор кипятили на плитке до прекращения выделения оксидов азота, после чего испаряли на водяной бане до минимального объема. К охлажденному сиропообразному раствору темно-красного цвета добавляли несколько капель воды до резкого уменьшения вязкости и оставляли при комнатной температуре. Через несколько часов из раствора выделяется желтый мелкокристаллический осадок целевого комплекса, который отфильтровывали, промывали водно-спиртовой смесью, спиртом и эфиром и сушили в токе воздуха. Выход составляет ~50 %.

ИК спектры синтезированных комплексов регистрировали на Фурье-спектрометре Scimitar FTS 2000 в области 4000—375 см⁻¹. Образцы для съемки готовили по стандартной методике прессованием навесок в таблетки с KBr.

Термогравиметрический анализ соединения II был выполнен на дериватографе Paulic-Erdey Q-1000, модифицированном для съемки в различных газовых средах, с оцифровкой аналогового сигнала. Масса навески составляла ~150 мг при точности определения массы 0,1 мг. Разложение проводили в токе гелия (скорость потока 30 мл/мин) в открытом Al₂O₃-тигле при скорости нагрева 10 °C/мин. В качестве стандарта на термопаре сравнения применяли прокаленный до 1000 °C Al₂O₃.

Рентгенографическое исследование измельченных кристаллов проведено на дифрактометрах ДРОН-3М (для I) и ДРОН-RM4 (для II) (R = 192 мм, Cu K_{α} -излучение, Ni-фильтр, детектор сцинтилляционный с амплитудной дискриминацией) в области углов 20 от 5 до 50°. Образцы наносили тонким слоем на гладкую сторону стандартной кварцевой кюветы. Все обнаружен-

Таблица 1

Характеристика	Ι		Ш	
Температура, К	100(2)		100(2)	
Параметры ячейки	<i>a</i> = 6,2328(2) Å	$\alpha = 71,942(1)^{\circ}$	<i>a</i> = 6,6290(2) Å	$\alpha = 90^{\circ}$
	<i>b</i> = 11,0488(3) Å	$\beta = 83,291(1)^{\circ}$	<i>b</i> = 13,4389(5) Å	$\beta = 114,281(1)^{\circ}$
	<i>c</i> = 11,0981(4) Å	$\gamma = 86,877(1)^{\circ}$	c = 7,0180(2) Å	$\gamma = 90^{\circ}$
Пространственная группа	P-	-1	P	21
Ζ	4	ļ	2	
<i>V</i> , Å ³	721,5	51(4)	569,9	90(3)
$\rho_{выч}$, г/см ³	2,5	24	2,256	
Коэффициент поглощения, мм ⁻¹	2,1	83	1,458	
<i>F</i> (000)	536		384	
Диапазон сбора данных по θ,	от 1,94 до 31,13		от 3,03 д	10 31,47
град.				
Диапазон h, k, l	$-8 \le h \le 8, -14 \le k$	$\leq 14, -16 \leq l \leq 15$	$-7 \leq h \leq 9, -17 \leq$	$k \le 19, -9 \le l \le 8$
Число измеренных рефлексов	72	74	48	70
Число независимых рефлексов	3571 [R(int) = 0,0373]		2573 [R(int) = 0.0152]	
Число рефлексов с $I > 2\sigma(I)$	3069		2528	
Область съемки по θ, град.	25,00		25,00	
Полнота сбора данных, %	93	,8	98,8	
Метод уточнения	Полноматричный МНК по F^2			
Число уточняемых параметров	22	.7	18	39
S -фактор по F^2	1,2	59	1,0	49
R -фактор [$I > 2\sigma(I)$]	R1 = 0,0643, wR2 = 0,0911		R1 = 0,0166, wR2 = 0,0317	
<i>R</i> -фактор (все данные)	R1 = 0,0773, wR2 = 0,0946		R1 = 0,0172, wR2 = 0,0319	

Кристаллографические данные и условия дифракционного эксперимента

ные на дифрактограммах продукта I рефлексы были проиндицированы по данным монокристального исследования, что подтверждает его однофазность. Дифрактограммы продукта II содержат ряд "лишних" линий, что свидетельствует о наличии кристаллических фаз иного строения в составе этого продукта.

Параметры элементарных ячеек и экспериментальные интенсивности для расшифровки кристаллических структур измерены при температуре 100(2) К (Мо K_{α} -излучение, графитовый монохроматор) на автоматических четырехкружных дифрактометрах: Bruker-Nonius X8 Арех, оснащенном двухкоординатным ССD-детектором (для I), и Bruker X8 Арех (для II).

Обе структуры расшифрованы стандартным методом тяжелого атома и уточнены в анизотропно-изотропном (для Н) приближении. Атомы водорода в структуре I заданы геометрически, в структуре II — частично найдены из разностного синтеза, а частично заданы геометрически в идеализированных позициях. Все расчеты проведены по комплексу программ SHELX-97 [12].

Кристаллографические характеристики и основные показатели уточнения представлены в табл. 1, координаты атомов с величинами эквивалентных тепловых колебаний — в табл. 2.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

ИК спектры соединений содержат следующие полосы (см⁻¹):

I: 3549 cp, 3466 cp (vOH), 3337 c, 3284 c, 3193 cp, 3085 cp (vNH₃), 1874 oc, 1856 oc (vNO), 1626 cp ш (δOH), 1596 cp, 1539 cπ (δ_d NH₃), 1416 oc, 1390 c (ν_{as} NO₂), 1330 oc, 1299 c, 1254 c (ν_s NO₂, δ_s NH₃), 921 cp ш (δOH), 827 cπ, 816 c, 801 c (ρ NH₃, ρ NO₂), 640 cπ, 507 cπ (δ_w NO₂), 610 c

Таблица 2

		-					-			
Атом	x/a	y/b	z/c	$U_{ m _{3KB}}*$	Атом	x/a	y/b	z/c	$U_{\scriptscriptstyle \! ext{ > KB}}*$	
<i>транс-</i> [RuNO(NH ₃) ₂ (NO ₂) ₂ OH)] (I)					mpanc-[RuNO(NH ₃) ₂ (H ₂ O)(NO ₃) ₂]NO ₃ ·H ₂ O (II)					
Ru(1)	0,43343(9)	0,74208(5)	0,23289(5)	0,00494(13)	Ru(1)	0,202977(19)	0,332683(9)	0,70071(2)	0,00702(5)	
Ru(2)	0,02343(9)	0,75522(5)	0,74939(5)	0,00622(13)	N(1)	0,4303(3)	0,54704(14)	0,3389(3)	0,0126(4)	
N(10)	0,5827(10)	0,6769(5)	0,3630(5)	0,0104(12)	O(1)	0,2798(2)	0,49729(13)	0,1981(2)	0,0152(3)	
O(10)	0,6868(8)	0,6388(4)	0,4463(4)	0,0142(11)	O(2)	0,3988(2)	0,57677(13)	0,4930(2)	0,0154(3)	
N(20)	0,2058(10)	0,8777(5)	0,6813(5)	0,0113(12)	O(3)	0,6067(2)	0,56557(13)	0,3212(2)	0,0175(4)	
O(20)	0,3271(8)	0,9575(4)	0,6405(4)	0,0143(11)	N(2)	0,4447(3)	0,30546(13)	0,4297(3)	0,0092(4)	
N(1)	0,6333(10)	0,6495(5)	0,1258(5)	0,0119(13)	O(4)	0,60678(19)	0,3210(2)	0,3912(2)	0,0126(4)	
O(1)	0,5550(8)	0,5905(4)	0,0632(5)	0,0145(11)	O(5)	0,46248(17)	0,3320(2)	0,61596(17)	0,0105(2)	
O(2)	0,8319(8)	0,6543(5)	0,1213(5)	0,0149(11)	O(6)	0,2726(2)	0,26652(13)	0,3070(2)	0,0133(3)	
N(2)	0,2197(10)	0,8381(5)	0,3335(5)	0,0104(12)	N(3)	-0,0927(3)	0,30069(14)	0,9179(3)	0,0107(4)	
O(3)	0,2877(8)	0,8916(4)	0,4046(5)	0,0151(11)	O(7)	-0,0020(2)	0,36903(11)	0,8399(2)	0,0102(3)	
O(4)	0,0227(8)	0,8370(5)	0,3261(5)	0,0148(11)	O(8)	-0,16907(17)	0,3330(2)	1,03996(18)	0,0138(3)	
N(5)	0,1967(10)	0,6419(5)	0,6504(5)	0,0089(12)	O(9)	-0,0980(2)	0,21409(13)	0,8672(2)	0,0154(3)	
O(5)	0,1097(8)	0,6074(5)	0,5725(4)	0,0151(11)	Ν	0,0513(4)	0,23651(18)	0,5440(3)	0,0098(5)	
O(6)	0,3896(9)	0,6151(5)	0,6674(5)	0,0176(11)	0	-0,0494(2)	0,17349(13)	0,4359(2)	0,0141(3)	
N(6)	-0,1615(11)	0,8621(5)	0,8491(5)	0,0121(13)	N(4)	0,0340(4)	0,43921(18)	0,4719(4)	0,0098(5)	
O(7)	-0,3615(9)	0,8627(5)	0,8522(5)	0,0197(12)	N(6)	0,3951(3)	0,23777(17)	0,9427(3)	0,0095(5)	
O(8)	-0,0752(9)	0,9278(5)	0,9015(5)	0,0183(12)	O(10)	0,3727(3)	0,44908(16)	0,8816(3)	0,0123(4)	
N(3)	0,6352(9)	0,9025(5)	0,1541(5)	0,0101(12)	O(1W)	-0,2788(3)	0,54515(14)	0,8913(3)	0,0171(4)	
N(4)	0,2097(9)	0,5951(5)	0,2865(5)	0,0100(12)						
N(7)	-0,1864(9)	0,8177(5)	0,6042(5)	0,0103(12)		· · · · · · · · · · · · · · · · · · ·				
N(8)	0,1976(10)	0,6747(5)	0,9066(5)	0,0150(13)	* 17	определяется	как олна т	петь спеля	ODTOFOR9-	
O(1W)	0,2804(9)	0,8136(5)	0,0823(5)	0,0111(11)	• U_{eq} определяется как одна треть следа ортогона					
O(2W)	-0.1725(10)	0.6138(5)	0.8206(5)	0.0132(12)			Jopu.			

(vRu-NO), 585 ос (vRu-OH), 473 ср (vRu-NH₃). Спектр хорошо согласуется с таковым для *цис*-изомера [RuNO(NH₃)₂(NO₂)₂OH] [13], но отличается от него меньшим числом полос, что связано с более симметричным строением комплекса **I**.

II: 3503 cp ш (vH₂O_{крист}), 3337 c, 3269 c, 3212 cp (vH₂O, vNH₃), 1923 oc (vNO), 1635 cp ш (δH₂O, δ_dNH₃), 1515 oc (δ_dNH₃, v₃NO_{3коорд}), 1416 c, 1385 c, 1310 c (v₃NO_{3внешн}, δ_sNH₃), 1261 oc (v₃NO_{3коорд}), 1048 cл (v₁NO_{3внешн}), 971 cp (v₁NO_{3коорд}), 824 сл (ρNH₃, v₂NO_{3внешн}, v₂NO_{3коорд}), 790 cp, 761 сл (v₄NO_{3коорд}), 723 сл, 691 сл (v₄NO_{3внешн}), 611 сл (vRu-NO), 460 ср ш (vRu-NH₃).

По данным ТГА соединение II в температурном интервале 45—70°С (максимум эндотермического эффекта при 60 °С) теряет молекулу кристаллизационной воды (потеря массы 4,00 %, рассчитано на H₂O 4,65 %). В ИК спектре продукта, полученного нагреванием II при 70 °С до прекращения потери массы (4,0 %), отсутствует полоса vH₂O_{крист}, положение δ (H₂O) смещено на 7 см⁻¹ в длинноволновую область (1628 см⁻¹). Положение остальных полос поглощения совпадает с точностью до ±5 см⁻¹ с их положением в спектре II. Проведенный нами сравнительный рентгенофазовый анализ показал, что "лишние" линии на дифрактограммах соединения II принадлежат продукту, полученному нагреванием этого комплекса до температуры 70 °С. Следовательно, можно утверждать, что выделяемое по описанной методике вещество II не загрязнено посторонними примесями, а является смесью моногидрата и комплекса [Ru(NO)(NH₃)₂(NO₃)₂(H₂O)](NO₃), что является следствием удаления молекулы кристаллизационной воды с заметной скоростью уже при комнатной температуре. Несколько заниженный (по сравнению с рассчитанным на молекулу воды) процент потери массы на первой ступени подтверждает это предположение. Среднее гидратное число, рассчитанное на формульную единицу комплекса, составляет 0,86.

Рис. 1. Строение комплексов І

Описание кристаллических структур. Кристаллическая структура I построена из нейтральных комплексов [RuNO(NH₃)₂(NO₂)₂OH], структура II — из комплексных катионов состава [RuNO× \times (NH₃)₂(H₂O)(NO₃)₂]⁺, внешнесферных нитрат-анионов NO₃⁻ и молекул кристаллиза-

ционной воды. Обе кристаллические структуры относятся к островному типу.

Строение комплексных частиц с нумерацией атомов и эллипсоидами тепловых колебаний показано на рис. 1, 2, основные межатомные расстояния и валентные углы приведены в табл. 3, 4. В структуре I два кристаллографически независимых комплекса рутения, имеющих разную ориентацию в элементарной ячейке. Координационный полиэдр рутения в обеих структурах — искаженный октаэдр, в экваториальной плоскости которого попарно в *транс*-положениях находятся по два атома азота молекул аммиака и два атома азота нитрогрупп (для I) или два атома кислорода нитрат-ионов (для II). Аксиальные позиции заняты нитрозогруппой и атомом кислорода от координированного гидроксид-иона (для I, среднее расстояние Ru— O_{OH} 1,945 Å) или от молекулы воды (для II, расстояние Ru— O_{H_2O} 2,037(2) Å). Отклонения валентных углов на атоме Ru от идеальных 90° не превышают 5,2° для I и 8,7° для II.

Средние расстояния Ru—N_{NH3} лежат в обычных для нитрозоамминокомплексов рутения пределах [13] и составляют 2,108 Å для I и 2,093 Å для II. Геометрия фрагмента Ru—N—O для обоих соединений также согласуется с литературными данными (средние значения для I: 1,746, 1,145 Å, 177,3°, для II: 1,727(2), 1,150(3) Å, 178,5(2)°), атом рутения смещен из экваториальных плоскостей в сторону нитрозогруппы на 0,10 Å в I и 0,20 Å в II.

В структуре I среднее расстояние Ru— N_{NO_2} составляет 2,082 Å, угол между нормалями к экваториальным плоскостям двух независимых комплексов составляет 93,8°. Средние геометрические характеристики NO₂-групп также обычные [14]: расстояние N—O 1,240 Å, угол ONO 120,0°, их плоскости развернуты относительно экваториальных плоскостей комплексов для атома Ru(1) на 42 и 47°, для атома Ru(2) на 28 и 46°.

В структуре II среднее значение длин связей Ru— O_{NO_3} 2,035 Å практически совпадает с длиной связи Ru— O_{H_2O} (2,037 Å), угол между нормалями к плоскостям двух координированных NO₃-групп равен 56,1°. Наблюдается значительное отклонение от 180° *транс*-угла O(7)— Ru—O(5) (на 17,7°). В координированных нитратогруппах длины связей N—O, так же как и величины углов ONO, заметно различаются. Координация атома кислорода приводит к некоторому увеличению расстояния O—N (1,313 и 1,332 Å) по сравнению с концевыми атомами ки-

слорода в координированных (1,213— 1,239 Å) и свободном (1,248—1,268 Å) нитрат-ионах. Аналогичное явление наблюдается и в других структурно охарактеризованных нитратокомплексах рутения [9, 10, 15—17].

Координированный нитрат-ион (как и свободный) — плоский треугольник с суммой углов 360°, однако величина угла ОNO для концевых атомов кислорода заметно больше 120° и составляет 124,4±0,2°. В сво-

Рис. 2. Строение комплексных частиц II

345

межитомные расстояния и, К и вилентные услы (6, трад. в структуре т								
Расстояние	d	Расстояние	d	Расстояние	d			
Ru(1)—N(10)	1,751(6)	Ru(2)—O(2W)	1,942(5)	N(1)—O(2)	1,236(7)			
Ru(1)—O(1W)	1,949(5)	Ru(2)—N(6)	2,077(6)	N(1)—O(1)	1,242(7)			
Ru(1) - N(1)	2,068(6)	Ru(2)—N(5)	2,090(6)	N(2)—O(4)	1,241(7)			
Ru(1) - N(2)	2,092(6)	Ru(2)—N(8)	2,095(5)	N(2)—O(3)	1,244(7)			
Ru(1) - N(4)	2,095(5)	Ru(2)—N(7)	2,118(5)	N(5)—O(5)	1,234(7)			
Ru(1) - N(3)	2,124(5)	N(10)—O(10)	1,150(6)	N(5)—O(6)	1,244(7)			
Ru(2)—N(20)	1,740(6)	N(20)—O(20)	1,140(7)	N(6)—O(8)	1,237(7)			
				N(6)—O(7)	1,243(8)			
Угол	ω	Угол	ω	Угол	ω			
N(10)—Ru(1)—O(1W)	177,1(2)	N(20)—Ru(2)—O(2W)	177,3(2)	O(10)—N(10)—Ru(1)	176,8(5)			
N(10)—Ru(1)—N(1)	90,5(2)	N(20)—Ru(2)—N(6)	91,9(3)	O(20)—N(20)—Ru(2)	177,8(5)			
O(1W)— $Ru(1)$ — $N(1)$	86,8(2)	O(2W)—Ru(2)—N(6)	90,8(2)	O(2) - N(1) - O(1)	119,1(6)			
N(10)— $Ru(1)$ — $N(2)$	92,6(2)	N(20)— $Ru(2)$ — $N(5)$	90,7(2)	O(2) - N(1) - Ru(1)	120,6(4)			
O(1W)— $Ru(1)$ — $N(2)$	90,1(2)	O(2W)— $Ru(2)$ — $N(5)$	86,6(2)	O(1) - N(1) - Ru(1)	120,3(5)			
N(1)— $Ru(1)$ — $N(2)$	176,9(2)	N(6)—Ru(2)—N(5)	177,2(2)	O(4)—N(2)—O(3)	119,8(6)			
N(10)—Ru(1)—N(4)	95,1(2)	N(20)—Ru(2)—N(8)	93,0(2)	O(4) - N(2) - Ru(1)	119,6(4)			
O(1W)— $Ru(1)$ — $N(4)$	86,2(2)	O(2W)— $Ru(2)$ — $N(8)$	87,2(2)	O(3) - N(2) - Ru(1)	120,5(5)			
N(1) - Ru(1) - N(4)	91,7(2)	N(6)—Ru(2)—N(8)	90,1(2)	O(5)—N(5)—O(6)	121,2(6)			
N(2) - Ru(1) - N(4)	87,4(2)	N(5) - Ru(2) - N(8)	90,7(2)	O(5) - N(5) - Ru(2)	119,8(5)			
N(10)— $Ru(1)$ — $N(3)$	93,4(2)	N(20)— $Ru(2)$ — $N(7)$	95,1(2)	O(6) - N(5) - Ru(2)	118,9(4)			
O(1W)— $Ru(1)$ — $N(3)$	85,2(2)	O(2W)— $Ru(2)$ — $N(7)$	84,8(2)	O(8)—N(6)—O(7)	120,0(6)			
N(1) - Ru(1) - N(3)	87,8(2)	N(6)— $Ru(2)$ — $N(7)$	88,6(2)	O(8)—N(6)—Ru(2)	121,0(6)			
N(2) - Ru(1) - N(3)	92,6(2)	N(5)— $Ru(2)$ — $N(7)$	90,3(2)	O(7)—N(6)—Ru(2)	119,0(5)			
N(4)— $Ru(1)$ — $N(3)$	171,5(2)	N(8)— $Ru(2)$ — $N(7)$	171,9(2)					

Межатомные расстояния d, Å и валентные углы ω, град. в структуре I

Т	а	б	Л	И	П	а	4
	u	~				u	

Таблица З

Расстояние	d	Расстояние	d	Расстояние	d
Ru(1)—N	1,727(2)	N(1)—O(2)	1,248(2)	N(2)—O(5)	1,313(2)
Ru(1)—O(7)	2,0323(15)	N(1)—O(3)	1,251(2)	N(3)—O(9)	1,213(2)
Ru(1)—O(10)	2,037(2)	N(1)—O(1)	1,268(2)	N(3)—O(8)	1,239(2)
Ru(1)—O(5)	2,0383(11)	N(2)—O(6)	1,2282(19)	N(3)—O(7)	1,332(2)
Ru(1) - N(6)	2,087(2)	N(2)—O(4)	1,229(2)	N—O	1,150(3)
Ru(1)—N(4)	2,098(2)				
Угол	ω	Угол	ω	Угол	ω
N—Ru(1)—O(7)	99,01(9)	O(5)—Ru(1)—N(6)	85,92(9)	O(6)—N(2)—O(4)	124,23(17)
N—Ru(1)—O(10)	178,08(10)	N-Ru(1)-N(4)	92,04(8)	O(6) - N(2) - O(5)	119,39(16)
O(7)— $Ru(1)$ — $O(10)$	79,81(7)	O(7)— $Ru(1)$ — $N(4)$	87,24(8)	O(4) - N(2) - O(5)	116,37(16)
N-Ru(1)-O(5)	98,68(10)	O(10)— $Ru(1)$ — $N(4)$	86,40(9)	N(2) - O(5) - Ru(1)	123,43(11)
O(7)— $Ru(1)$ — $O(5)$	162,31(7)	O(5) - Ru(1) - N(4)	91,65(9)	O(9)—N(3)—O(8)	124,6(2)
O(10)— $Ru(1)$ — $O(5)$	82,50(9)	N(6) - Ru(1) - N(4)	174,21(10)	O(9)—N(3)—O(7)	120,30(18)
N-Ru(1)-N(6)	93,52(10)	O(2)—N(1)—O(3)	121,25(18)	O(8)—N(3)—O(7)	115,1(2)
O(7)— $Ru(1)$ — $N(6)$	93,47(7)	O(2) - N(1) - O(1)	119,03(18)	N(3) - O(7) - Ru(1)	122,38(12)
O(10)— $Ru(1)$ — $N(6)$	88,07(9)	O(3) - N(1) - O(1)	119,72(19)	O—N—Ru(1)	178,5(2)

Межатомные расстояния d, Å и валентные углы w, град. в структуре II

Рис. 3. Упаковка комплексов **I** в кристалле и схема водородных связей

Рис. 4. Проекция структуры **II** на плоскость *уz*

бодном нитрат-ионе валентные углы отклоняются от 120° не более чем на 1,3°. Длины связей N—О довольно близки (1,258±0,020 Å), причем некоторое их увеличение связано с образованием водородных связей с молекулами координированной (2,62 Å) и кристаллизационной воды (2,76 Å). Молекула кристаллизационной воды образует еще одну водородную связь — с молекулой координированной воды (2,62 Å).

Общая упаковка комплексов для структуры I вдоль направления X приведена на рис. 3. В кристалле структурные фрагменты связаны водородными связями N—H...O, в которых участвуют атомы кислорода нитрогрупп и молекулы аммиака. Следует отметить межмолекулярный контакт O_{NO...O_{NO2} с оценкой 2,85 Å. В структуре каждый комплекс окружен 12 соседними с расстояниями между атомами Ru 6.038—7.204 Å.}

Проекция структуры II вдоль направления X приведена на рис. 4. В структуре просматривается слоистый характер, шесть расстояний между центрами катионов Ru...Ru в слое имеют оценки 6,629—7,412 Å, в слоях отмечено межкатионное расстояние $O_{NO_3}...O_{NO_3} \sim 2,89$ Å между нитратогруппами соседних катионов. Первой линии на дифрактограмме 020 соответствует межслоевое расстояние d = 6,719 Å. Между катионными слоями располагаются внешнесферные анионы NO_3^- и молекулы кристаллизационной воды, которые связывают структурные единицы водородными связями в единый каркас. Помимо водородных связей, образуемых молекулами воды, многочисленные H-связи образуют амминогруппы комплексного катиона с кратчайшими оценками N—H...O ~3 Å. Отметим межионное расстояние O...O между атомами кислорода нитрозогруппы и внешнесферного аниона, равное 2,87 Å.

Таким образом, кипячение *mpahc*-[RuNO(NH₃)₂(NO₂)₂OH] в 3 М HNO₃ до прекращения выделения оксидов азота с последующим упариванием полученного раствора приводит к протонированию координированной гидроксогруппы, удалению двух координированных нитрогрупп и вхождению на их место двух нитрат-ионов. Происходящие в системе процессы суммарно могут быть описаны следующим уравнением:

 $3[RuNO(NH_3)_2(NO_2)_2OH] + 7HNO_3 + H_2O \rightarrow 3[RuNO(NH_3)_2(NO_3)_2(H_2O)]NO_3 \cdot H_2O + 4NO.$

Авторы выражают благодарность Е.В. Пересыпкиной и И.В. Королькову за проведение рентгеновских экспериментов, Н.И. Алферовой за регистрацию ИК спектров, П.Е. Плюснину за проведение термических исследований.

Работа выполнена при частичной финансовой поддержке ОХНМ РАН (проект 102-59-06).

СПИСОК ЛИТЕРАТУРЫ

- 1. Forsterling H.U. // ZFI-Mitteilungen Leipzig. 1983. N 82. P. 5.
- 2. Kolarik Z., Renard E.V. // Platinum Metals Review. 2003. 47, N 2. P. 74.
- 3. Mun C., Cantrel L., Madic C. // Nucl. Technol. 2006. 156, N 3. P. 332.
- 4. Торгов В.Г., Шульман Р.С., Ус Т.В. и др. // Журн. неорган. химии. 2003. 48, № 7. С. 1221.

- 5. Емельянов В.А., Федотов М.А. // Там же. 2006. 51, № 11. С. 1923.
- 6. Fletcher J.M., Jenkins I.L., Lever F.M. et al. // J. Inorg. Nucl. Chem. 1955. 1, N 2. P. 378.
- 7. Brown P.G.M. // Ibid. 1960. 13, N 1. P. 73.
- Беляев А.В., Федотов М.А., Храненко С.П., Емельянов В.А. // Координац. химия. 2001. 27, № 12. С. 907.
- 9. Coe B.J., McDonald C.I., Beddoes R.L. // Polyhedron. 1998. 17. P. 1997.
- 10. Mukaida M., Sato Y., Kato H. et al. // Bull. Chem. Soc. Jpn. 2000. 73. P. 85.
- 11. Ильин М.А., Емельянов В.А., Байдина И.А. // Журн. структур. химии. 2009. 49, № 6. С. 1128.
- 12. Sheldrick G.M. SHELX-97, release 97-1. Germany, University of Göttingen, 1997.
- 13. Емельянов В.А., Громилов С.А., Байдина И.А. // Журн. структур. химии. 2004. 45, № 5. С. 923.
- 14. Емельянов В.А., Байдина И.А., Громилов С.А., Вировец А.В. // Там же. 2006. 47, № 1. С. 69.
- 15. Ghosh P., Chakravorty A. // Inorg. Chem. 1997. 36, N 1. P. 64.
- 16. Cao M., Do L.V., Hoffman N.W. et al. // Organometal. 2001. 20, N 11. P. 2270.
- 17. Shiu K.-B., Yang L.-T., Jean S.-W. et al. // Inorg. Chem. 1996. 35, N 26. P. 7845.