УДК 543.424.2, 536.46

Плоскостная термометрия в турбулентном пламени методом спонтанного комбинационного рассеяния со структурированной лазерной подсветкой^{*}

Д.К. Шараборин

Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск

E-mail: sharaborin.d@gmail.com

Методом, основанным на регистрации распределения интенсивности спонтанного комбинационного рассеяния (СКР) с использованием структурированного лазерного излучения, выполнена визуализация и проведена оценка распределения локальной температуры в предварительно перемешанном метановоздушном ламинарном и турбулентном пламени. Представлено сравнение с распределениями температуры, измеренными методом СКР без модулированного лазерного излучения. Результаты показывают, что в направлении поперек лазерного ножа в плоскости измерения пространственное разрешение для данных со структурированным излучением ниже, чем пространственное разрешение для данных, полученных без использования структурированного излучения. Однако даже с указанными недостатками реализованный подход позволяет оценивать среднее распределение температуры в реагирующем потоке, используя сигнал СКР, зарегистрированный только с S-поляризацией лазерного излучения.

Ключевые слова: структурированное лазерное излучение, спонтанное комбинационное рассеяние, пламя в закрученном потоке.

Метод визуализации с использованием структурированного освещения был впервые применен в 1997 году в микроскопии [1]. Отличительной особенностью этого метода является возможность устранения с изображения расфокусированного света, из-за которого ухудшается контрастность оптических приборов. Со временем эта методика получила бурное развитие и широкое применение в других областях микроскопии [2–4]. В работах [5, 6] было показано, что этот метод может быть использован для преодоления дифракционного предела, достигая теоретически неограниченного разрешения. Большинство публикаций о структурированном освещении посвящено микроскопии, но эта техника стала популярной и за пределами данной области исследований. Авторы [7] использовали структурированный источник света для изучения топографии подошвы стопы во время ходьбы, а в [8] этот метод был реализован для исследования струи азота, истекающей во взвесь капель воды. Одной из важнейших особенностей методов, основанных на структурированном лазерном освещении, является возможность его использования в условиях высоких значений интенсивности фонового сигнала и высокого

^{*}Экспериментальные исследования проводились по государственному контракту с ИТ СО РАН, разработка и апробация алгоритмов обработки экспериментальных данных осуществлялась при финансовой поддержке РФФИ (грант РФФИ № 18-38-00924).

Шараборин Д.К.

уровня шума. Благодаря этому в последние годы особенно активно структурированное освещение применяется при исследовании спреев [9, 10]. Также для исследования полей температуры реализованы методы плоскостной термометрии на основе регистрации рассеяния Рэлея [11, 12]. Однако методы на основе регистрации сигнала спонтанного комбинационного рассеяния с использованием структурированного лазерного освещения не нашли широкого применения в работах, посвященных изучению распределения локальной плотности и температуры в газовых потоках, несмотря на значительные пре-имущества перед рэлеевской термометрией, к которым относятся спектральное разделение возбуждающего излучения и длин волн регистрируемого сигнала и возможность регистрации сигнала рассеяния для каждого типа молекул, входящих в состав газовой смеси.

В настоящем исследовании представлены результаты применения метода визуализации неоднородности полей плотности и температуры в турбулентных реагирующих потоках на основе регистрации распределения интенсивности спонтанного комбинационного рассеяния с использованием структурированного лазерного излучения.

В работе реализуются два режима горения предварительно перемешанной метановоздушной смеси: горение в ламинарном потоке смеси и горение в турбулентном потоке с сильной закруткой. Поток организуется осесимметричным профилированным соплом формы Витошинского с выходным диаметром d = 15 мм. Степень закрутки потока, определяемая соотношением между моментом импульса и импульсом струи (S), задавалась углом наклона лопаток в завихрителе [13], устанавливаемом в сопло, и составляла S = 1,0. Число Рейнольдса струи, рассчитанное по среднерасходной скорости и вязкости воздуха, составляло Re = 1000 и 5000 для ламинарного и турбулентного потоков соответственно. Коэффициент избытка топлива φ был равен 0,95 для ламинарного и 0,7 для турбулентного пламён. В качестве источника, возбуждающего излучения, в измерительной системе использовался мощный импульсный лазер Nd: YAG Quanta-Ray. Генерация излучения производилась на длине волны 355 нм. Энергия каждого лазерного импульса длительностью 6 нс контролировалась измерителем энергии Coherent LabMax-TOP и составляла 300 мДж со среднеквадратичным отклонением не более 5 %. С использованием коллимирующей оптики лазерный луч разворачивался в «нож» шириной 50 мм и толщиной менее 0,8 мм в измерительной области. Стальная пластина с периодически нанесенными прорезями шириной 0,5 мм с шагом 0,5 мм использовалась для модуляции пространственного распределения энергии в лазерном «ноже». Для регистрации сигнала СКР использовалась интенсифицированная 16-битная камера с электронно-оптическим преобразователем (Princeton instruments PI-MAX-4) с фотокатодом S20 (multialkali). Камера работала в режиме накопления до 200 импульсов лазера с экспозицией длительностью 30 нс для каждого импульса, осреднение проводилось по 50 реализациям. Для повышения соотношения сигнал-шум регистрация проводилась с объединением пикселей матрицы по областям из 2×2 пикселей. На камеру устанавливался кварцевый объектив LaVision (f = 100, f/2.8). Пространственное распределение интенсивности стоксовой составляющей СКР молекулярного азота (колебательно-вращательные переходы) регистрировалось в диапазоне длин волн 387 ± 5 нм с использованием полосно-пропускающего фильтра производства Edmund Optics. В полосу пропускания фильтра 387 ± 5 нм кроме линии азота попадали линии других компонент газовой смеси (CO, H₂O). В работе [14] рассматривалось турбулентное пламя пропана, были зарегистрированы спектры спонтанного комбинационного рассеяния и показано, что вблизи линии азота, в пределах полосы фильтра, дополнительные линии либо отсутствуют, либо их интенсивность ниже чувствительности регистрирующей аппаратуры. Также использовался оптический полосно-заграждающий фильтр для подавления излучения рассеяния Релея, которое не полностью блокировалось полосно-пропускающим фильтром.

На рис. 1 представлены примеры распределения интенсивности сигнала СКР в ламинарном и турбулентном пламенах, а также результаты обработки и реконструкции изображения. Для лучшего отображения интенсивность сигнала нормирована на максимальное значение, однако следует отметить, что интенсивность реконструированного сигнала в 3-5 раз ниже, чем до его обработки. Изображения после обработки содержат только модулированную часть сигнала без его фонового излучения, теплового шума матрицы камеры и возможных бликов. Как на исходных, так и на реконструированных изображениях наибольшую интенсивность сигнал имеет вблизи фронта пламени, что связано с попаданием в спектральный диапазон фильтра сигнала лазерно-индуцированной флуоресценции формальдегида во фронте пламени, а не с наибольшей интенсивностью комбинационного рассеяния. Алгоритмы обработки и реконструкции изображений реализованы на основе подходов, представленных в ряде работ — [9, 12, 15, 16]. Апробация и отладка алгоритмов обработки проводились с использованием экспериментальных данных, полученных в ламинарном пламени.

На рис. 2 представлены осредненные по времени распределения температуры в ламинарном и турбулентном пламенах. Для сравнения полученных результатов на рис. 2*а* и 2b приведены распределения температуры, измеренные методом на основе СКР без использования структурированного лазерного излучения и с объединением пикселей матрицы по областям из 4×4 пикселей для повышения интенсивности сигнала и соотношения сигнал/шум. Фоновый сигнал в обоих случаях горения учитывался путем регистрации СКР при возбуждении лазерным излучением с Р-поляризацией, аналогично [17]. В случае турбулентного пламени (рис. 2b) присутствует область, в которой расчет температуры затруднен из-за сигнала лазерно-индуцированной флуоресценции формальдегида во фронте пламени, спектр которого частично попадает в диапазон пропускания используемого фильтра. Поля температуры, представленные на рис. 2с и 2d, определены по отношению реконструированного сигнала в воздухе при комнатной температуре к сигналу в пламени в предположении идеального газа. Локальная концентрация азота в процессе горения может изменяться, но при большом времени осреднения, исходя из брутто уравнения реакции горения метана в воздухе, молярная доля азота до фронта пламени и на удалении от него сохраняется неизменной. При оценке температуры применялся итерационный алгоритм, учитывающий зависимость сечения рассеяния молекул азота от температуры. На каждой итерации при расчете использовалось полученное

Рис. 1. Реконструкции сигнала после обработки и примеры распределения интенсивности сигнала СКР в предварительно перемешанном ламинарном (Re = 1000, φ = 0,95) (a) и турбулентном (S = 1,0, Re = 5000, φ = 0,7) (b) пламенах.

Шараборин Д.К.

Puc. 2. Осреднённые по времени распределения температуры в ламинарном (Re = 1000, φ = 0,95) (a, c) и турбулентном (S = 1,0, Re = 5000, φ = 0,7) (b, d) пламенах.
a, b — оценка полей температуры без решетки,
c, d — оценка полей температуры со структурированным лазерным излучением.

на предыдущем шаге значение температуры. Следует отметить, что при обработке данных, полученных с использованием структурированной засветки, использовался сигнал СКР, зарегистрированный только при S-поляризации лазерного излучения. Сравнивая результаты, полученные с модуляцией излучения и без нее, можно сделать вывод, что значения температуры отличаются друг от друга в пределах 10 %. На полях температуры, полученных с модуляцией излучения, присутствуют вытянутые по вертикали области высокой температуры, появление которых связано в первую очередь с особенностями обработки сигнала. Также на реконструированных изображениях происходит ухудшение пространственного разрешения в вертикальном направлении, что приводит к размытию в этом направлении восстанавливаемой температуры. Однако даже с указанными недостатками реализованный подход позволяет оценивать среднее распределение температуры в реагирующем потоке, используя сигнал СКР, зарегистрированный только с S-поляризацией лазерного излучения. Данный метод может быть применен для измерения распределения температуры в реагирующих течениях в условиях высокоинтенсивного фонового излучения, например, для пламени в камере сгорания газотурбинных установок, для которых характерно большое количество бликов от стенок и собственного свечения пламени.

Список литературы

- Neil M.A.A., Juškaitis R., Wilson T. Method of obtaining optical sectioning by using structured light in a conventional microscope // Optics Letters. 1997. Vol. 22, No. 24. P. 1905–1907.
- Krzewina L.G., Kim M. K. Single-exposure optical sectioning by color structured illumination microscopy // Optics Letters. 2006. Vol. 31, No. 4. P. 477–479.
- Neil M.A.A., Juškaitis R., Wilson T. Real time 3D fluorescence microscopy by two beam interference illumination // Optics Communications. 1998. Vol. 153, No. 1–3. P. 1–4.
- Cole M.J., Siegel J., Webb S.E.D., Jones R., Dowling K., Dayel M.J., Parsons-Karavassilis D., French P.M.W., Lever M.J., Sucharov L.O.D., Neil M.A.A., Juškaitis R., Wilson T. Time-domain whole-field fluorescence lifetime imaging with optical sectioning // J. of Microscopy. 2001. Vol. 203, No. 3. P. 246–257.
- Gustafsson M.G.L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy // J. of Microscopy. 2000. Vol. 198, No. 2. P. 82–87.
- Gustafsson M.G.L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution // Proceedings of the National Academy of Sci. 2005. Vol. 102, No. 37. P. 13081–13086.
- Cortizo E., Yeras A. M., Lepore J., Garavaglia M. Application of the structured illumination method to study the topography of the sole of the foot during a walk // Optics and Lasers in Engng. 2003. Vol. 40, No. 1–2. P. 117–132.
- Kristensson E., Richter M., Pettersson S.G., Ald'en M., Andersson-Engels S. Spatially resolved, single-ended two-dimensional visualization of gas flow phenomena using structured illumination // Applied Optics. 2008. Vol. 47, No. 21. P. 3927–3931.
- Mishra Y.N., Kristensson E., Koegl M., Jönsson J., Zigan L., Berrocal E. Comparison between two-phase and one-phase SLIPI for instantaneous imaging of transient sprays // Experiments in Fluids. 2017. Vol. 58, No. 9. P. 110-1–110-17.
- Mishra Y.N., Tscharntke T., Kristensson E., Berrocal E. Application of SLIPI-based techniques for droplet size, concentration, and liquid volume fraction mapping in sprays // Applied Sci. 2020. Vol. 10, No. 4. P. 1369-1– 1369-17.
- 11. Kempema N.J., Long M.B. Quantitative Rayleigh thermometry for high background scattering applications with structured laser illumination planar imaging // Applied Optics. 2014. Vol. 53, No. 29. P. 6688–6697.
- Kristensson E., Ehn A., Bood J., Aldén M. Advancements in Rayleigh scattering thermometry by means of structured illumination // Proceedings of the Combustion Institute. 2015. Vol. 35, No. 3. P. 3689–3696.
- 13. Gupta A.K., Lilley D.G., Syred N. Swirl flows. Kent, U.K.: Abacus Press, 1984. 475 p.
- 14. Шараборин Д.К., Маркович Д.М., Дулин В.М. Пространственная структура реагирующего потока турбулентной закрученной струи при горении пропановоздушной смеси // Физика горения и взрыва. 2018. Т. 54, № 3. С. 47–54.
- Berrocal E., Kristensson E., Johnsson J., Aldén M. Single scattering detection in turbid media using singlephase structured illumination filtering // J. Euro. Opt. Soc. Rap. Pub. 2012. Vol. 7. P. 12015-1–12015-6.
- 16. Kristensson E., Bood J., Aldén M., Nordström E., Zhu J., Huldt S., Bengtsson P-E., Nilsson H., Berrocal E., Ehn A. Stray light suppression in spectroscopy using periodic shadowing // Opt. Express. 2014. Vol. 22. P. 7711– 7721.
- Sharaborin D.K., Dulin V.M., Lobasov A.S., Markovich D.M. Measurements of density field in a swirling flame by 2D spontaneous Raman scattering // AIP Conf. Proc. 2016. Vol. 1770. P. 030027-1–030027-7.

Статья поступила в редакцию 29 мая 2020 г., после доработки — 2 марта 2021 г., принята к публикации 23 марта 2021 г.